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Abstract
We are interested in identifying the complexity of
computing explanations of various types for a deci-
sion tree, when the Boolean conditions used in the
tree are not independent. When a domain theory
indicating how the Boolean conditions occurring in
the tree are logically connected is available, tak-
ing advantage of it is important to derive provably
correct explanations. In this paper, we show that
leveraging such a domain theory may have a strong
impact on the complexity of generating explana-
tions. While computing a subset-minimal abduc-
tive explanation (or a subset-minimal contrastive
explanation) for an instance becomes NP-hard in
presence of a domain theory, tractable restrictions
exist. Especially, domain theories expressing the
encoding of numerical attributes into Boolean con-
ditions lead to tractable explanation problems for
contrastive explanations.

1 Introduction
Motivations Several types of explanations can be defined
when dealing with AI systems that implement classifiers f ,
i.e., mappings from a set X of instances to a set L of classes.
On the one hand, abductive explanations (see e.g., [Ignatiev
et al., 2019]) aim to explain the classification of an instance
x ∈ X as achieved by f . On the other hand, contrastive
explanations (see e.g., [Miller, 2019]) aim to explain why an
input instance x has not been classified by f as expected by
the explainee. In both cases, explanations can be represented
as subsets of the characteristics (i.e., the pairs attribute-value)
of x: in the case of abductive explanations, the subset of char-
acteristics that is derived must be sufficient to justify the clas-
sification f(x) that is made, in the sense that any instance
sharing this subset of characteristics must be classified by f
in the same way as x; in the case of contrastive explanations,
one is interested in pointing out a subset of characteristics
of x that must be modified to get an instance x′ satisfying
f(x′) 6= f(x).

In this paper, the problem of deriving abductive / con-
trastive explanations suited to classifiers f (i.e., L = {0, 1})
represented by decision trees is considered. We focus on the
decision tree model because it is considered as one of the

leading forms of interpretable models, so that more opaque
models can be distilled into decision trees to benefit from
their improved interpretability [Ras et al., 2022]. Indeed,
a number of explanation and verification queries for deci-
sion trees can be answered using polynomial-time algorithms,
while the same queries are intractable for many other ML
models [Audemard et al., 2021a].

When f is a decision tree [Breiman et al., 1984; Quinlan,
1986], decision nodes over attributes Ai from A are used
in the representation of f . Whenever Ai is numerical, the
Boolean conditions labelling the nodes overAi used in f take
the form (Ai ≥ vij). Whenever Ai is categorical and it has
been one-hot encoded, the Boolean conditions labelling the
nodes over Ai used in f take the form (Ai = vij).

A key observation is that two spaces of characteristics can
be used to describe the instances and their explanations when
f is a decision tree (and more generally, when f is a tree-
based classifier, e.g., a random forest [Breiman, 2001], or a
boosted tree [Freund and Schapire, 1997; Schapire and Fre-
und, 2014; Friedman, 2001]). Indeed, instances and explana-
tions can be represented as sets of characteristics based on
the initial set of attributes, but also as sets of characteris-
tics based on the Boolean conditions used in f . It turns out
that considering the latter space of characteristics is prefer-
able from an XAI perspective since it leads to explanations
(abductive or contrastive) that are more general than those
defined when the set of characteristics based on the initial set
of attributes is considered (they cover more instances).

Let us illustrate it on a very simple loan granting scenario.
Suppose that the decision tree classifier f , depicted on Figure
1, is used to determine whether the loan must be granted or
not.

Alice wants to get a loan. Two attributes are used primar-
ily to describe instances: A1 (numerical) gives the annual in-
comes of the applicant, and A2 (Boolean) indicates whether
the applicant has reimbursed a previous loan. Alice’s annual
incomes are equal to $45 k and she has reimbursed a previous
loan. Thus, Alice corresponds to the instance x = (45, 1).
Since f(x) = 1, Alice will get the loan. The unique subset-
minimal abductive explanation for x given f in the space of
characteristics considered at start is {(A1 = 45)}. Using
words, the abductive explanation provided to Alice is ”you
got the loan since your annual incomes are equal to $45 k”.
In the space of characteristics of the predictor, two subset-
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Figure 1: A simple decision tree classifier for granting loans.

minimal abductive explanations for x given f can be derived,
namely {(A1 ≥ 40)} and {(A1 ≥ 30), (A2 = 1)}. Those
explanations are better than the previous one {(A1 = 45)}
since they correspond to more general classification rules and
they reflect in a much more accurate way the behaviour of the
predictor. Using words, ”you got the loan since your annual
incomes are greater than or equal to $40 k, but also because
your annual incomes are greater than or equal to $30 k and
you have reimbursed a previous loan”.

