Arithmetic subgroups of Chevalley group schemes over function fields II: Conjugacy classes of maximal unipotent subgroups
Résumé
Let $\mathcal{C}$ be a smooth, projective, geometrically integral curve defined over a perfect field $\mathbb{F}$. Let $k=\mathbb{F}(\mathcal{C})$ be the function field of $\mathcal{C}$. Let $\mathbf{G}$ be a split simply connected semisimple $\mathbb{Z}$-group scheme. Let $\mathcal{S}$ be a finite set of places of $\mathcal{C}$. In this paper, we investigate on the conjugacy classes of maximal unipotents subgroups of $\mathcal{S}$-arithmetic subgroups. These are parameterized thanks to the Picard group of $\mathcal{O}_{\mathcal{S}}$ and the rank of $\mathbf{G}$. Furthermore, these maximal unipotent subgroups can be realized as the unipotent part of natural stabilizer, that are the stabilizers of sectors of the associated Bruhat-Tits building. We decompose these natural stabilizers in terms of their diagonalisable part and unipotent part, and we precise the group structure of the diagonalisable part.
Origine | Fichiers produits par l'(les) auteur(s) |
---|