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Abstract

Adsorption-based techniques for gas separation using nanoporous materials are

widely used and hold a promising future, but systematic identification of the best-

performing materials for a given application is still an open problem. For that task, we

need to estimate selectivity at different operating conditions (temperature, pressure)

on a large set of nanoporous structures. To this aim, we have developed a machine

learning-assisted screening process based on a fast grid calculation of interaction ener-

gies, in addition to newly designed geometrical descriptors to predict ambient-pressure

selectivity. As a proof of concept, we tested our methodology for the separation of a

20:80 xenon/krypton mixture at 298K and 1 atm in the nanoporous materials of the

CoRE MOF 2019 database. Based on a train/test split of the dataset, our model is

promising with an RMSE of 2.5 on the ambient-pressure selectivity values of the test

set and 0.06 on the log10 of the selectivity. This method can thence be used to pre-select

the best performing materials for a more thorough investigation.
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1 Introduction

Gas separation and purification are essential processes since they provide key reactants and

inert gases for the chemical industry, as well as medical or food grade gases. Among them,

there are easily extractable or synthesizable molecules such as nitrogen, oxygen, carbon diox-

ide, noble gases, hydrogen, methane, or nitrous oxide. Moreover, gas separation is crucial in

mitigating negative environmental impact at the end of industrial processes, such as facilities

emitting green house gases (e.g. concrete or steel plants) or treatment plants for radioactive

off-gases like 85Kr. Cryogenic liquefaction or distillation is currently the mainstream tech-

nique to achieve industrial gas separation, while adsorbent beds made of nanoporous materi-

als (activated alumina or zeolites) are mostly used as a less energy-intensive pre-purification

system.1

A wider use of nanoporous materials could reduce the energy consumption of current

separation processes since adsorption is way less energy intensive than liquefaction.2 For

instance, some prototypes involving beds of nanoporous materials have been developed for

xenon/krypton separation to avoid employing cryogenic distillation.3 For the process to be

viable, materials need to perform even better and many studies focus on synthesizing ever

more selective materials by leveraging all chemical intuitions around noble gas adsorption

properties.4–6 In order to speed the discovery process of novel materials with key proper-

ties, computational screening can identify factors explaining the performance and pre-select

candidates for further experimental studies. As recently conceptualized by Lyu et al., a syn-

ergistic workflow combining computational discovery and experimental validation can push

material discovery to the next stage.7,8 But to efficiently guide experimental discoveries,

computational chemists are facing two major challenges: generating reliably more structures

and evaluating them with fast and accurate models.

The number of nanoporous materials is potentially unlimited; for the metal–organic

frameworks (MOFs) alone, over 90 000 structures have been synthesized9 and 500 000 compu-

tationally constructed10–12. This ever-increasing amount of structures requires more efficient
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screening procedures as well as faster evaluation tools. To go beyond the time-consuming

calculations over the whole dataset, computational chemists developed funnel-like screening

procedures to reduce the need for expensive simulations and introduced machine learning

(ML) models.13 To further improve the selectivity screening for Xe/Kr separation, the re-

search needs to focus on designing better performing structural and energy-based descriptors.

Simon et al. published one of the first articles on an ML-assisted screening approach

for the separation of a Xe/Kr mixture extracted from the atmosphere.14 Their model’s

performance was highly relying on the Voronoi energy, i.e., an average of the interaction

energies of a xenon atom at each Voronoi node.15 To rationalize this increase in performance,

this Voronoi energy can be regarded as a faster proxy for the adsorption enthalpy. This

Voronoi sampling was much faster than a standard Widom insertion, but also much less

accurate. Therefore, we recently developed a more effective alternative, a surface sampling

algorithm (RAESS) using symmetry and non-accessible volumes blocking to speed up the

calculation of relevant interaction energies within a porous framework.16 Recently, Shi et

al. used an energy grid to generate energy histograms as a descriptor for their ML model,

providing an exhaustive description of the infinitely diluted adsorption energies.17

All the approaches described above can accurately predict the low-pressure adsorption

(i.e., in the limit of zero loading), but are not suitable for prediction of adsorption in the

high-pressure regime, when the material is near saturation uptake. While this later task is

routinely performed by Grand Canonical Monte Carlo (GCMC) simulations, there is a lack

of methods at lower computational cost for high-throughput screening. To better frame our

challenge, in this work we are essentially trying to predict the selectivity in the nanopores

of a material at high pressure, where adsorbates are interacting with each other, while only

having information on the interaction at infinite dilution. The comparison between the low

and high pressure cases provides clarifications on the origin of the differences in selectivity

values. For some materials, selectivity could drop when increasing the pressure in the Xe/Kr

separation application. And, this was mainly attributed to the presence of different pore sizes
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and potential reorganizations due to adsorbate–adsorbate interactions.18

In this article, we develop a new adsorption energy sampling technique using a grid-

based approach. Moreover, we perform a statistical characterization of the pore size and

energy distributions to inform the model on a potential selectivity drop. By combining these

two approaches, we introduce a set of useful ML descriptors for fast and accurate ambient-

pressure selectivity prediction, and we highlight its performance in the case of xenon/krypton

separation for the CoRE MOF 2019 database19.

2 Methods

2.1 The machine learning model

We choose the eXtreme Gradient Boosting (XGBoost) algorithm as the machine learning

model architecture due to its accuracy, efficiency, and simplicity of use. Its performance has

been extensively demonstrated, as evidenced by 17 out of 29 winning solutions in Kaggle

Challenges being based on this algorithm in 2015. The XGBoost system is highly scalable

and parallelized, resulting in fast model training.20 Compared to more conventional tree-

based algorithms like random forest (commonly used in the field14), the boosting component

of the algorithm enables learning from previous mistakes and allocating greater effort to

problematic data points, thereby improving the accuracy of the final ML model.

In the following sections, we will introduce new descriptors for nanoporous materials,

along with novel concepts of feature engineering based on energy and pore size histograms.

We select the ML features through progressive filtering, eliminating less influential features

based on the performance on the training set. The complete list can be found in Table S1-

3 of the Supporting Information (SI). We will define the influence or importance of these

features in a subsequent section dedicated to model interpretation. We also fine-tune the

hyperparameters of the model through random searches to design the best-performing final

model. Lastly, we will use a unified approach to interpret the influence of the preselected
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descriptors on the final model.

2.2 Target variable

This study aims at building an ML model to predict the Xe/Kr ambient-pressure selectivity

faster than standard techniques. To obtain reference values (ground truth in this study), we

use the RASPA2 software21 to run GCMC calculations of 20:80 Xe/Kr mixtures at 298K and

1 atm on our cleaned database. The van der Waals interactions are described by a Lennard-

Jones (LJ) potential with a cutoff distance of 12Å. The LJ parameters of the framework

atoms are given by the universal forcefield (UFF),22 and the guest atoms (xenon and krypton)

have their LJ parameters taken from a previous screening study.23 The study only focuses

on a given Xe/Kr composition usually obtained by cryogenic distillation of ambient air1 as

a first step towards predicting other mixtures at different physical conditions (e.g. Xe/Kr

mixtures out of nuclear off-gases).

To achieve this, we consider a logarithmic transform of the selectivity instead of the raw

value because the goal is rather to predict the order of magnitude of the selectivity values than

to directly predict the higher values of selectivity — an ML model that focuses its prediction

on raw selectivity values can reach lower errors by simply focusing on the higher values than

the lower ones. The use of a logarithmic transform better separates the different selectivity

categories through the different orders of magnitude of the selectivity values. This approach

distributes more evenly the efforts on the whole spectrum of selectivity values. Moreover,

this logarithmic transformation is effectively an exchange Gibbs free energy (defined later in

equation 1), so that we can easily compare it with the energy descriptors introduced in this

article.