Consider now Bob, who also wants to get a loan. Bob has
reimbursed a previous loan, but his annual incomes are equal
to $20 k, only. Bob corresponds to the instance x′ = (20, 1).
Since f(x′) = 0, Bob will not get the loan. Using the defi-
nition provided in [Ignatiev et al., 2020], the unique subset-
minimal contrastive explanation for x′ given f is {A1}. Us-
ing words, ”in order to get the loan, you have to change your
annual incomes”. This is correct, but clearly insufficient since
Bob surely expects to know to which extent his annual in-
comes must be updated in order to get the loan. The con-
trastive explanation {(A ≥ 30)}, represented in the space of
characteristics of the predictor, is a far better explanation. In-
deed, it indicates that ”in order to get the loan, you have to
make your annual incomes at least equal to $30 k”. For more
details on contrastive explanations for tree-based classifiers,
see [Audemard et al., 2023].

Contributions In the following, we look for explanations
represented in the space of characteristics of the decision tree
f to take advantage of their generality. Accordingly, f is
now considered as a Boolean function based on the Boolean
conditions labelling its decision nodes. However, f may
be based on Boolean conditions that are not logically inde-
pendent, especially when they come from the same (non-
Boolean) attribute Ai used to describe instances at start. This
is the case in the above example, where the Boolean con-
ditions (A1 ≥ 30) and (A1 ≥ 40) are not independent,
since no instance may satisfy (A1 ≥ 40) while not satisfying
(A1 ≥ 30). Thus, some propositional constraints Σ form-
ing a domain theory indicating how the Boolean conditions
used in f are logically connected must be taken into account
when computing explanations. Pairs (f,Σ) are referred to as
constrained decision-functions in [Gorji and Rubin, 2022].

Because the feasible instances reduce to those satisfy-
ing Σ, leveraging Σ is mandatory to avoid the derivation
of abductive explanations that are unnecessarily specific
[Gorji and Rubin, 2022] or that could be simplified (for in-

stance, the abductive explanation for x (associated with Al-
ice) given by {(A1 ≥ 40), (A1 ≥ 30)} can be simplified
into {(A1 ≥ 40)}). It is also necessary to prevent from
generating contrastive explanations that would correspond to
instances that are impossible [Yu et al., 2022], for exam-
ple, the contrastive explanation for x′ (associated with Bob)
given by {(A1 ≥ 40)} that would correspond to the (impos-
sible) contrastive instance given by {(A1 ≥ 40), (A2 =

1), (A1 ≥ 30)}.
In the following, our goal is to determine the computational

impact of handling a domain theory Σ in the task of generat-
ing abductive explanations and contrastive explanations for
instances given (f,Σ) when f is a decision tree. We consider
the case when Σ is any theory, and also the more specific
case when Σ is tractable. What we mean here by “tractable
theory” Σ is the possibility of a polynomial-time clausal en-
tailment tests: we suppose that a polynomial-time algorithm
exists, that takes as input Σ and any clause δ, and returns true
if and only if Σ |= δ holds.

Interestingly, knowledge compilation techniques can be
exploited to “render tractable” propositional formulae Σ that
are not tractable [Darwiche and Marquis, 2002]. Especially,
there exist compilation algorithms associating with any CNF
formula Σ an equivalent tractable theory (in the worst case,
however, the resulting tractable theory is of size exponential
in the size of Σ, so that no computational benefits can be guar-
anteed in every situation when knowledge compilation tech-
niques are leveraged).

