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Abstract—We analyze two calibration approaches for parame-
ter identification and traffic speed reconstruction in macroscopic
traffic flow models. We consider artificially created noisy loop
detector data as our field measurements. Due to the knowledge
of the ground truth calibration parameter, we can give a sound
assessment with respect to the performance of the considered
methods. Our analysis shows that, in the proposed setting, the
first order traffic flow model together with the proposed Kennedy
O’Hagan approach performs better in reconstructing the speed
traffic quantity than the other approaches.
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I. INTRODUCTION

Macroscopic traffic flow models, consisting in hyperbolic
partial differential equations based on the mass conservation
principle, describe the spatio-temporal evolution of traffic
aggregate quantities such as density and mean velocity on
road networks. Since they involve few parameters and they
are computationally less expensive, they are often a preferred
choice over other models (such as microscopic ones). Never-
theless, parameter calibration remains a challenging task due
to model limitations and data noise.

In this work, we focus on the comparison of two different
calibration approaches applied to first order models, consisting
in the sole mass conservation equation, and second order ones,
including a second equation accounting for speed evolution.
The models are based on a speed function including unknown
parameters. Typically, the model parameters are calibrated by
fitting the so-called fundamental diagram, i.e., the density-flow
or density-speed mapping described by the model flux function
(see e.g. [1], [2]). However, data noise and congested traffic
situations make the parameter identification process difficult
to deal with (see e.g. [3]). In this paper, we consider the
following alternative approaches. One consists in minimizing

This work has been supported by the French government, through the
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the L2-error between the simulation output and the (synthetic)
data [4]–[6]. The other one was proposed in [3] and fol-
lows [7]: it introduces a bias term to better account for possible
discrepancies between the mathematical models and reality.
This generic framework has been applied in a variety of fields,
ranging from physics [8] to engineering [9] or biology [10].

To better assess the performances of the proposed ap-
proaches and the considered models, we employ average loop
detector data constructed by numerical simulations. By testing
and comparing the performances of two calibration methods,
we aim at providing a benchmark for applying the selected
approaches in real world situations.

The article is organized as follows. In Section II, we intro-
duce the considered discrete traffic modeling framework and
we detail the numerical scheme used to produce the synthetic
data in Section III and to run the calibration algorithms
presented in Section IV. Finally, the optimization results are
discussed in Section V and a conclusion is made in Section VI.
We remark that throughout the paper, we will follow notations
from [3].

II. DISCRETE MACROSCOPIC TRAFFIC FLOW MODELS

We consider the following discretization in space and time
of the initial boundary value problem for the Generic Second
Order Model (GSOM) [11] on a road stretch including on- and
off-ramps. Given a discretization {x0, . . . , xM} of the spatial
interval ]xin, xout[ (with x0 = xin and xM = xout and includ-
ing ramp locations), we set the cell sizes ∆xj := xj − xj−1

for j = 1, . . . ,M , and a time step ∆t satisfying a suitable
stability condition to be specified later. Denoting by ρnj and
wn

j respectively the traffic density, the Lagrangian vehicle
property in section j at time n∆t, the traffic speed is given
by vnj = V(ρnj , wn

j ), where the speed function V satisfies:
V(ρ, w) ≥ 0, V(0, w) = w, 2Vρ(ρ, w) + ρVρρ(ρ, w) < 0 for
w > 0 and Vw(ρ, w) > 0. As a consequence, the flow function
ρ 7→ Q(ρ, w) := ρV(ρ, w) is strictly concave for w > 0 and
we denote by ρcr(w) the point where it achieves its maximum.
Moreover, we denote by rρ,nj and sρ,nj respectively the on-
ramp and off-ramp fluxes at xj and n∆t.978-1-6654-5530-5/23/$31.00 ©2023 IEEE