2.3 Database and data generation

We test this methodology on a set of realistic MOFs by considering the 12 020 all-solvent

removed (ASR) structures of the CoRE MOF 2019 database19. After removing the disordered
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and the non-MOF structures as well as the ones with a large unit cell volume of 20 nm3,

the database is reduced to a set of 9 748 structures. Then, with the string information given

by the Zeo++ software24 this number is reduced to 9 177 by removing the structures that

are not tridimensional, where solvents are still detected (wrongly classified in “all solvent

removed”), or where the metal is radioactive or fissile (e.g., Pu-MOF TAGCIP25, Np-MOF

KASHUK26, U-MOF ABETAE27 or Th-MOF ASAMUE28), which is a source of risks in a nuclear

waste processing plant. Furthermore, the structures with pore sizes allowing the adsorption

of xenon are selected using a condition on the largest cavity diameter (LCD): this is the

case for 8 529 structures with an LCD higher than 4Å (approximately the size of a xenon

molecule). This is equivalent to removing the structures with very unfavorable adsorption

enthalpies, that are not promising for our adsorption-based separation.

Then, we calculate the descriptors summarized below (and fully detailed in SI) on this

restrained dataset. At this stage, 140 structures fail in the GCMC calculation due to RAM

limitations and 83 have no standard deviation for the pore distribution (skewness and kur-

tosis cannot be retrieved). In the following training–testing process, we will therefore use a

final dataset of 8 300 structures used to perform our ML-assisted method of screening the

Xe/Kr adsorption selectivity. Based on this final set, the model is trained on 80% of ran-

domly selected structures (6 640 structures) and tested on the remaining structures (1 660

structures). However, Jablonka et al. have recently criticized the standard train/test split

(as used in this study) because of the multiple occurrences of similar structures in the data.

Therefore, we also compare the results obtained by the GroupShuffleSplit function of sklearn.

In this grouped split, similar structures labeled using the chemical formula of the MOFs are

always grouped in either the training or the test set, hence avoiding the aforementioned

problem. Doing so, we did not notice any significant alteration of the generalization error,

which we attribute to the high number and the diversity of the structures we are deadling

with. The goal is to learn from the training set a relationship between the descriptors and

the target ambient-pressure selectivity in order to evaluate the performance on the test set.
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A CSV file of training and test sets can be found in the data availability section.

2.4 Geometrical and chemical ML descriptors

Examining a number of research papers on supervised ML for the prediction of adsorption

properties,14,29–32 we identify a few recurrent descriptors: (i) geometrical descriptors obtained

using software like Zeo++24 including surface area (SA), void fraction (VF), largest cavity

diameter (LCD) and pore limiting diameter (PLD); and (ii) physical and chemical descrip-

tors such as framework density, framework molar mass, percentage of carbon (C%), nitrogen

(N%), oxygen (O%), hydrogen, as well as halogen, nonmetals, metalloids and metals, and

degree of unsaturation. Although these descriptors are versatile and widely used in ML mod-

els, they fail to provide specific information for the ML task of this study. As demonstrated

by Simon et al., energy descriptors greatly influence ML models for selectivity prediction.

The geometric analysis of crystalline porous materials is typically based on the predefined

van der Waals (vdW) radii from the Cambridge Crystallographic Data Centre (CCDC).

This forcefield-independent definition can create a gap between geometrical descriptors and

thermodynamic values obtained through molecular simulations. Inspired by a recent work

comparing PLDs and self-diffusion coefficients,33 we define a list of vdW radii to be read by

the Zeo++ software (more details can be found at github.com/eren125/zeopp_radtable).

In this study, all Zeo++ calculations utilize an atomic radius that corresponds to the distance

at which the LJ potential reaches 3𝑘B𝑇/2 at 𝑇 = 298K.

We test several values of the surface area exposed to different probe sizes (1.2Å, 1.8Å

and 2.0Å). The probe occupiable volume is chosen to measure the void fraction (VF) for

different adsorbent by using probe sizes of 1.8Å (close to the radius of krypton) and 2.0Å

(close to that of xenon). This definition of pore volume demonstrates a better agreement

with experimental nitrogen isotherms.34

Given the objective of predicting the difference between low-pressure selectivity and

ambient-pressure selectivity (for a specific gas mixture composition), some descriptors hold
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little importance, and the key factor lies in the difference in accessible volume and affinity of

the remaining pore volume with xenon compared to krypton. The intuition developed in the

previous study outlines the role of a diverse distribution of pores with different xenon affini-

ties.18 We test different combinations of geometrical descriptors (along with the following

energy and pore size distribution descriptors) using a cross-validation scheme on the training

data. Using these accuracy results, from all the “standard” descriptors mentioned in the lit-

erature, the following 7 descriptors are retained: C%, N%, O%, LCD ("D_i_vdw_uff298"),

PLD ("D_f_vdw_uff298"), SA for a 1.2Å probe ("ASA_m2/cm3_1.2") and VF for a 2.0Å

probe ("PO_VF_2.0"). Additionally, we introduce a new descriptor ∆VF to represent the

difference in void fraction values, specifically the difference in volumes occupiable by xenon

(2.0Å) and krypton (1.8Å). A comprehensive presentation of all these descriptors, including

other geometrical descriptors based on pore size distribution, can be found in Table S1.

2.5 Pore size distribution

We use Monte Carlo steps to measure the frequency of every accessible pore sizes binned

by 0.1Å and to generate a histogram of pore sizes (or pore size distribution, PSD).35 This

histogram then generates descriptors based on statistical parameters describing the overall

location, the dispersion, the shape and the modality of the distribution. In addition to the

mean and standard deviation of the distribution, we introduce two additional moments: the

skewness (𝛾), corresponding to the third standardized moment, measures the asymmetry of

a distribution; and the kurtosis (𝑘), being the fourth standardized moment, measures the

relative weight of the distribution’s tails. Recognizing the importance of characterizing the

number of different pore sizes that are likely to have contributed to the observed selectivity

drop, we try to find a simple descriptor for measuring the number of modes in the distribution.

The Sarle’s bimodality coefficient, BC = (𝛾2 + 1)/𝑘, provides a simple quantification of the

extent to which the distribution deviates from unimodality by considering only skewness and

kurtosis.36
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Finally, to assess the diversity of pores, we introduce an effective number 𝑛eff = 𝑁2/
∑︀

𝑛2
𝑖

of pore sizes, where 𝑁 represents the total number of points in the histogram and 𝑛𝑖 the

number of points associated with the 𝑖th bin. This number bears resemblance to a statistical

measure widely used in other scientific domains. In political science, it is used to measure

the effective number of political parties,37 while in ecology, the inverse Simpson’s index

evaluates the species diversity in an ecosystem38. Similarly, in quantum physics, the inverse

participation number measures the degree of localization of a wave-function.39 In our case,

this effective number of pore sizes gives an idea of the diversity of pore sizes (considering

a binning of 0.1Å). A large effective number suggests that multiple pore sizes are well

represented in the structure. Thus, this descriptor provides insight into the scattering of

pore sizes within the distribution.

All these descriptors contain valuable information regarding the form of the PSD required

to understand the loading and selectivity situation in the framework near saturation uptake,

which is crucial to predict the ambient-pressure selectivity.

2.6 Energy-based descriptors

2.6.1 Grid calculation

Inspired by our recent work on a faster way of calculating the low-pressure adsorption en-

thalpy and Henry’s constant,16 we propose another approach based on symmetry-respecting

grids. We generate these grids using the Gemmi project’s C++ library,40 using an algorithm

implemented with the following steps.