Among the tractable theories, we focus on two specific
families, the Krom one (i.e., CNF formulae consisting of bi-
nary clauses) and the Horn one (i.e., CNF formulae where each
clause contains at most one positive literal). It turns out that
domain theories encoding numerical attributes or ordinal at-
tributes are Krom theories. This is also the case of theories
encoding categorical attributes (alias nominal attributes) un-
der some open world assumption. Horn theories are also in-
teresting because they can be used for encoding hierarchical
features.

Our results are synthesized in Table 1. Each line of this
table corresponds to a computation problem, that consists in
deriving one (or all) explanations of a specific type for an in-
put instance x given a constrained decision-function (f,Σ)
where f is a decision tree. Each column corresponds to
an assumption about the underlying theory Σ that is made.
Each cell contains one of the following symbols: ×, +, or√

. × means that the computation problem given by the
line and the column is provably intractable, i.e., there is no
polynomial-time algorithm to solve it. + means that the com-
putation problem given by the line and the column is proba-
bly intractable, i.e., there is no polynomial-time algorithm to
solve the problem unless P = NP. Finally,

√
indicates that

the computation problem given by the line and the column
is tractable, i.e., there exists a polynomial-time algorithm to
solve the problem.

Table 1 clearly shows that taking advantage of Σ has a sig-
nificant computational cost in the general case (just compare
the two columns ”Σ valid” and ”any Σ”).



Computation problem: deriving Σ valid any Σ Σ tractable Σ Horn Σ Krom

One subset-minimal abductive explanation
√

+
√ √ √

All the subset-minimal abductive explanations × × × × ×

One minimum-size abductive explanation + + + + +

All the minimum-size abductive explanations × × × × ×

One subset-minimal contrastive explanation
√

+
√ √ √

All the subset-minimal contrastive explanations
√

× × ×
√

One minimum-size contrastive explanation
√

+ + +
√

All the minimum-size contrastive explanations
√

× × ×
√

Table 1: The complexity of deriving explanations given a constrained decision-function (f,Σ) when f is a decision tree. × means that the
problem is provably intractable, + means that the problem is intractable unless P = NP, and

√
means that the problem is tractable.

2 Preliminaries
Classification Let A = {A1, . . . , An} be a finite set of
attributes, where each attribute is Boolean, categorical (aka
nominal), or numerical. The domain Di of Ai (i ∈ [n])
is {0, 1} when Ai is Boolean, a finite set of values that
are not ordered when Ai is categorical (for instance Di =
{blue,white, red}), and (typically) Di = N or R when Ai is
numerical. Note that the type of an attributeAi is a semantical
information that must be part of its description. Especially, it
cannot be inferred from the values in the corresponding do-
main Di (numbers can be used to denote values, like 0 for
blue , 1 for white , and 2 for red , but it does not necessarily
make sense in this case to consider that 0 < 1 < 2). We
note Aboo (resp. Anum, Acat) the subset of A consisting of
Boolean (resp. numerical, categorical) attributes.

An instance x over A is a vector from D1 × . . . × Dn.
Every x = (v1, . . . , vn) is also viewed logically as the
conjunctively-interpreted set tx of Boolean conditions (alias
characteristics) {(Ai = vi) : i ∈ [n]}. X is the set of all in-
stances. A binary classifier f overA is a mapping from X to
L = {0, 1}. An instance x ∈ X is positive when f(x) = 1
and it is negative when f(x) = 0.

A decision tree over A is a binary tree T , each of whose
internal nodes is labeled with a Boolean condition onAi ∈ A,
and each leaf is labeled by an element of L. Without loss of
generality, every variable is supposed to occur at most once
on any root-to-leaf path. The value T (x) of T on an input
instance x is given by the label of the leaf reached from the
root as follows: at each node go to the left (resp. right) child
if the Boolean condition labelling the node is evaluated to 0
(resp. 1) for x. The size of a decision tree is the number of
nodes in it.

Boolean functions By Fn we denote the class of all
Boolean functions from {0, 1}n to {0, 1}, and we use Xn =
{x1, · · · , xn} to denote the set of input Boolean variables. A

Boolean vector x ∈ {0, 1}n is a model of f if f(x) = 1.
Otherwise, x is a counter-model of f . [f ] denotes the set of
all models of f .