Setting Un
j :=

(
ρnj , ρnj w

n
j

)⊺
, the discrete GSOM

equations read for j ∈ {1, . . . ,M − 1} :

if rρ,nj ≥ 0 and sρ,nj = 0 (and rρ,nj−1 = sρ,nj−1 = 0):
Un+1

j = Un
j −

∆t

∆xj

[
min

{
D(Un

j ),max{PjS(U
n
j+1;w

n
j ),

S(Un
j+1;w

n
j )− rnj }

}
− Fn

j−1

]
,

Un+1
j+1 = Un

j+1 −
∆t

∆xj+1

[
Fn

j+1 −min{D(Un
j ) + rnj ,S(U

n
j+1;w

n
j )}

]
;

if sρ,nj > 0 and rρ,nj = 0 (and rρ,nj−1 = sρ,nj−1 = 0):

Un+1
j = Un

j −
∆t

∆xj

[(
min

{
max{D(Un

j )− snj , 0},

S(Un
j+1;w

n
j )

}
+min{D(Un

j ), s
n
j }

)
− Fn

j−1

]
,

Un+1
j+1 = Un

j+1 −
∆t

∆xj+1

[
Fn

j+1 −min
{
max{D(Un

j )− snj , 0},

S(Un
j+1;w

n
j )

}]
,

where rnj :=
(
rρ,nj , wn

j r
ρ,n
j

)⊺
, snj :=

(
sρ,nj , wn

j s
ρ,n
j

)⊺
and

Pj ∈ [0, 1] are the priority parameters at on-ramps. Moreover,
the initial and boundary data are approximated by piecewise
constant functions U0

j , Un
0 and Un

M . We remark that the
discretization is chosen in a way such that we cannot have
two ramps on subsequent cell-interfaces.
The demand and supply functions in the above scheme
are defined by D(Uj) =

(
Dρ(Uj) , wjD

ρ(Uj)
)⊺

and

S(Uj+1) =
(
Sρ(Uj+1;wj) , wjS

ρ(Uj+1, wj)
)⊺

with

Dρ(Uj) =

{
Q(ρj , wj) if ρj ≤ ρcr(wj),

Q(ρcr(wj), wj) if ρj > ρcr(wj),

Sρ(Uj+1, wj) =

{
Q(ρcr(wj), wj) if ρj+1/2 ≤ ρcr(wj),

Q(ρj+1/2, wj) if ρj+1/2 > ρcr(wj),

and where ρj+1/2 is the density of the intermediate state in the
solution of the Riemann problem corresponding to (ρj , wj)
and (ρj+1, wj+1), implicitly defined by V(ρj+1/2, wj) =
V(ρj+1, wj+1) if V(ρj+1, wj+1) ≤ wj and by ρj+1/2 = 0
if V(ρj+1, wj+1) > wj [12].
Finally, to compute Fn

j =
(
F ρ,n
j , wn

j F
ρ,n
j

)⊺
, we set

F ρ,n
j = min

{
Dρ(Un

j ), S
ρ(Un

j+1;w
n
j )
}
. (II.1)

Note that, taking wn
j = const in the above equations, we

recover the first order Lighthill-Whitham-Richards (LWR)
model [13], [14] in its CTM version [15].

In the following, we consider the speed function

V(ρ, w) = w

1− exp

(
C

V

(
1− R

ρ

)) , (II.2)

proposed by Newell-Franklin [16], [17]. Thus, the Courant-
Friedrichs-Lewy (CFL) stability condition reads as

∆t ≤ minj ∆xj

max{C, V }
(II.3)

and the parameters to be identified are θ = (V,C,R), where
V > 0 is the maximal speed, R > 0 is the maximal density and
C > 0 is the wave propagation speed in congestion. Again,
the LWR model is obtained by fixing w = V in (II.2).

III. SYNTHETIC DATA CONSTRUCTION

We consider a road stretch of L = 4.85 km long accounting
for 8 loop detectors, 3 off-ramps and 2 on-ramps. The road
is divided into 11 intervals (see Figure 1), each containing 30
mesh points (i.e. M = 330).
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Fig. 1: Schematic representation of the considered road stretch.
Blue vertical lines represent the coarse segmentation. The red
(resp. green) arrows mark off- (resp. on-) ramp locations.