First, we loop over the framework atoms and the grid points around a sphere of radius

0.8 × 𝜎𝑔−ℎ, where 𝜎𝑔−ℎ is the distance at which the LJ potential energy between the guest

atom 𝑔 and the host atom is zero. Then, the LJ potential energy between the guest molecule

and the closest host atom is calculated and only the grid points with an energy lower than

a predefined threshold (here set to 100 kJmol−1) are considered “unvisited” and will be

recalculated in the following loop, the others are considered blocked by the framework and
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will be considered already “visited”. This first loop aims at filtering out the grid points

that are blocked by the framework, and we will refer to this preliminary filtering step as

“blocking” in Table 1. Then, a second loop over the “unvisited” grid points is performed —

at each increment, if the point is “unvisited” we calculate the interaction energy between the

guest and all the host atoms within the cutoff, then the symmetric images of this point are

filled with the same energy value and are considered “visited” by the algorithm.

This symmetry-aware grid exploration divides the time required by the average number

symmetry images — this module will be referred to as “symmetry” in Table 1. By combining

both the “blocking” of the high energy grid points and the “symmetry” based calculation of

the interaction energies, we built a “fast” version of the grid calculation algorithm that can

compete with our previously developed rapid surface sampling method (RAESS). We will

refer to this new sampling technique as the GrAED algorithm in the following text.

To highlight the improvement in performance in this procedure: the average void fraction

for a 1.2Å probe radius equals to 0.16 and the average number of symmetric images equals

to 5.8 on the CoRE MOF 2019 database (most MOFs present symmetry operations). On

average, the “blocking” procedure means that only 16% of the grid points really need to be

calculated. The “symmetry” reduces this number of points to 17%, and the combination of

both reduces it to only 2.7% of the grid. This leads to a significant reduction in the CPU

time of the calculation, as shown in Table 1.

From the energy values of this grid, we can now calculate many useful descriptors that

are used in our final model. These energy-based descriptors are calculated using the GrAED

algorithm except for the ambient-pressure case which is handled using GCMC simulations.

A fully detailed description of these descriptors as well as their labeling names are given in

Table S2.
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Table 1: Performance comparison of the new grid method to other standard techniques used
to calculate the xenon adsorption enthalpies. The RMSE is calculated by comparing to the
values given by a 100k-step Widom insertion considered as the ground truth. The associated
calculations are performed on the structures with the LCDCCDC over 3.7Å of CoRE MOF
2019 database with a single Intel Xeon Platinum 8168 core at 2.7 GHz.

Energy sampling Average CPU RMSE on adsorption
method time (s) enthalpy (kJmol−1)

Grid – naive – 0.12Å 35.4 0.014
Grid – blocking – 0.12Å 10.4 0.014
Grid – symmetry – 0.12Å 8.3 0.014
Grid – fast – 0.12Å 4.8 0.014
Grid – fast – 0.3Å 0.13 0.21
RAESS16 0.34 0.33
Widom41 (12k cycles) 150 0.01

2.6.2 Single component thermodynamic values

From these host–guest interaction energies, we can calculate different thermodynamic quan-

tities corresponding to different statistical averaging. For instance, the Henry’s constant 𝐾H

corresponds to the average of the Boltzmann factors ⟨exp(−ℰint/𝑅𝑇 )⟩, while the adsorption

enthalpies is the Boltzmann average of the interaction energies — all these concepts have been

used and summarized in our previous paper on the surface sampling of energies to determine

adsorption enthalpy and Henry’s constant.16 The adsorption Gibbs free energy ∆ads𝐺 can

then be deduced from the Henry’s constant since ∆ads𝐺 = −𝑅𝑇 ln (⟨exp(−ℰint/𝑅𝑇 )⟩), and

finally the adsorption entropy naturally derives from the Gibbs energy: ∆𝐺 = ∆𝐻 − 𝑇∆𝑆.

2.6.3 Exchange equilibrium and selectivity

The exchange equilibrium corresponds to what occurs in the competitive adsorption process

between two adsorbate molecules of a mixture. Adsorption sites are either occupied by ad-

sorbate A or adsorbate B, leaving the other in the gas phase. We model this equilibrium by

the equation A(ads)+B(gas) = A(gas)+B(ads), and the equilibrium constant corresponds to the

selectivity 𝑠A/B = (𝑞A𝑦B)/(𝑞B𝑦A). The exchange Gibbs free energy then simply derives from
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the selectivity:

∆exc𝐺
A/B = −𝑅𝑇 ln 𝑠A/B (1)

which is consistent with the relationship between selectivity and Henry’s constant at low-

pressure. According to Hess’s law, the exchange enthalpy is the difference between the ad-

sorption enthalpies ∆exc𝐻
A/B = ∆ads𝐻

A −∆ads𝐻
B. Finally, the entropic term −𝑇𝑆 derives

from the exchange equilibrium −𝑇∆exc𝑆 = ∆exc𝐺 − ∆exc𝐻. We use these formulas to cal-

culate the Gibbs free energy of the most influential descriptor, the xenon/krypton exchange

equilibrium at infinite dilution ∆𝐺
Xe/Kr
0 and most of the energy descriptors presented in

Table S2.

2.6.4 Learning from higher temperature thermodynamics

The adsorption enthalpy of xenon at infinite dilution at 298K is very different from the

adsorption enthalpy of xenon at ambient pressure given by GCMC calculations. However,

when exploring the behavior at higher temperature (such as 900K), we can find a better

correlation with this xenon adsorption enthalpy as we can see in Figure S1. The 𝑅2 coefficient

of determination increases from 0.80 to 0.92, which indicates a better consideration of the

ambient-pressure enthalpy using higher temperature averaging. For this reason, we use this

temperature to calculate the adsorption Gibbs free energy of xenon and krypton and also the

Xe/Kr exchange Gibbs free energy. Then, we also compute differences between the 298K

and 900K temperatures for the Xe/Kr exchange Gibbs free energies ∆exc𝐺
Xe/Kr(298K) −

∆exc𝐺
Xe/Kr(900K), enthalpies and entropies. We add these differences as descriptors, because

they can inform the model on the energy differences between the low and ambient pressure

cases which yields to better predictions.

2.6.5 Statistics on the energy distributions

Inspired by the thermodynamic averaging, we introduce other statistical transformations

of the Boltzmann weighted energy distribution, like its standard deviation. To describe
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the multi-modality of the energy distribution, we also introduce the Boltzmann weighted

skewness and kurtosis; we can then deduce the Sarle’s bimodality coefficient of Boltzmann

weighted interaction energies. We can also retrieve statistical measures from the grid values

of interaction energy as descriptors, without weighing by Boltzmann factors, to give a richer

description of the distribution. For instance, the model uses the mean and standard deviation

of this distribution calculated for xenon and krypton.

2.7 Hyperparameter fine-tuning

The search for hyperparameter values aims at finding the best model to optimize the general-

ization error. The most common strategy is to perform cross-validations to evaluate different

model configurations, known as hyperparameter search or optimization. In this case, the

randomized search algorithm with 5-fold cross-validation is used to find the best parameters

within a predefined reasonable range. The Supporting Information provides the range of

hyperparameters explored by the algorithm. After this search, we identify a set of optimal

hyperparameters, which gives an average RMSE of 0.37 kJmol−1, which defines our final

model. A convergence plot of the model performed using 5-fold cross-validations is given in

Figure S6. The hyperparameter search is carried out on the training set to avoid any data

leakage in the final model and ensure an accurate evaluation of the generalization error of

the model.

Given this configuration, we test the model on the test set and use interpretation tools

to understand better the structure–property relationships in play.

2.8 Interpretation of the final model

We then train the final model on the predefined training set using XGBoost with the fine-

tuned hyperparameters. By testing it on the test set, we measure the accuracy of our ap-

proach, however, it is interesting to extract chemical insight into the hidden relationship

between the predicted value and the descriptors, to apprehend the thermodynamic origins
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of the performance. In this work, we use the Shapley values,42 a game theory concept de-

veloped by Shapley in 1953, to measure the contribution of each descriptor in the predicted

value. We can evaluate, locally on a nanoporous material, the contribution of each descriptor

to the prediction using this tool. To draw structure–property relationships, we would need

to use a global interpretation methods such as the SHapley Additive exPlanations (SHAP)

method thoroughly detailed in the online book Interpretable Machine Learning of Christoph

Molnar.43 The SHAP tool developed by Lundberg and Lee44 is a faster algorithm adapted

to tree-based ML models like gradient boosting, TreeSHAP, which allows the calculation on

large databases and integrates useful global interpretation modules like feature importance

evaluation and dependence plot.