We refer to f as a propositional formula when it is de-
scribed using the Boolean connectives ∧ (conjunction), ∨
(disjunction) and ¬ (negation), together with the constants
1 (true) and 0 (false). f is satisfiable if it has a positive in-
stance, and it is unsatisfiable otherwise. f is valid when it has
no negative instance. If f and g are two propositional formu-
lae over Xn, f entails g, noted f |= g, if and only if [f ] ⊆ [g]
holds and f and g are equivalent, noted f ≡ g, if and only if
[f ] = [g]. A literal li is a variable xi ∈ Xn (a positive literal)
or its negation ¬xi (a negative literal), also denoted xi. The
complementary literal ∼ li of literal li is xi if li = xi is a
positive literal, and xi if li = xi is a negative literal. LXn

is the set of all literals over Xn. A term t is a conjunction
of literals, and a clause c is a disjunction of literals. In the
following, we shall often treat instances as terms, and terms
as sets of literals. A term t is an implicant of f if and only if
t |= f holds and t is a prime implicant of f if and only if t
is an implicant of f and no proper subset of t is an implicant
of f . A clause c is an implicate of f if and only if f |= c
holds, and c is a prime implicate of f if and only if c is an
implicate of f and no proper subset of c is an implicate of f .
A DNF formula is a disjunction of terms and a CNF formula is
a conjunction of clauses. The set of variables occurring in a
formula f is denoted Var(f).

For an assignment z ∈ {0, 1}n, the corresponding canoni-
cal term is

tz =

n∧
i=1

xzii where x0i = xi and x1i = xi

A term t covers an assignment x if t ⊆ tx.
When every Boolean condition occurring in a decision tree

T over a set A of attributes is viewed as a Boolean variable,



T can be viewed as a Boolean function over Xn. The class of
decision trees over Xn is denoted DTn.

Finally, a constrained decision-function over a set of
Boolean variables can be defined as follows [Gorji and Ru-
bin, 2022]:
Definition 1. Let Xn = {x1, . . . , xn} be a set of Boolean
variables. A constrained decision-function over Xn is a pair
(f,Σ) where f ∈ Fn and Σ is a propositional formula over
Xn. Σ indicates how the Boolean variables from Xn are log-
ically connected.

3 Explanations
Let us now define in formal terms the two types of explana-
tions we are interested in: abductive explanations and con-
trastive explanations.
Definition 2. Let (f,Σ) be a constrained decision-function
and x ∈ [Σ] be an instance s.t. f(x) = 1 (resp. f(x) = 0).
• An abductive explanation for x given (f,Σ) is a set t ⊆
tx such that t ∧ Σ |= f (resp. t ∧ Σ |= f ).
• A subset-minimal abductive explanation for x given

(f,Σ) is an abductive explanation t for x given (f,Σ)
such that no proper subset of t is an abductive explana-
tion for x given (f,Σ).
• A minimum-size abductive explanation for x given

(f,Σ) is an abductive explanation t for x given (f,Σ)
such that no abductive explanation t′ for x given (f,Σ)
such that |t′| < |t| exists.

Subset-minimal abductive explanations are also referred to
as PI-explanations [Shih et al., 2018], sufficient reasons [Dar-
wiche and Hirth, 2020], or abductive explanations [Ignatiev
et al., 2019].
Definition 3. Let (f,Σ) be a constrained decision-function
and x ∈ [Σ] be an instance.
• A contrastive explanation for x given (f,Σ) is a set
c ⊆ tx such that the vector xc ∈ {0, 1}n that coin-
cides with x except on the characteristics of c (a so-
called contrastive instance) is such that xc ∈ [Σ] and
f(xc) 6= f(x).
• A subset-minimal contrastive explanation for x given

(f,Σ) is a contrastive explanation c for x given (f,Σ)
such that no proper subset of c is a contrastive explana-
tion for x given (f,Σ).
• A minimum-size contrastive explanation for x given

(f,Σ) is a contrastive explanation c for x given (f,Σ)
such that no contrastive explanation c′ for x given
(f,Σ) such that |c′| < |c| exists.

Subset-minimal contrastive explanations are also referred
to as necessary reasons [Darwiche and Ji, 2022] or contrastive
explanations [Ignatiev et al., 2020].

