Explaining an image classifier with a generative model conditioned by uncertainty - Archive ouverte HAL
Communication Dans Un Congrès Année : 2023

Explaining an image classifier with a generative model conditioned by uncertainty

Résumé

We propose to condition a generative model by a given image classifier uncertainty in order to analyze and explain its behavior. Preliminary experiments on synthetic data and a corrupted version of MNIST dataset illustrate the idea.
Fichier principal
Vignette du fichier
Explaining an image classifier with a generative model conditioned by uncertainty.pdf (739.64 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Licence
Copyright (Tous droits réservés)

Dates et versions

hal-04194943 , version 1 (11-11-2023)
hal-04194943 , version 2 (02-10-2024)

Licence

Copyright (Tous droits réservés)

Identifiants

  • HAL Id : hal-04194943 , version 1

Citer

Adrien Le Coz, Stéphane Herbin, Faouzi Adjed. Explaining an image classifier with a generative model conditioned by uncertainty. Uncertainty meets Explainability | Workshop and Tutorial @ ECML-PKDD 2023, Sep 2023, Torino, Italy. ⟨hal-04194943v1⟩
267 Consultations
219 Téléchargements

Partager

More