3 Results & Discussions

This study presents a prediction of the exchange Gibbs free energy at 1 bar and 298K, which

represents an energetic interpretation of the ambient-pressure selectivity (Equation 1), using

geometrical, chemical and energy descriptors presented in Tables S1 and S2. The most cor-

related descriptor is the exchange Gibbs free energy at infinite dilution and 298K. We will

begin by studying the correlation between these two quantities since the exchange energy

calculated by the GrAED algorithm already gives a very fast first evaluation of the selectiv-

ity. As shown in a previous study,18 the difference of values between the low-pressure and

ambient-pressure case is mainly a selectivity drop effect due to the near-saturation loading of

adsorbates in the nanoporous material. To improve the accuracy of the evaluation, we train

a model that integrates features that could help detect and quantify the selectivity drop

that affects some highly selective materials. The ML model uses computationally cheaper

descriptors to predict the computationally expensive ambient-pressure selectivity. Finally, we

interpret the model to see how each feature contributed to the improved prediction compared

to the simple infinite-dilution baseline.

14



3.1 From infinite dilution to ambient pressure

The low-pressure selectivity provides a first intuition of the selectivity at higher pressure,

as demonstrated in our previous work showing a correlation between the selectivity at both

pressures.18 If we adopt the Gibbs free energy formalism (Equation 1), which corresponds

to a logarithmic transform of the selectivity values, Figure 1 confirms and highlights this

correlation. We can also note that although a majority of structures have similar selectivity

in both pressure conditions, a handful of structures experience a selectivity drop at higher

pressure. The zero-loading selectivity is always higher or similar to the ambient-pressure one,

it gives therefore a solid ground on which to build an efficient prediction model. On top of

this, in order to build a good prediction model we need to add explanatory descriptors related

to this selectivity drop phenomenon. One of the main causes to the selectivity drop being

the presence of bigger pores that are less attractive xenon, therefore additional information

on the pore size distributions or the energy landscape would be helpful for this task.

To incorporate information on the pore size diversity of the materials, we carry out

statistical measurements on the PSD. By analyzing them, we detect explanatory factors at

the origin of the observed selectivity drop. A high degree of multi-modality in the distribution

would mean a diverse set of pores, which can lead to a selectivity drop if the pores are

significantly different one from another. The more distant is the average pore size from the

largest cavity diameter the higher the chance of observing a selectivity drop, because a big

difference between the pore sizes brings about a lower selectivity. All these statistics are

designed to give as much knowledge as possible on a hypothetical selectivity drop and on

the quantitative estimation of its magnitude.

The statistics on the distribution of interaction energies for xenon and krypton calcu-

lated by our grid algorithm can help quantify the change of selectivity. These statistics

include moments of different orders (up to 4) of the energy distribution, which informs on

the adsorbate–adsorbent interaction energies in the nanopores at higher loading. The shape

of the energy distribution can help assess quantitatively the change in selectivity. We can
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Figure 1: Comparison between the Gibbs free energy of exchange at low pressure ∆𝐺0 (cal-
culated by the GrAED algorithm) and ambient pressure ∆𝐺1 (calculated by GCMC) labeled
by the relative distance between them. This plot is equivalent to a logarithmic plot of the
selectivity values at these two pressure conditions. The RMSE between these quantities is
equal to 0.81 kJmol−1 and the MAE 0.49 kJmol−1.

consider this as a way of compressing the whole energy distribution into a few statistical

values, which is a standard method used in the field of data science to tackle distribution

data. We also apply the same approach to the Boltzmann weighted distributions to generate

temperature specific descriptors for the energy distributions.

By using different temperatures, we note that the infinite dilution adsorption enthalpies at

higher temperatures can be better correlated to the adsorption enthalpy at ambient pressure.

The minimum error is found for the adsorption enthalpy at 900K, which gives an RMSE of

1.76 kJmol−1 instead of 2.87 kJmol−1 for the 298K case. This new type of descriptor is very

interesting since it performs better around the high selectivity region, where the standard

Boltzmann average at 298K loses its accuracy (see Figure S1). As shown on Figure S7, the

exchange free energy at 900K and the excess of free energy compared to the 298K case are

the second and third most influential descriptors of our ML model. They are complementary

to the exchange free energy at 298K to predict selectivity values at higher pressures.
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By combining the above-mentioned features with more standard geometrical descriptors,

we train an ML model for the ambient pressure selectivity that identifies the origins of the

selectivity drop and gives promising prediction results.

3.2 ML model performance

In this section, we present the performance of the ML model that learns the joint effects of

all the newly introduced descriptors to detect and evaluate the drop between the easily ac-

cessible low-pressure selectivity and the more computationally demanding ambient-pressure

selectivity. A GCMC simulation of a 20:80 xenon/krypton gas mixture takes in average 2 400 s

per structure on the CoRE MOF 2019 database, while our grid-based adsorption calculation

only takes about 5 s per structure (on a single Intel Xeon Platinum 8168 core at 2.7GHz).

Computing all the necessary features for the prediction would take less than a minute per

structure, significantly faster than the 40 minutes required for a GCMC calculation. The

ML-based approach clearly demonstrates a speed advantage over standard molecular simu-

lations. However, it needs to maintain a high level of accuracy on an unseen set of structures

to be a good substitute to GCMC.

We perform a randomized search over a range of maximum depths, learning rates, sizes

of feature samples used by tree and by level, sizes of data sample and alpha regularization

parameters. And a set of hyperparameters minimize the average RMSE computed using a

5-fold cross-validation. The ranges used in the randomized search as well as the final hy-

perparameters set are given in the SI. By using this parameterization, our XGBoost model

has an RMSE of 0.37 kJmol−1 and an MAE of 0.22 kJmol−1 on the exchange Gibbs free

energies of the test set containing 1 660 structures, which corresponds to a good correla-

tion as shown in Figure 2.1 If we convert back these results to the selectivity values, the

RMSE on the selectivity values would be 2.5 and 0.07 on the log10 of the selectivity, which

means that the order of magnitude of the selectivity is known with a very good accuracy.
1With a split that groups similar structures in the same set, the performance obtained are very similar

with an RMSE of 0.38 kJmol−1 and an MAE of 0.23 kJmol−1.
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Figure 2: Scatter plot of the exchange free energy predicted by the model. There is a good
agreement between the predicted and true values. On the test set, there is an RMSE of
0.37 kJmol−1 and an MAE of 0.21 kJmol−1. This plot is equivalent to the scatter plot between
the logarithm of the ambient-pressure selectivity values (see Figure S5). The corresponding
errors for the ambient-selectivity are 2.5 and 1.1 for respectively the RMSE and MAE of the
selectivity, and 0.065 and 0.038 for the RMSE and MAE of its log10.

To prove that this good performance is not fortuitous, we use a 5-fold cross-validation pro-

cedure on the whole dataset and found an average RMSE of 0.37 kJmol−1 with a standard

deviation of 0.01 kJmol−1, which is consistent with the performance given by the train/test

split performed.

To see if it would be possible to train a better model with more training data, we train

different models with different fractions of the training set as shown on Figure 3. The RMSE

unsurprisingly decreases as we increase the amount of data, but it seems to start stabilizing

for a fraction of 95% of the training set. This means that the model has a sufficient amount

of training data to achieve what seems to be the minimum error on this test set, although it
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may still be improved if we had a larger data set.
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Figure 3: Root mean squared errors on the same test set (20% of all data) as a function
of the fraction of the training set used to train smaller models. The error decreases as the
amount of data increases.