Clearly enough, every instance x has an abductive expla-
nation given (f,Σ) that can be obtained without any compu-
tational effort, since tx is such an explanation. Furthermore,
provided that x is known, every contrastive explanation c for
x given (f,Σ) entirely defines a corresponding contrastive
instance xc, and vice-versa, an instance xc ∈ [Σ] such that

f(xc) 6= f(x) entirely defines a contrastive explanation c
for x given (f,Σ). Finally, it is obvious that minimum-size
abductive (resp. contrastive) explanations form a subset (in
general, a proper subset) of the set of subset-minimal abduc-
tive (resp. contrastive) explanations.

In the following, we focus on the issue of deriving such
explanations when f is a decision tree. We first recall known
results for the case when no domain theory connecting the
Boolean conditions that occur in f is available (or, equiva-
lently, Σ is a valid formula). In such a case, it has been shown
that:

• As to abductive explanations:
– An instance x over Xn may have exponentially

many abductive explanations given f , and even ex-
ponentially many subset-minimal abductive expla-
nations, and exponentially many minimum-size ab-
ductive explanations in the number n of Boolean
features [Audemard et al., 2022b; 2022a].

– Computing a subset-minimal abductive explanation
for x given f can be done in time polynomial in
the size of f and n [Izza et al., 2020], but it is
unlikely that we can enumerate subset-minimal ab-
ductive explanations for x given f in output poly-
nomial time [de Colnet and Marquis, 2022].

– Computing a minimum-size abductive explanation
for x given f is NP-hard [Barceló et al., 2020].

• As to contrastive explanations:
– An instance x over Xn may have exponen-

tially many contrastive explanations,1 but only
polynomially-many subset-minimal contrastive ex-
planations in the number n of Boolean features
[Audemard et al., 2021b; Huang et al., 2021].

– Computing all the subset-minimal contrastive ex-
planations for x given f can be done in time poly-
nomial in the size of f and n [Audemard et al.,
2021b; Huang et al., 2021].

– As a direct consequence, computing all the
minimum-size contrastive explanations for x given
f can be done in time polynomial in the size of f
and n.

4 The Impact of Domain Theories
Σ is any theory We first consider the case when Σ is any
propositional formula. In such a case, the presence of Σ
can make the derivation of some explanations computation-
ally harder. Obviously, the case when no domain theory is
available (i.e., Σ is valid) is a specific case of the general case
(when Σ is unconstrained). As a consequence, all hardness
results obtained for the case when no domain theory is avail-
able still hold in the general case:

• As to abductive explanations:
– An instance x over Xn may have exponentially

many abductive explanations given f and Σ, and

1Just because f may have exponentially many models and expo-
nentially many counter-models.



even exponentially many minimum-size abductive
explanations in the number n of Boolean features.

– Computing a minimum-size abductive explanation
for x given f and Σ is NP-hard.

• As to contrastive explanations:
– An instance x over Xn may have exponentially

many contrastive explanations.

Let us now look at the remaining issues.
Proposition 1. Let (f,Σ) be a constrained decision-function,
where f is a decision tree, Σ is a CNF formula, and let x ∈
[Σ] be an instance. Computing a subset-minimal abductive
explanation for x given (f,Σ) is NP-hard, even if f reduces
to a stump.

Proof. Suppose that f(x) = 1. By construction, the empty
term > is the unique subset-minimal abductive explanation
for x given (f,Σ) if and only if Σ |= f holds. Similarly,
if f(x) = 0, then > is the unique subset-minimal abductive
explanation for x given (f,Σ) if and only if Σ |= f holds.
Thus, computing in (deterministic) polynomial time a subset-
minimal abductive explanation for x when x is a positive
instance is sufficient to decide in (deterministic) polynomial
time whether Σ |= f . We show that this decision problem is
coNP-hard, by reduction from CNF-UNSAT. Let α =

∧m
i=1 δi

be a CNF formula over {x1, . . . , xn}. We associate with α
in polynomial time the CNF formula Σ =

∧m
i=1(δi ∨ xn+1)

where xn+1 is a fresh variable, f is a decision tree equivalent
to xn+1 (it is a stump: f has a single internal node labelled by
xn+1, its left child is a 0-leaf and its right child is a 1-leaf),
and x is the instance over {x1, . . . , xn, xn+1} where every
variable xi (i ∈ [n+ 1]) is set to 1. We can easily check that
x is a model of Σ ∧ f . Now, Σ |= f holds if and only if
α ∨ xn+1 is valid if and only if α is unsatisfiable.