For the generation of the synthetic data set, we set

θ0 = (V 0, C0, R0) = (100, 20, 350)

and we consider a bell-shaped initial traffic density over
x ∈ [0, L]:

ρ(0, x) = 0.92R · exp

(
−

(x− L
2 )

2

2 · (0.1L)2

)
,

and boundary data given by:

ρ(t, 0) = ρ(t, L) = 0.45R · sin
(
4π

3
(t− 3

8
)

)
+ 0.05R

(see Figure 2). The artificial ramp flows are based on the

Fig. 2: Illustration of initial (left figure) and boundary data
(right figure).

functions:

qramp
i (t) = aiR · sin

(
2π

bi
(t− ci)

)
+ diR,

where ai, bi, ci, di ∈ ]0, 1.5[, i ∈ {1, . . . , 5}, are chosen
arbitrarily. The priority on-ramp parameters Pj are all set to
5/6 in the numerical scheme.



Data are generated by the following procedure. We run a
simulation, taking w = V , θ = θ0 and data ρ(t, 0) = ρ(t, L)
and qramp

i (t), i ∈ {1, . . . , 5} at t ∈ {∆t, 2∆t, . . . , 2} with
∆t = 6 · 10−5 hr and ρ(0, x) at x ∈ {x1−x0

2 + x0,
x2−x1

2 +

x1, . . .
xM−xM−1

2 + xM−1}. We remark that the simulation
output is given in terms of the density (and additionally speed
in the GSOM model). The corresponding speed and flow
values are generated by means of (II.2).
Then, in order to create a more realistic traffic situation, we
add a discrepancy term to the simulated quantities (density,
speed and flow), denoted by ysim. Since the amount of the
discrepancy is unknown, we analyze three different scenarios:
no, low or high discrepancy. Thus, the ground truth traffic
quantities are given by

yP (t, x) := ysim(t, x) + τ max{ysim(t, x)} · sin(t+ x)
(III.1)

where τ ∈ {0, 0.02, 0.1} (negative values are replaced by
zero). Figure 3 visualizes the speed reference traffic situation
in the case of a low bias (τ = 0.02). We emphasize that the
selected time window (2 hours) accounts for both congestion
(red colored velocities) and free flow (green colored velocities)
phases. The rush hour begins after about 25 minutes, spilling
back from the downstream boundary, and dissipates after
approximately 100 minutes. Moreover, we also remark the
effect of the ramp flows, which is shown by the horizontal
lines corresponding to the ramp positions.

Fig. 3: Space-time speed visualization for the simulated sce-
nario, τ = 0.02.

In general, the field data yF measured by loop detectors are
noisy averages of the real data. Thus, we define yF by taking
6 minute averages of the ground truth yP , denoted by ȳP , and
by adding a normal distributed random variable, i.e.

yF = ȳP + sȳPN (0, 1),

where we set s = 0.15. Again, negative values are set to zero.
The synthetic ramp flows are obtained by the same procedure.
To emphasize the difference between ȳP and yF , Figure 4
shows the constructed average flow-density and speed-density
pairs together with the speed function (II.2) (w = V , θ = θ0).

If τ = 0, the reference data points ȳP lie closely around the
curve. Coherently, if we consider a high discrepancy (τ = 0.1),
the data ȳP are further away from the red line. In both cases
the noisy data yF are more widely spread but they are still
following the shape of the curve.

(a) ȳP (τ = 0) (b) yF (τ = 0)

(c) ȳP (τ = 0.1) (d) yF (τ = 0.1)

Fig. 4: Fundamental diagrams for 6 minute average reference
(ȳP ) and noisy data (yF ), τ ∈ {0, 0.1}.

To conclude this section, we also plot the density profiles
corresponding to ȳP and yF for each loop detector in Fig-
ure 5. The noisy averaged data clearly follow the evolution
of the reference data. However, in higher density regions, the
deviation is more strongly present due to the multiplicative
noise (sȳP ) in the field data construction.

Fig. 5: Density profiles for 6 minute average real (ȳP , in red)
and noisy data (yF , in black), τ = 0.



