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Abstract. We propose to condition a generative model by a given im-
age classifier uncertainty in order to analyze and explain its behavior.
Preliminary experiments on synthetic data and a corrupted version of
MNIST dataset illustrate the idea.
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1 Introduction

Context: explaining the behavior of image classifiers. The growing use
of image classifiers in many, sometimes critical, applications (e.g., medical diag-
nosis, autonomous driving, autonomous aircraft landing) reinforces the need to
understand their behaviors. A key issue is to identify the conditions under which
such systems are likely to fail, in order to ensure the safety of their use. With
this objective in mind, one can consider uncertainty as a measure of potential
failure: the question of failure condition identification can be translated into the
problem of describing the nature of uncertain data for a given classifier.

Explainability is currently thought of as a tool to improve the trustworthi-
ness of Al predictive systems. [1,14]. In this paper, we propose to provide an
explanation of the global classifier behavior as a representation of its uncertain
data by using a generative model.

Explainability studies have mainly focused on providing so-called “post-hoc”
explanations that are expected to somehow justify the actual prediction of a
trained model. Very few studies have addressed the issue of identifying failure
conditions. A related explanatory strategy is the design of counterfactuals [19,
5], which aim to identify what minimal and meaningful input modification will
lead to a desired prediction change. In particular, several works [21,18,12,9]
leverage generative models such as GANs (Generative Adversarial Networks) [4]
or diffusion models [8]. Generative models have also been used to quantify the
uncertainty of a classifier [16] or discover causes of failures [20, 13].

Main idea: GAN conditioned by the uncertainty of a classifier. Here
we propose to explicitly create a generator of uncertain data. This is done by
conditioning a generative model on the uncertainty of a given classifier. Such a
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generative model can generate infinite amounts of uncertain data (as seen by the
classifier) and provides a representation — an explanation — of what makes some
data hazardous for the classifier. We expect to benefit from the learned model’s
generalization capacity and use the generative model’s latent space — the “noise”
— as a compact data representation.

The model architecture is depicted in Fig. 1a. A conditional GAN [15] takes a
noise vector as input and a condition. Typically, this can be a one-hot embedding
of the class to generate samples of a selected class. A simple way of conditioning
a GAN is to concatenate the condition, e.g. one-hot embedding, to the noise
vector as inputs for the generator, and also concatenate the condition to the real
or fake image as inputs for the discriminator.

There are several ways to define the prediction uncertainty, e.g. entropy,
maximum softmax probability (MSP) [7], or true class probability [2]. We use
the imperfect but simple MSP as an uncertainty estimation. We add it as a
condition for the generator to learn during training. Then after training, the
model can generate uncertain data to get a global overview of the uncertainty.
We also manipulate data to increase or descrease the uncertainty and exhibit
sources of uncertainty.

MSP values are computed with the classifier (with frozen weights). For the
discriminator used on real images, we compute their associated MSP first. For the
discriminator used on fake images, we take the MSP used as a condition for the
generator. To condition the generator, we apply the MSPs of random real images
using the classifier to track the real distribution of MSP values. However, it is
important to mention that we do not distinguish between aleatoric and epistemic
uncertainty: the generative model is used to sample globally uncertain data.

Ve ~ class label
: classifier ' .
real image > (frozen) generator —»{fake image
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MSP generator —» fake image
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(a) During training time, the additional input MSP  (b) After training, we can
conditions the generator. The discriminator evaluates  generate uncertain images
if the combination (class, MSP, image) is realistic. (fix low MSP and vary noise)
*for the discriminator, inputs are alternatively (class  or identify sources of uncer-
label, MSP from classifier, real image) and (class con-  tainty for given images (fix
dition, MSP condition, fake image generated). the noise and vary MSP).

image* discriminator

Fig. 1: Training process and structure of the generator.

2 Preliminary experiments

Two-dimensional moons data. We first illustrate the approach with a simple
problem using the moons dataset [17]. The data is 2-dimensional and looks like
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two interleaving half-circles corresponding to the upper and lower moon classes.
The noise level can be adjusted, and we fix it to 0.3 to have an area where
the two classes are mixed. We train a simple fully-connected neural network
as a classifier. We use a simple generator based on a fully connected network
conditioned by one-hot class embedding and the MSP.
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(a) (left) Real data with colors representing the MSP (b) MSP condition (“in”)
computed by the classifier. (right) Generated data with vs. MSP computed by clas-
colors representing the MSP used to condition the gener- sifying the generated data
ation. The generator captured the meaning of the MSP.  (“out”).