This method can later be used in a screening procedure that relies on inexpensive descrip-

tors to filter out obviously undesirable structures, retaining only the promising structures

for the final ML model evaluation. To achieve this, as previously explained in the methods,

only 3D MOF structures with an LCD above 4Å are retained, as they possess an affinity

for xenon, which is a necessary condition for a good Xe/Kr selectivity. Given the excellent

predictive performance of the model regarding the ambient-pressure selectivity in structures

with good xenon affinity, the proposed screening procedure, illustrated Figure 4, would in-

clude (i) a check of the nature of the structure to ensure it is a 3D MOF structure, (ii)

then a filter on the LCD value (above 4Å), (iii) a pre-evaluation of the Xe/Kr selectivity

at infinite dilution using the grid-based method, and (iv) finally the ML evaluation to keep

only structures above a certain threshold of ambient-pressure selectivity (e.g. 30). We could

eventually evaluate more thoroughly the top structures using GCMC simulations, ab initio

calculations or adsorption experiments.
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Figure 4: An illustration of the screening procedure that could be used to find highly selective
materials.

3.3 Opening the black box

To understand the intuition behind this selectivity drop, we use the SHAP43,44 library of in-

terpretation models to draw relationships between the descriptors and the predicted ambient-

pressure selectivity. This code library is based on the calculation of Shapley values42 that

measure the contribution of each descriptor to the prediction to locally interpret our ML

model. In game theory, the Shapley value is used to equally distribute a bounty according to

the contribution of each player in a collaborative game. In machine learning, these values are

used to break down the predicted values into a set of contributions for every feature (the sum

of the contributions is equal to the predicted value). This interpretation model untangles the

interdependence between the descriptors to extract an individual contribution.2

To go beyond the local interpretation, we can rapidly compute the approximate Shapley

values for the whole dataset using faster algorithms,44 and then use all them to make a global

interpretation of the model. The global interpretation is based on multiple Shapley values
2The Shapley values does not depend on the units of the input data.
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that can be aggregated using an averaging or by simply plotting them and look at their

dependence to the feature value. If we plot the Shapley values as a function of the feature

values for each structure of the dataset, we can see the contribution value depending on the

feature value. This plot is called a SHAP dependence plot, which has a similar role as the

partial dependence plot usually used for this purpose. Using the dependence plot, we can

then infer, with a certain level of uncertainty, the level of contribution to the final predicted

value of a feature, which highlights model-related structure–property relationships. Finally,

we can use the mean absolute Shapley values of each feature on the training set to measure

the feature importance (see Figure S7 and S8). This mean value corresponds to the average

magnitude of the contribution to the predicted value, which is a measure of the influence of

the feature on the model output.

3.3.1 Global interpretability

To rank the descriptors according to their average impact on the magnitude of the model

output, we can use the mean absolute Shapley values of each descriptor. The importance plot

associated with these values are presented in Figure S8. Even if the low-selectivity exchange

Gibbs free energy has a SHAP importance value way above the others, it only serves as a

baseline describing the materials without selectivity drops as shown in Figure 1; the other

descriptors play a major role in moving the outliers of the figure closer to the diagonal line.

Energy descriptors play a major role in the model’s prediction, and the geometry-based new

descriptors, while playing a more secondary role, are key in evaluating the gaps between the

low-pressure case with the ambient-pressure one that we are interested in. To dig deeper into

the mechanisms that allow the model to predict the selectivity with a very good accuracy

— the RMSE and MAE on the test set’s selectivity being respectively 2.5 and 1.1 — we are

now going to look into the SHAP dependence plots of each interesting descriptor that plots

the contribution to the predicted value as a function of the actual descriptor value.

The partial dependence module offered by the SHAP library provide a comprehensive
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interpretation of the model. Although, we can use other methods, such as partial dependence

plots, to compute dependence plots (e.g. partial dependence plots),43, it is preferable to

maintain a good level of consistency between global and local interpretations by utilizing the

same underlying theory. The SHAP dependence plots for all descriptors in Figures S9 and

S10 exhibit distinct forms, directions, and shapes, which bodes well for the interpretability

of the model. Valuable information regarding how the ML model predicts ambient-pressure

selectivity is gleaned from the profile of these dependence plots.

The most important descriptor is the exchange free energy "G_0" associated with low-

pressure selectivity. Its contribution displays a very strong positive linear correlation (Fig-

ure 5). This descriptor establishes a baseline, on top of which other contributions either

decrease the free energy (more selective) or increase it (less selective). The model can be

interpreted as a combination of a baseline and smaller adjustments estimating the deviation

magnitude from the ideal low dilution case. For instance, the next two descriptors "G_900K"

(900K low-pressure exchange free energy) and "G_Xe_900K" (900K low-pressure xenon

adsorption free energy), further contribute to the baseline by providing information on low-

pressure selectivity. Moreover, they also offer insights into the deviations necessary to differ-

entiate structures experiencing a drop in selectivity from those maintaining their selectivity.

As we can see in Supporting Information (Figure S1 and S2), the thermodynamic quan-

tities at high pressure is closer to the 900K case than to the ambient temperature one,

these two descriptors inform naturally on the selectivity at higher pressure. For "G_900K"

(see Figure 5), blue points (corresponding to a "G_0" of around −8 kJmol−1) can have

either negative or negligible contributions depending on the value; values below −4 kJmol−1

contribute negatively to the prediction with a linear relation, whereas values between −4

and 5 kJmol−1 give constantly almost zero contributions. This type of domain differentia-

tion illustrates how the model can identify structures with a selectivity drop based on the

values of a descriptor. In the following, we will present further examples highlighting the

determination of selectivity contributions using the remaining descriptors.
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The optimal values for the associated descriptors is characterized by the U-shape of

some SHAP dependence plots. For instance, we observe an optimal value of around 5.1 for

"D_i_vdw_uff298" (Figure 5), while the optimal average pore size is approximately 5.6.

These optimal values align with the physical requirement of having xenon-sized pores to

enhance xenon’s attraction, as identified in various literature papers. However, it should

be noted that these values are slightly higher than those mentioned in the literature due to

differences in atom radius definitions.33 Moreover, values of "delta_G0_298_900" between 4

and 6 kJmol−1 (Figure 5) have a higher likelihood of contributing negatively, indicating lower

ambient-pressure selectivity. These sweet spots provide valuable insights for distinguishing

truly selective materials from others. Some SHAP dependence plots have a rather linear

domain for the most selective structures (in blue) — a good linear contribution is observed

for the difference of pore volumes between Xe and Kr sized probes "delta_VF_18_20"

(Figure 5). This implies that a lower void fraction difference corresponds to a more selective

structure. The same trend is observed for the standard deviations of the PSD, denoted as

"pore_dist_std", and the Boltzmann weighted krypton interaction energies distribution,

referred to as "enthalpy_std_krypton". Optimal values for these descriptors tend to be

zero. As the value approaches zero, the contribution becomes more negative, indicating a

more selective structure at ambient pressure.

Sometimes the optimal values are not around well-identified values but are contained

within larger domains with threshold values separating them. For instance, the difference

between the LCD and the average pore size "delta_pore" has a threshold value around

0.3Å below which the contribution for the most selective structures (blue) is negative (see

Figure 5); even though there is no clear correlations, we can at least find a threshold value

(about 0.23) below which there is higher probability of having a high ambient-pressure

selectivity. There is the same type of domain splits for the average of krypton interaction

energies distribution "mean_grid_krypton" (at around 15), the Boltzmann weighted xenon

interaction energies distribution "enthalpy_std_xenon" (at around 2.5), the difference of
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exchange entropic term between the ambient temperature "delta_TS0_298_900" (at around

3) and high temperature and the effective number associated to the PSD "pore_dist_neff"

(at around 2.3). These domains separate structures that are selective at low pressure, which

is key to telling apart the structures with a selectivity drop at ambient pressure from the

ones without.
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Figure 5: Some SHAP dependence plots that are analyzed in the main text. The 18 top
descriptors’ SDPs can be found in the SI. A SHAP dependence plot corresponds to the
Shapley values as a function of the feature values for every structures. The feature values
are value names given in Tables S1 and S2. These SHAP plots show the contribution of the
features to the prediction given by the ML model. Each Shapley value depends not only on
the value of the feature itself but also on the other features, for this reason, the plots are
labeled by a relevant second feature.