As a consequence, subset-minimal abductive explanations
cannot be enumerated in output polynomial time unless P =
NP.

Similarly, for subset-minimal contrastive explanations, we
have that:
Proposition 2. Let (f,Σ) be a constrained decision-function,
where f is a decision tree, Σ is a CNF formula, and let x ∈ [Σ]
be an instance. Computing a subset-minimal contrastive ex-
planation for x given (f,Σ) (or just a contrastive explana-
tion for x given (f,Σ)) is NP-hard, and this holds even if f
reduces to a stump.

Proof. Towards a contradiction, suppose that computing a
subset-minimal or even a contrastive explanation for x given
(f,Σ) is feasible in (deterministic) polynomial time. Then
one would be able to decide in (deterministic) polynomial
time whether a contrastive explanation for x given (f,Σ) ex-
ists. However, this problem is NP-hard, as shown by the fol-
lowing reduction from CNF-SAT. Let α =

∧m
i=1 δi be a CNF

formula over {x1, . . . , xn}. We associate with α in polyno-
mial time the CNF formula Σ =

∧m
i=1(δi∨xn+1) where xn+1

is a fresh variable, f is a decision tree equivalent to xn+1 (it
is a stump: f has a single internal node labelled by xn+1,
its left child is a 0-leaf and its right child is a 1-leaf), and

x is the instance over {x1, . . . , xn, xn+1} where every vari-
able xi (i ∈ [n + 1]) is set to 1. We can easily check that
x is a model of Σ ∧ f . So x has a contrastive explanation
given (f,Σ) if and only if Σ ∧ f is satisfiable. But Σ ∧ f is
equivalent to α∧xn+1, which is satisfiable if and only if α is
satisfiable.

Unless P = NP, the previous result prevents from the
polynomial-time generation of all subset-minimal contrastive
explanations for x given (f,Σ), which is feasible when Σ is
valid. Actually, the result can be proved unconditionally due
to the number of subset-minimal contrastive explanations for
x given (f,Σ). Indeed, it can be the case that the minimum-
size contrastive explanations for x given (f,Σ) are exponen-
tially numerous in the number of features used, and this holds
not only in the general case when Σ is any theory, but also in
the specific case when Σ is a tractable theory. Indeed:
Proposition 3. Let (f,Σ) be a constrained decision-function,
where f is a decision tree, Σ is a CNF formula, and let x ∈ [Σ]
be an instance. The number of minimum-size contrastive ex-
planations for x given (f,Σ) can be exponential in the num-
ber of Boolean variables used in (f,Σ), and this is the case
even when Σ is a Horn CNF formula or a CNF formula repre-
senting a set of domain constraints for categorical attributes
where each domain contains at least 3 elements.

Proof. Let us start with the case when Σ is a Horn CNF for-
mula. Let us take Σ =

∧n
i=1(xi∨yi∨zi). Let f be a decision

tree equivalent to the clause
∨n

i=1 zi (such a decision tree can
be generated in time linear in n), and let x be the assignment
over {xi, yi, zi : i ∈ [n]} where every variable is set to 1.
The instance x is a model of Σ ∧ f . In order to get a con-
trastive instance x′ satisfying Σ ∧ f , the truth value of every
variable zi (i ∈ [n]) must be set to 0 since f ≡

∧n
i=1 zi. But

the assignment that coincides with x except on the variables
zi (i ∈ [n]) is not a model of Σ: it violates every clause in it.
In order to make it a model of clause xi ∨ yi ∨ zi (i ∈ [n])
while keeping zi set to 0, at least one of xi or yi must be set
to 1. Thus there are 2n to minimally change x to get a model
x′ of Σ∧ f : every set containing all the variables zi (i ∈ [n])
and for each i ∈ [n], precisely one of xi or yi is a minimum-
size contrastive explanation for x given (f,Σ). The number
of such sets is equal to 2n, thus exponential in the number 3n
of Boolean variables used in (f,Σ).