Remark 1. In order to create a realistic traffic environment,
the choice of our artificial traffic scenario is motivated by the
RTMC data set [18] provided by the Minnesota Department
of Transportation (MnDOT): the distances between the main
loop (resp. ramp) detectors coincide with those of the detectors
S54, S1706, S56, S57, S1707, S59, S60, S61 (resp. 129, 130,
169, 170, 171) on the highway I-35W.

IV. CALIBRATION APPROACHES

In this section, we describe two calibration approaches
to identify the parameter θ which is used to generate the
simulated (sim.) traffic data yM .
For constructing the simulated data, we extract the initial
and boundary data from yF . These data serve as inputs for
the numerical simulations. Then, the calibration is done by
standard L2-optimization (see Definition 1) or the KOH-
optimization (see Definition 2) introduced in [7], [8].

Some notation are needed before defining the two calibra-
tion approaches: given a set of observations of the field data(
yF
(
(t1, x1), . . . , (tN , xN )

))
at N observation points XN =(

(t1, x1), . . . , (tN , xN )
)
, we define the observed (noisy) bias

at observation point i ∈ {1, . . . , N} as

bi(θ) = yF (ti, xi)− yM (ti, xi, θ)

and the set of observed biases bN by

bN (θ) = yF (XN )− yM (XN , θ).

Definition 1. The L2-optimization consists in minimizing the
least square cost function C given by

C(θ) =

N∑
i=1

|bi(θ)|2.

Thus, the optimal parameter θ∗ is given by

θ∗ = argmin
θ

C(θ).

Definition 2. The KOH-optimization relies on a Gaussian
process (GP) for estimating the bias term, which amounts
to consider bN as a realization of a multivariate normal
distribution:

bN ∼ N (0N , σ2(CN (l1, l2) + gIN )).

The optimal parameters are those maximizing the concentrated
log-likelihood function:

max
l1,l2,g,θ

log L̃(l1, l2, g, θ)

with

log L̃(l1, l2, g, θ) =− N

2
log 2π − N

2
log σ̂2(l1, l2, g, θ)

− 1

2
log |CN (l1, l2) + gIN | − N

2
,

(IV.1)

where the process variance is defined as

σ̂2(l1, l2, g, θ) =
bN (θ)⊤(CN (l1, l2) + gIN )−1bN (θ)

N
.

In Definition 2, CN denotes the correlation matrix between
the observed biases bN . More precisely, the matrix entries of
CN are given by the following positive definite function:

c
(
(t, x), (t′, x′)

)
= (IV.2)

1

∆t2

t′+∆t∫
t′

t+∆t∫
t

exp

(
− (t− t′)2

l21

)
· exp

(
− (x− x′)2

l22

)
dsds′.

The (hyper-)parameters l1 and l2 denote, respectively, the
length-scales for the time and space variables and g accounts
for unknown measurement noise in the bias.

Remark 2. The correlation function (IV.2) is obtained by
integrating twice the commonly used Gaussian kernel. This
is motivated by the fact that we consider averaged data. The
idea is based on [19, Section 4.7].

Finally, in both approaches, we model the bias at n̂ new
locations X̂n̂ =

(
(t̂1, x̂1), . . . , (t̂n̂, x̂n̂)

)
by

b(X̂n̂) | bN ∼ N (mN (X̂n̂), s
2
N (X̂n̂, X̂n̂),

where

mN (X̂n̂) := kN (X̂n̂)
⊤K−1

N bN ,

s2N (X̂n̂, X̂n̂) := k(X̂n̂, X̂n̂)− kN (X̂n̂)
⊤K−1

N kN (X̂n̂),

and

k(·, ·) = σ̂2c(·, ·),
kN (X̂n̂) = (k(X̂ (j)

n̂ ,X (i)
N ))1≤j≤n̂,1≤i≤N .

We refer to [3], [7], [8] for more details on GP modeling.
Finally, the corrected calibrated simulated (corr. sim.) data,

yMc , are computed by yMc = yM+mN (XN ). Possibly negative
values are set to zero.

In the following, we will use the abbreviation M-A when
considering model M (LWR or GSOM) and approach A (L2
or KOH).