3.3.2 Local interpretability

To apply the previous analysis in practice, archetypal structures and their selectivity predic-

tions based on descriptor values will be examined. Two MOF structures from the test set,

with CSD codes VIWMIZ and BIMDIL, are chosen. Both structures are selective at low pres-

sure, but the first one decreases in selectivity while the second one maintains it at ambient

pressure. The focus will be on understanding how the model distinguishes between these two

completely distinct behaviors.
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VIWMIZ belongs to the category of highly selective structures that undergo a selectiv-

ity drop at ambient pressure. When converting the free energy values to selectivity values,

VIWMIZ has a selectivity of 62.8 at infinite dilution and 14.5 at ambient pressure. The ML

model successfully predicts a close value of 12.0 for the ambient-pressure selectivity based on

the given descriptor values. Specifically, the descriptor "G_0" has a highly negative value,

which explains its relatively high negative contribution of −1.81. However, the contribu-

tion of "G_900K" is relatively low at −0.57 compared to other materials (Figure 5), as

a value of −4.05 is not the most negative among all structures. Conversely, the remaining

descriptors have positive contributions, which lead to the selectivity drop. For instance, the

difference in pore sizes, "delta_pore", has a value of 1.38Å (above the threshold of 0.23Å),

which contributes +0.25 to the predicted selectivity. This value aligns with the value ranges

observed in the associated dependence plot. We performed similar analyses on the posi-

tive contributions of other descriptors shown in Figure 6 by referring to the dependence

plots: "pore_dist_std" is above the threshold of 0.4, "enthalpy_std_krypton" is above

2.5 kJmol−1, "pore_dist_neff" is above 2.3, "delta_TS0_298_900" falls below 3 kJmol−1

and "enthalpy_modality" is around 0.75 where positive contributions are more recurrent.

However, the "delta_G0_298_900" value is somewhat close to its optimal value, resulting

in a negative contribution in this specific prediction. The remaining features have negligible

contributions. Analyzing the contributions of each descriptor to the prediction given by the

model of this work helps understanding the underlying features of the VIWMIZ structure that

explain the selectivity drop at higher pressure. Descriptors such as the shape of the xenon

and krypton energy distributions ("enthalpy_std_krypton" and "enthalpy_modality") and

the PSD ("pore_dist_std" and "pore_dist_neff" ) as well as the void fraction difference

"delta_pore" play key roles in the lower selectivity at ambient pressure compared to the

ideal infinite dilution case. Intuitively, an effective number of pores exceeding 2 suggests the

presence of different pore sizes, which aligns with the presence of less attractive pores for

xenon, ultimately leading to decreased selectivity. This observation is consistent with a high
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standard deviation of the PSD or the Boltzmann-weighted krypton interaction energy dis-

tribution. Furthermore, a significant difference between the average pore size and the LCD

indicates a disparity in pore sizes, resulting in larger pores that become increasingly loaded

as pressure rises. However, interpreting the entropic term is more complex and presents unex-

plored ways of addressing the selectivity drop at higher pressure, as revealed in the previous

study.18
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Figure 6: Main Shapley contributions of the ML features on the selectivity prediction of
two archetypal examples. The feature labels used are detailed in Tables S1 and S2. The ML
predicted values is shown using 𝑓(𝑥) = and 𝐸[𝑓(𝑥)] is the average predicted values used by
SHAP to define the initial value so that 𝑓(𝑥) = 𝐸[𝑓(𝑥)] +

∑︀
feature contribution(feature).

The second structure BIMDIL is also among the most selective with a selectivity at low

pressure of 41.0, while maintaining it to 41.2 at ambient pressure. The model predict ac-

curately the stability of the selectivity by assigning a value of 40.0. Consequently, the first

contribution of "G_0" is one of the most negative contributions, establishing a baseline of

−2.4 for subsequent contributions. Although the contributions of "G_900K" and "G_900K",

they continue to decrease the predicted selectivity value. The joint contributions of other

descriptors will discriminate between the two structures and determine why this particular

structure will maintain its selectivity. In contrast to the previously analyzed structure, this

structure has a "delta_pore" value below 0.3Å, explaining its negative Shapley value in

the prediction of this study. The contribution of "delta_G0_298_900", which had only a
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slightly negative impact on the other structure, now plays a significant role as it falls within

the range of 4 to 6 kJmol−1 (Figure 6). Additionally, it is observed that "pore_dist_std" is

below the threshold, in contrast to the previous structure where it was above the threshold.

Furthermore, the other contributions align with the rules suggested by the SHAP dependence

plots, and no apparent anomalies are detected. The combined effects of all the descriptors

result in a lower free energy value, leading to the conservation of selectivity at higher pres-

sure. The set of descriptor values for this structure significantly differs from the previous

one, with many values contributing to opposite domains. This disparity allows the model to

differentiate between highly selective structures and identify those that will maintain their

selectivity at higher pressure.

These two examples provide a deeper understanding of how the model distinguishes struc-

tures that lose selectivity at higher pressure from those that do not. Most dependence plots

exhibit a strong association between descriptors and their effects, with outliers being rare

enough to comprehend the internal logic of the model. As previously discussed, the first three

descriptors establish a baseline for the observed selectivity drop with limited information.

Subsequently, the contributions of other descriptors can be positive, negligible, or negative

depending on the domain where the values of the descriptor lie. For instance, the average pore

size and largest cavity diameter need to be within specific ranges to maximize the likelihood

of maintaining selectivity at higher pressure, aligning with previous studies emphasizing the

importance of pore sizes similar to xenon for Xe/Kr separation. The difference in entropy

between ambient temperature and 900K is a surprising descriptor that separates selective

structures based on whether its value falls within a specified range. Similarly, the difference in

void fraction occupied by xenon and krypton is intriguing as it impacts selectivity differently

depending on whether the structure is highly selective or not, with the contribution being

more or less proportional to its value. Various methods of measuring the disparity of the PSD

and interaction energy distribution play a key role in identifying highly selective structures

(indicated in blue on the dependence plot in Figure 5) that either maintain or decrease in
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selectivity. These methods include calculating the difference between the average pore size

and the LCD, as well as the standard deviation of the PSD or Boltzmann-weighted energy

distribution, which exhibits distinct behaviors based on the domain in which the value lies.

The SHAP dependence plots provide valuable insights into the mechanisms underlying the

ML model presented in this article and, more broadly, shed light on the understanding of

Xe/Kr separation origins.

4 Conclusions and perspectives

To gain a deeper understanding of separation processes within nanoporous materials, a ma-

chine learning prediction of Xe/Kr ambient-pressure selectivity was performed, aiming for

faster results compared to standard GCMC calculations. The CoRE MOF 2019 database was

utilized for MOF structures, enabling the evaluation of xenon/krypton selectivity in less than

a minute, whereas an equivalent GCMC calculation typically requires approximately 40min.

Unlike the majority of selectivity predictions in the literature, the decision was made to pre-

dict selectivity on a logarithmic scale that focuses on the order of magnitude rather than the

exact value of selectivity for highly selective materials. Moreover, converting to an exchange

Gibbs free energy allowed for a more thermodynamic approach based on enthalpy, entropy,

and free energy values. The challenge consisted of predicting the free energy equivalent of

ambient-pressure selectivity using low-pressure selectivity alongside key energy, geometrical

and chemical descriptors. The resulting fully optimized ML model exhibited high perfor-

mance, yielding an RMSE of 0.37 kJmol−1, which corresponds to an RMSE of 0.06 on the

base-10 log of selectivity. This represented an improvement compared to the 0.81 kJmol−1

RMSE of a baseline model that is solely based on the low-pressure selectivity calculated

by the GrAED algorithm. The energy descriptors along with statistical quantities greatly

contributed to the performance of the final model.

