Enhancing Gas Separation Selectivity Prediction through Geometrical and Chemical Descriptors - Archive ouverte HAL
Article Dans Une Revue Chemistry of Materials Année : 2023

Enhancing Gas Separation Selectivity Prediction through Geometrical and Chemical Descriptors

Emmanuel Ren

Résumé

Adsorption-based techniques for gas separation using nanoporous materials are widely used and hold a promising future, but systematic identification of the best-performing materials for a given application is still an open problem. For that task, we need to estimate selectivity at different operating conditions (temperature and pressure) on a large set of nanoporous structures. To this aim, we have developed a machine-learning-assisted screening process based on a fast grid calculation of interaction energies, in addition to newly designed geometrical descriptors to predict ambient-pressure selectivity. As a proof of concept, we tested our methodology for the separation of a 20:80 xenon/krypton mixture at 298 K and 1 atm in the nanoporous materials of the CoRE MOF 2019 database. Based on a train/test split of the data set, our model is promising with an RMSE of 2.5 on the ambient-pressure selectivity values of the test set and 0.06 on the log10 of the selectivity. This method can thence be used to preselect the best performing materials for a more thorough investigation.
Fichier principal
Vignette du fichier
postprint.pdf (1.92 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Licence

Dates et versions

hal-04194505 , version 1 (03-09-2023)

Licence

Identifiants

Citer

Emmanuel Ren, François-Xavier Coudert. Enhancing Gas Separation Selectivity Prediction through Geometrical and Chemical Descriptors. Chemistry of Materials, 2023, 35 (17), pp.6771-6781. ⟨10.1021/acs.chemmater.3c01031⟩. ⟨hal-04194505⟩
21 Consultations
23 Téléchargements

Altmetric

Partager

More