A. Optimization specifications

In order to overcome the difficulty of precisely reconstruct-
ing the initial density condition from point-wise loop measure-
ments, we run the traffic model through an initialization phase
of 6 minutes (see [1]). Thus, the calibration of the parameters
will be finally done on a 1 hour 54 minutes time slot.

Moreover, in the KOH approach, we apply a 2-step op-
timization procedure to separate the hyper- and calibration
parameter computation. In the so-called inner-level, we max-
imize the concentrated log-likelihood function (IV.1) depen-
dent on θ, thus obtaining the hyperparameters l1, l2, g. These
hyperparameters are inserted again into (IV.1) which will
be then maximized with respect to θ, giving the optimized



calibration parameter θ∗. We call the second step the higher-
level. We observe that for the inner-level, it is sufficient to
execute the local MATLAB optimization solver fmincon,
since trying several choices of initial guesses leads to very
similar optimization result. However, for the higher level, we
observe a stronger dependence on the initial guess, hence
we combine the global pso (particle swarm optimization)
and fmincon solver (by setting the option HybridFcn) to
reduce the probability of being stuck in a local minimum.

V. VALIDATION AND COMPARISON

In the following, we present and compare our results con-
cerning the two calibration approaches introduced in Section
IV. Our quantity of interest (yi, i ∈ {P, F,M}) is the speed,
since the final goal is to match the numerical simulation output
yM as good as possible with the synthetic traffic data yF in
order to do travel time prediction in future works. Thus, also
the calibration is executed on the speed quantity.
In order to compare the predictive accuracy between the two
calibration approaches and traffic flow models, we consider the
error metric E given by the root mean square error (RMSE)
between the field data and the corrected calibrated simulated
data:

E =

√√√√ 1

N

∑
(t,x)∈(T,X)

|yF (t, x)− yMc (t, x, θ∗)|2

where (T,X) denotes the N (t, x) points where observations
have been measured.

Table I compares the results between the above intro-
duced calibration approaches and first and second order traffic
models. The relative error with respect to the ground truth
parameter θ0 is indicated in brackets.

TABLE I: Optimization results for τ ∈ {0, 0.02, 0.1}.

(a) LWR model.

τ E V C R
0.00 7.3 96.3 (−3.7%) 18.4 (−7.9%) 379.5 (+8.4%)

L2 0.02 7.1 95.5 (−4.5%) 20.0 (+0.1%) 378.6 (+8.2%)
0.10 7.9 88.1 (−11.9%) 27.3 (+36.7%) 372.1 (+6.3%)
0.00 7.3 95.1 (−5.0%) 18.4 (−7.8%) 378.2 (+8.0%)

KOH 0.02 7.1 98.8 (−1.3%) 19.9 (−0.5%) 382.2 (+9.2%)
0.10 6.2 92.7 (−7.3%) 25.2 (+26.0%) 373.3 (+6.7%)

(b) GSOM model.

τ E V C R
0.00 7.9 93.1 (−6.9%) 20.4 (+2.1%) 353.4 (+1.0%)

L2 0.02 7.9 96.4 (−3.6%) 24.2 (+20.8%) 377.1 (+7.7%)
0.10 9.6 92.0 (−8.0%) 21.6 (+8.2%) 439.1 (+25.5%)
0.00 5.9 116.8 (+16.0%) 27.1 (+3.05%) 356.8 (+1.9%)

KOH 0.02 7.9 104.1 (+4.1%) 26.3 (+31.5%) 377.0 (+7.7%)
0.10 8.2 76.3 (−23.7%) 34.9 (+74.7%) 447.0 (+27.7%)

