Deriving Explanations for Decision Trees: The Impact of Domain Theories - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2023

Deriving Explanations for Decision Trees: The Impact of Domain Theories

Résumé

We are interested in identifying the complexity of computing explanations of various types for a decision tree, when the Boolean conditions used in the tree are not independent. When a domain theory indicating how the Boolean conditions occurring in the tree are logically connected is available, taking advantage of it is important to derive provably correct explanations. In this paper, we show that leveraging such a domain theory may have a strong impact on the complexity of generating explanations. While computing a subset-minimal abductive explanation (or a subset-minimal contrastive explanation) for an instance becomes NP-hard in presence of a domain theory, tractable restrictions exist. Especially, domain theories expressing the encoding of numerical attributes into Boolean conditions lead to tractable explanation problems for contrastive explanations.
Fichier principal
Vignette du fichier
impact-theory-dt-v3.pdf (272.5 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Licence

Dates et versions

hal-04176274 , version 1 (02-08-2023)

Licence

Identifiants

  • HAL Id : hal-04176274 , version 1

Citer

Gilles Audemard, Jean-Marie Lagniez, Pierre Marquis, Nicolas Szczepanski. Deriving Explanations for Decision Trees: The Impact of Domain Theories. 2023. ⟨hal-04176274⟩
100 Consultations
104 Téléchargements

Partager

More