One specific objective was to validate the previously highlighted underlying reasons for
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the observed selectivity drop at high pressure in certain highly selective materials at low

pressure. Previous studies found that high diversity of pore sizes and channel sizes that favor

adsorbate reorganizations could be at the origin of this phenomenon. Through the appli-

cation of interpretability tools, quantitative factors explaining the conservation or decrease

in selectivity for highly selective materials are identified. Depending on energy averaging at

900K, statistical characterizations of energy or pore size distributions, and differences in oc-

cupiable volumes, a structure could exhibit either a selectivity similar to the infinite dilution

case or a substantially lower selectivity at higher pressure. The XGBoost model employed in

this study utilizes a complex ensemble of decision trees to capture the quantitative rules that

can be extracted from the model and used to establish heuristics supporting the intuition

about Xe/Kr selectivity in MOF structures.

The final ML model could be used in a well-designed workflow to find the best perform-

ing materials. For instance, structures with pores unable to accommodate xenon could be

filtered out, followed by the application of a low-pressure selectivity calculation to eliminate

selectivity values below a specified threshold. Finally, the structures that would encounter a

drop in selectivity could be removed using the model. As a proof of concept, the methodology

was tested on Xe/Kr separation, which represented one of the simplest adsorption systems

(monoatomic species and the absence of electrostatic interactions). A similar approach could

be generalized to other separation applications by calculating the infinite dilution energies

with a more conventional method (e.g. Widom’s insertion), while adjusting the definitions

of descriptors to suit the adsorbates of interest.

The ambition of this study was to introduce new descriptor ideas that contribute to the

development of increasingly efficient screening methodologies for identifying optimal materi-

als for specific applications. However, similar to other studies in this field, the simulations in

this study relied on a set of strong assumptions, wherein rigid frameworks and non-polarized

classical forcefields were employed. Previous literature suggested that the most selective ma-

terials for Xe/Kr separation were designed and synthesized based on the effect of open-metal
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sites, leveraging the difference in polarizability between the two molecules to achieve efficient

separation.5,6 Moreover, the flexibility of structures could be achieved by employing flexi-

ble forcefields with appropriate simulation methodologies45 or by conducting multiple rigid

simulations using snapshots from NPT simulations46. The simulations could be enhanced at

the cost of CPU time by coupling them with a reduction in simulation time, such as the

one presented in this article. The pursuit of ever-faster evaluation tools enabled the explo-

ration of more complex properties and the discovery of structures with increasingly relevant

characteristics.

Conflicts of interest

There are no conflicts to declare.

Acknowledgement

We thank Philippe Guilbaud and Isabelle Hablot for many discussions on the topic of

adsorption-based separation.

Funding

This work was financially supported by Orano.

Supporting Information Available

Additional discussion and results on the exploration of relevant descriptors, detailed list of

features and their selection, details on ML model training. Raw data are available online

at https://github.com/fxcoudert/citable-data, and the Grid Adsorption Energy Sam-

pling code is available at https://github.com/coudertlab/GrAED and https://github.

30

https://github.com/fxcoudert/citable-data
https://github.com/coudertlab/GrAED
https://github.com/eren125/xe_kr_selectivity_xgb
https://github.com/eren125/xe_kr_selectivity_xgb


com/eren125/xe_kr_selectivity_xgb

References

(1) Kerry, F. G. Industrial gas handbook: gas separation and purification; CRC Press, 2007;

pp 129–168.

(2) National Academies of Sciences, Engineering, and Medicine A Research Agenda for

Transforming Separation Science; The National Academies Press: Washington, D.C.,

2019; pp 7–14.

(3) Banerjee, D.; Simon, C. M.; Elsaidi, S. K.; Haranczyk, M.; Thallapally, P. K. Xenon Gas

Separation and Storage Using Metal-Organic Frameworks. Chem 2018, 4, 466–494.

(4) Chen, L. et al. Separation of rare gases and chiral molecules by selective binding in

porous organic cages. Nature Mater. 2014, 13, 954–960.

(5) Li, L.; Guo, L.; Zhang, Z.; Yang, Q.; Yang, Y.; Bao, Z.; Ren, Q.; Li, J. A Robust

Squarate-Based Metal–Organic Framework Demonstrates Record-High Affinity and Se-

lectivity for Xenon over Krypton. J. Am. Chem. Soc. 2019, 141, 9358–9364.

(6) Pei, J.; Gu, X.-W.; Liang, C.-C.; Chen, B.; Li, B.; Qian, G. Robust and Radiation-

Resistant Hofmann-Type Metal–Organic Frameworks for Record Xenon/Krypton Sep-

aration. J. Am. Chem. Soc. 2022, 144, 3200–3209.

(7) Lyu, H.; Ji, Z.; Wuttke, S.; Yaghi, O. M. Digital Reticular Chemistry. Chem 2020, 6,

2219–2241.

(8) Jablonka, K. M.; Rosen, A. S.; Krishnapriyan, A. S.; Smit, B. An Ecosystem for Digital

Reticular Chemistry. ACS Cent. Sci. 2023, 9, 563–581.

(9) Groom, C. R.; Bruno, I. J.; Lightfoot, M. P.; Ward, S. C. The Cambridge Structural

Database. Acta Cryst. B 2016, 72, 171–179.

31

https://github.com/eren125/xe_kr_selectivity_xgb
https://github.com/eren125/xe_kr_selectivity_xgb


(10) Wilmer, C. E.; Leaf, M.; Lee, C. Y.; Farha, O. K.; Hauser, B. G.; Hupp, J. T.;

Snurr, R. Q. Large-scale screening of hypothetical metal–organic frameworks. Nature

Chem. 2011, 4, 83–89.

(11) Boyd, P. G.; Woo, T. K. A generalized method for constructing hypothetical nanoporous

materials of any net topology from graph theory. CrystEngComm 2016, 18, 3777–3792.

(12) Colón, Y. J.; Gómez-Gualdrón, D. A.; Snurr, R. Q. Topologically Guided, Automated

Construction of Metal–Organic Frameworks and Their Evaluation for Energy-Related

Applications. Cryst. Growth Des. 2017, 17, 5801–5810.

(13) Ren, E.; Guilbaud, P.; Coudert, F.-X. High-throughput computational screening of

nanoporous materials in targeted applications. Digital Discovery 2022, 1, 355–374.

(14) Simon, C. M.; Mercado, R.; Schnell, S. K.; Smit, B.; Haranczyk, M. What Are the Best

Materials To Separate a Xenon/Krypton Mixture? Chem. Mater. 2015, 27, 4459–4475.

(15) Rycroft, C. H. VORO++: A three-dimensional Voronoi cell library in C++. Chaos

2009, 19, 041111.

(16) Ren, E.; Coudert, F.-X. Rapid adsorption enthalpy surface sampling (RAESS) to char-

acterize nanoporous materials. Chem. Sci. 2023, 14, 1797–1807.

(17) Shi, K.; Li, Z.; Anstine, D. M.; Tang, D.; Colina, C. M.; Sholl, D. S.; Siepmann, J. I.;

Snurr, R. Q. Two-Dimensional Energy Histograms as Features for Machine Learning to

Predict Adsorption in Diverse Nanoporous Materials. J. Chem. Theory Comput. 2023,

19, 4568–4583.

(18) Ren, E.; Coudert, F.-X. Thermodynamic exploration of xenon/krypton separation

based on a high-throughput screening. Faraday Discuss. 2021, 231, 201–223.