Fig. 2: Qualitative and quantitative results for moons dataset. Uncertainty con-
ditioning works well; the MSP condition corresponds roughly to the real MSP.

Fig. 2a on the left shows the data, with colors representing the MSP obtained
when classifying the data. We can see that the MSP is close to 1, where the
classes do not mix, but gets lower in the middle area where the classes mix,
representing higher uncertainty (mostly aleatoric). Whereas, fig. 2a on the right
shows synthetic data conditioned by MSP. The values are sampled from MSP
computed on real data to follow the same distribution. We can see similarities
between the locations of real data with high MSP and synthetic data conditioned
by high MSP, and likewise for low MSP. The generator captured which kind of
data is uncertain and can generate such data when conditioned with low MSP.
For more quantitative results, we follow this process: fix some MSP values as
conditions (“input confidence”), generate fake data, classify it, and obtain the
MSP of the classifier (“output confidence”). Ideally, both values should be the
same every time. As seen in Fig. 2b, it is not necessarily the case, especially for
lower values. Yet, the two are correlated.

Corrupted MNIST. Let us now consider more complex data: images. We use
the MNIST dataset [3], which contains black and white images of handwritten
digits with ten classes (digits from 0 to 9). We train a Convolutional Neural
Network to classify digits from images. As the task of digit classification of
clean MNIST images is too simple (the classifier is almost perfect and highly
confident), we choose to corrupt MNIST images to make the problem more
realistic. We use Gaussian blur and noise similarly to ImageNet-C [6]. These
corruptions are applied on a random half of the images, with a random severity
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level out of 5 possible levels. We found that it results in a reasonable accuracy
reduction compared to clean MNIST: now 94.0% on the train set and 93.2%
on the validation set (instead of 98.8% and 98.5%, respectively). Also, MSP
values are more spread out. The GAN is now based on the StyleGAN2 [11, 10]
architecture to handle images, with additional conditioning for the MSP. The
conditioning is a concatenation of a class embedding and the MSP value.

p(7)=1.00 p(6)=1.00 p(5)=1.00 p(4)=1.00 p(9)=1.00 p(3)=0.94
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(a) Samples of images generated with MSP condition fixed (b) MSP condition (“in”)
at 1 (top) and 0.7 (bottom). Above each image is shown the vs. MSP computed by
classifier prediction and probability. Images at the bottom classifying the generated
look harder, and the classifier is more uncertain. data (“out”).
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Fig. 3: Qualitative and quantitative results for corrupted MNIST dataset. Un-
certainty conditioning works but not precisely as for moons data.

We can generate uncertain images by fixing a low MSP value and varying the
noise input, as illustrated in Fig. 3a bottom. Also, comparing Fig. 3a top and
bottom, we gain insight into the classifier’s sources of uncertainty by observing
what makes given images more uncertain (by fixing noise inputs and lowering
the MSP condition). In this case, it is primarily shape, Gaussian noise, and blur
that perturbates the classifier.

The qualitative results in Fig. 3a show that images generated with the con-
ditioning of MSP = 1 mainly result in “output” MSPs close to 1. We get more
spread-out “output” MSP values when conditioned with MSP = 0.7. Fig. 3b
shows that “input” MSP and “output” MSP can be pretty different. While not as
good as on the moons dataset, we still observe some correlation. We hypothesize
that the MSP is much less well-defined on MNIST images than on the moons
dataset. More substantial constraints on the conditioning should be considered
to improve the results.

3 Conclusion

We created an explicit generator of uncertain data that can be used in sev-
eral ways. It can give a global outlook of uncertain images by generating them
on demand. It can also corrupt images (transform them into their more uncer-
tain form) to visualize sources of local uncertainty. The results are preliminary
but encouraging. The MSP might not contain sufficient information to capture
the classifier behavior, and the constraint put on the condition during train-
ing should be reinforced. Leveraging generative models is a promising way to
improve explainability when uncertain data is rare.
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