Propagation effects in the synthesis of wind turbine aerodynamic noise - Archive ouverte HAL
Article Dans Une Revue Acta Acustica Année : 2023

Propagation effects in the synthesis of wind turbine aerodynamic noise

Résumé

The sound field radiated by a wind turbine changes significantly with propagation distance, depending on the meteorological conditions and on the type of ground. In this article, we present a wind turbine noise synthesis model which is based on theoretical source and propagation models. The source model is based on Amietâ’s theory for the prediction of the trailing edge noise and the turbulent inflow noise. The trailing edge noise uses the wall pressure spectrum calculated with Leeâ’s model for the suction side and Goodyâ’s model for the pressure side. The Kolmogorov spectrum is used for the prediction of the turbulent inflow noise. To account for the propagation effects associated with atmospheric refraction and ground reflection, a wide angle parabolic equation in inhomogeneous moving medium is considered. The scattering due to the turbulence in the atmosphere is accounted for using the Harmonoise model. The synthesis method is based on the moving monopole model to accurately predict the amplitude modulations at the receiver, and uses cross-fading between overlapping grains to obtain the time signals from the frequency-domain prediction model. Finally, audio signals are provided for a few test cases to emphasize various propagation phenomena associated with wind turbine noise.
Fichier principal
Vignette du fichier
aacus220077.pdf (9.45 Mo) Télécharger le fichier
Origine Publication financée par une institution

Dates et versions

hal-04182482 , version 1 (06-03-2024)

Identifiants

Citer

David Mascarenhas, Benjamin Cotté, Olivier Doaré. Propagation effects in the synthesis of wind turbine aerodynamic noise. Acta Acustica, 2023, 7, pp.23. ⟨10.1051/aacus/2023018⟩. ⟨hal-04182482⟩
35 Consultations
17 Téléchargements

Altmetric

Partager

More