The following analysis will differentiate between the results
of the parameter reconstruction and error E minimization.
First, we emphasize that none of the tests achieves to identify

the parameter exactly. However we observe different perfor-
mances: starting by comparing the calibration approaches, we
observe a similar reconstruction for the maximum density R
values. The performance in the reconstruction of C and V
is less clear in the LWR model, but strikingly better in the
GSOM-L2 approach. Next, looking at the two traffic flow
models, we detect a clear outperformance of the GSOM model
with respect to R in the case τ = 0. However, increasing the
bias leads to an obvious rise in R. This behaviour cannot
be observed in the LWR model. Moreover, the V parameter
is similarly or better reconstructed by the LWR model. For
the C parameter, it is not possible to draw a conclusion,
but we observe large outliers in the GSOM model even with
low biased (τ = 0.02) data. At this state, we can conclude
that the parameter values vary more strongly for the GSOM
model, thus the LWR model seems to be more stable in
terms of parameter reconstruction. However, we point out
that unreasonable parameters do not necessarily lead to bad
estimations especially in high bias situations. This is due to
a change in the real data yP (see (III.1)), thus a different θ
(from the ground truth θ0) can be optimal for reconstructing
yF (or yP ).
Now, comparing the error E, we observe a surprisingly good
performance for the GSOM-KOH approach in the case τ = 0,
although the errors in the V and C parameters are high.
Considering the speed profiles for yF , yM and yMc plotted
in Figure 6, we observe that this result can be related to the
very good reconstruction at the boundary loop detectors (loops
1 and 8). This is not surprising, since the GSOM includes the
boundary speed as input data for the numerical scheme.
Additionally, by increasing the bias, we observe a better
performance of the KOH approach compared to the L2 one.
This was expected, since the KOH approach should capture the
bias contribution. Moreover, it is clearly visible that the LWR
model outperforms the GSOM model, which deteriorates more
strongly when the bias increases. We remark that the lowest
error for each τ -value is highlighted in bold in Table I.

From the above analysis, we conclude that, assuming ob-
servation noise in the data, the ground truth parameters do not
necessarily lead to the best reconstruction of the field data yF .
In fact, running our algorithm with θ = θ0, we obtain E = 7.5
(τ = 0) (7.6 (τ = 0.02) and 9.3 (τ = 0.1)), which is worse
than the corresponding errors in the LWR model in Table I.

Since we are interested in travel time predictions, we finally
compare the RMSE (see Table II) between the corrected
simulation and the averaged traffic data ȳP . Naturally, the
higher the bias, the larger the error. We observe again that the
LWR outperforms the GSOM model and the KOH beats the
L2 approach in increased bias situations (see values in bold).
We emphasize again that in reality we do not have access to
yP (and thus ȳP ) (due to measurement noise) therefore it is
not possible to confirm this conclusion. However, the results
of this paper can be seen as an indication of which approach
leads more likely to the lowest RMSE for real traffic data.

Remark 3. We emphasize that although the second order



Fig. 6: Speed profiles for GSOM-KOH. In red: field data yF ,
in blue: sim. data yM , in green: corr. sim. data yMc .

TABLE II: RMSE between ȳP and yMc .

τ LWR GSOM
0.00 2.44 2.89

L2 0.02 4.85 6.65
0.10 6.29 9.40

τ LWR GSOM
0.00 2.48 3.33

KOH 0.02 4.75 6.62
0.10 6.11 7.66

model is equipped with more information (speed values for
boundary loop detectors), it does not perform better in the
speed reconstruction. This result is in contrast with [3], where
real traffic data are considered, but on a much shorter road
stretch (1.1 km) without any ramps. However, this is instead
coherent with what observed in [20], [21].

VI. CONCLUSION

In the synthetic data case including biases, it is not possible
to reconstruct the ground truth parameter θ0 exactly. However,
we observed that parameter calibration can lead to a low error
E, which is desirable for the reconstruction of yF .
Moreover, we analyzed the different contributions of a bias
term to the generated data, leading to an outperformance of
the LWR over the GSOM model. This is visible especially in
higher bias situations. In these cases, we observed also that
the KOH approach captures better the bias modeling. Thus,
if the intention is travel time prediction and if we assume a
bias in the data, the LWR-KOH setting seems to be the best
candidate. In future works, we will continue by considering
real traffic data (such as the RTMC data set [18]). Due to the
complexity of real traffic situations, it will be more difficult
to obtain a good data reconstruction by numerical simulation.
However, this paper can be seen as a benchmark when testing
the different calibration approaches on real data.
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