(19) Chung, Y. G.; Haldoupis, E.; Bucior, B. J.; Haranczyk, M.; Lee, S.; Zhang, H.; Vo-

giatzis, K. D.; Milisavljevic, M.; Ling, S.; Camp, J. S.; Slater, B.; Siepmann, J. I.;

32



Sholl, D. S.; Snurr, R. Q. Advances, Updates, and Analytics for the Computation-

Ready, Experimental Metal–Organic Framework Database: CoRE MOF 2019. J. Chem.

Eng. Data 2019, 64, 5985–5998.

(20) Chen, T.; Guestrin, C. XGBoost: A Scalable Tree Boosting System. Proceedings of

the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data

Mining. New York, NY, USA, 2016; pp 785–794.

(21) Dubbeldam, D.; Calero, S.; Ellis, D. E.; Snurr, R. Q. RASPA: molecular simulation

software for adsorption and diffusion in flexible nanoporous materials. Mol. Simulat.

2016, 42, 81–101.

(22) Rappé, A. K.; Casewit, C. J.; Colwell, K.; Goddard III, W. A.; Skiff, W. M. UFF, a full

periodic table force field for molecular mechanics and molecular dynamics simulations.

J. Am. Chem. Soc. 1992, 114, 10024–10035.

(23) Ryan, P.; Farha, O. K.; Broadbelt, L. J.; Snurr, R. Q. Computational screening of

metal-organic frameworks for xenon/krypton separation. AIChE Journal 2010, 57,

1759–1766.

(24) Willems, T. F.; Rycroft, C. H.; Kazi, M.; Meza, J. C.; Haranczyk, M. Algorithms

and tools for high-throughput geometry-based analysis of crystalline porous materials.

Microporous Mesoporous Mater. 2012, 149, 134–141.

(25) Diwu, J.; Nelson, A.-G. D.; Wang, S.; Campana, C. F.; Albrecht-Schmitt, T. E. Com-

parisons of Pu(IV) and Ce(IV) Diphosphonates. Inorg. Chem. 2010, 49, 3337–3342.

(26) Martin, N. P.; März, J.; Volkringer, C.; Henry, N.; Hennig, C.; Ikeda-Ohno, A.;

Loiseau, T. Synthesis of Coordination Polymers of Tetravalent Actinides (Uranium

and Neptunium) with a Phthalate or Mellitate Ligand in an Aqueous Medium. Inorg.

Chem. 2017, 56, 2902–2913.

33



(27) Jouffret, L.; Rivenet, M.; Abraham, F. Linear Alkyl Diamine-Uranium-Phosphate Sys-

tems: U(VI) to U(IV) Reduction with Ethylenediamine. Inorg. Chem. 2011, 50, 4619–

4626.

(28) Liang, L.; Zhang, R.; Zhao, J.; Liu, C.; Weng, N. S. Two actinide-organic frameworks

constructed by a tripodal flexible ligand: Occurrence of infinite {(UO2O2(OH)3}4𝑛 and

hexanuclear {Th6O4(OH)4} motifs. J. Solid State Chem. 2016, 243, 50–56.

(29) Fernandez, M.; Woo, T. K.; Wilmer, C. E.; Snurr, R. Q. Large-Scale Quantitative Struc-

ture–Property Relationship (QSPR) Analysis of Methane Storage in Metal–Organic

Frameworks. J. Phys. Chem. C 2013, 117, 7681–7689.

(30) Fanourgakis, G. S.; Gkagkas, K.; Tylianakis, E.; Froudakis, G. E. A Universal Machine

Learning Algorithm for Large-Scale Screening of Materials. J. Am. Chem. Soc. 2020,

142, 3814–3822.

(31) Anderson, R.; Gómez-Gualdrón, D. A. Large-Scale Free Energy Calculations on a Com-

putational Metal–Organic Frameworks Database: Toward Synthetic Likelihood Predic-

tions. Chem. Mater. 2020, 32, 8106–8119.

(32) Pardakhti, M.; Nanda, P.; Srivastava, R. Impact of Chemical Features on Methane

Adsorption by Porous Materials at Varying Pressures. J. Phys. Chem. C 2020, 124,

4534–4544.

(33) Hung, T.-H.; Lyu, Q.; Lin, L.-C.; Kang, D.-Y. Transport-Relevant Pore Limiting Di-

ameter for Molecular Separations in Metal–Organic Framework Membranes. J. Phys.

Chem. C 2021, 125, 20416–20425.

(34) Ongari, D.; Boyd, P. G.; Barthel, S.; Witman, M.; Haranczyk, M.; Smit, B. Accurate

Characterization of the Pore Volume in Microporous Crystalline Materials. Langmuir

2017, 33, 14529–14538.

34



(35) Pinheiro, M.; Martin, R. L.; Rycroft, C. H.; Jones, A.; Iglesia, E.; Haranczyk, M. Char-

acterization and comparison of pore landscapes in crystalline porous materials. J. Mol.

Graph. Model. 2013, 44, 208–219.

(36) Tarbă, N.; Voncilă, M.-L.; Boiangiu, C.-A. On Generalizing Sarle’s Bimodality Coeffi-

cient as a Path towards a Newly Composite Bimodality Coefficient. Mathematics 2022,

10, 1042.

(37) Laakso, M.; Taagepera, R. “Effective” Number of Parties. Comparative Political Studies

1979, 12, 3–27.

(38) Simpson, E. H. Measurement of Diversity. Nature 1949, 163, 688–688.

(39) Kramer, B.; MacKinnon, A. Localization: theory and experiment. Rep. Prog. Phys.

1993, 56, 1469–1564.

(40) Wojdyr, M. GEMMI: A library for structural biology. JOSS 2022, 7, 4200.

(41) Widom, B. Some Topics in the Theory of Fluids. J. Chem. Phys. 1963, 39, 2808–2812.

(42) Shapley, L. S. In Contributions to the Theory of Games (AM-28), Volume II ;

Kuhn, H. W., Tucker, A. W., Eds.; Princeton University Press: Princeton, 1953; pp

307–318.

(43) Molnar, C. Interpretable machine learning ; Self-published online at https://

christophm.github.io/interpretable-ml-book/, 2023; Chapter 9.5–9.6.

(44) Lundberg, S.; Lee, S.-I. A Unified Approach to Interpreting Model Predictions. 2017;

https://arxiv.org/abs/1705.07874, Version v2 submitted on 2017-11-25. Accessed

on 2023-07-05.

(45) Bousquet, D.; Coudert, F.-X.; Boutin, A. Free energy landscapes for the thermodynamic

understanding of adsorption-induced deformations and structural transitions in porous

materials. J. Chem. Phys. 2012, 137, 044118.

35

https://christophm.github.io/interpretable-ml-book/
https://christophm.github.io/interpretable-ml-book/
https://arxiv.org/abs/1705.07874


(46) Witman, M.; Ling, S.; Jawahery, S.; Boyd, P. G.; Haranczyk, M.; Slater, B.; Smit, B. The

Influence of Intrinsic Framework Flexibility on Adsorption in Nanoporous Materials. J.

Am. Chem. Soc. 2017, 139, 5547–5557.

36



TOC Graphic

37


	Introduction
	Methods
	The machine learning model
	Target variable
	Database and data generation
	Geometrical and chemical ML descriptors
	Pore size distribution
	Energy-based descriptors
	Grid calculation
	Single component thermodynamic values
	Exchange equilibrium and selectivity
	Learning from higher temperature thermodynamics
	Statistics on the energy distributions

	Hyperparameter fine-tuning
	Interpretation of the final model

	Results & Discussions
	From infinite dilution to ambient pressure
	ML model performance
	Opening the black box
	Global interpretability
	Local interpretability


	Conclusions and perspectives
	Conflicts of interest
	Acknowledgement
	Funding
	Supporting Information Available
	References