Let us now turn to the case when Σ is a CNF formula repre-
senting a set of domain constraints for categorical attributes
where each domain contains at least 3 elements. Let us take
Σ =

∧n
i=1(xi ∨ yi ∨ zi)∧ (xi ∨ yi)∧ (xi ∨ zi)∧ (yi ∨ zi). Σ

is a propositional encoding of domain constraints for n cat-
egorical attributes, where each domain contains 3 elements.
Such a Σ is tractable since it is equivalent to the conjunc-
tion of its prime implicates. Let f be a decision tree equiv-
alent to the clause

∨n
i=1 zi (such a decision tree can be gen-

erated in time linear in n), and let x be the assignment over
{xi, yi, zi : i ∈ [n]} where every variable zi (i ∈ [n]) is set to
1 and every variable xi, yi (i ∈ [n]) is set to 0 . Then the rest
of the proof is similar to the Horn case above. The instance x
is a model of Σ ∧ f . In order to get a contrastive instance x′

satisfying Σ ∧ f , the truth value of every variable zi (i ∈ [n])



must be set to 0 since f ≡
∧n

i=1 zi. But the assignment that
coincides with x except on the variables zi (i ∈ [n]) is not a
model of Σ: it violates every clause xi∨yi∨zi (i ∈ [n]) in it.
In order to make it a model of Σ while keeping zi set to 0, pre-
cisely one of xi or yi must be set to 1. Thus there are 2n ways
to minimally change x to get a model x′ of Σ ∧ f : every set
containing all the variables zi (i ∈ [n]) and for each i ∈ [n],
precisely one of xi or yi is a minimum-size contrastive expla-
nation for x given (f,Σ). The number of such sets is equal to
2n, thus exponential in the number 3n of Boolean variables
used in (f,Σ).

Σ is a tractable theory Let us now consider the case when
Σ is a tractable theory. It turns out that supposing that Σ is
tractable (implicitly, for the clausal entailment task) changes
the picture when it comes to derive a subset-minimal abduc-
tive explanation:

Proposition 4. Let (f,Σ) be a constrained decision-function,
where f is a decision tree, Σ is a tractable theory, and let
x ∈ [Σ] be an instance. Computing a subset-minimal ab-
ductive explanation for x given (f,Σ) can be done in time
polynomial in the size of the input.

Proof. In order to generate efficiently a subset-minimal ab-
ductive explanation t for x given (f,Σ), one takes advantage
of a greedy algorithm. If f(x) = 1 (resp. f(x) = 0), then we
turn f (resp. f ) into an equivalent CNF formula

∧m
i=1 δi (it is

well-known that this can be achieved in time linear in the size
of f ). Then we initialize t to tx, and consider every literal `
of t in sequence (the order chosen does not matter to prove
the result). At each step, an implicant test is performed: one
tests whether (t \ {`}) ∧ Σ |=

∧m
i=1 δi. If the test succeeds,

then ` is removed from t, else it is kept, and the algorithm re-
sumes considering the next literal of t in the sequence. When
every literal has been considered, the resulting term t is by
construction a subset-minimal abductive explanation t for x
given (f,Σ). Each test (t\{`})∧Σ |=

∧m
i=1 δi can be done in

polynomial time. Indeed, the condition holds precisely when
for every clause δi (i ∈ [m]), Σ |= ¬(t \ {`}) ∨ δi. Since
¬(t \ {`})∨ δi is a clause and Σ is a tractable theory, the con-
dition can be evaluated in polynomial time. Since the number
of implicant tests to be achieved is equal to the number of
features, the greedy algorithm runs in time polynomial in the
size of the input.

Focusing now on the generation of subset-minimal con-
trastive explanations, it is valuable to consider a further re-
striction on the tractable theory at hand, namely that Σ is a
Krom CNF formula (i.e., Σ is given as a conjunction of binary
clauses). Such theories are known as tractable for a while
[Even et al., 1976; Aspvall et al., 1979]. Indeed, when Σ
is a Krom CNF formula, the computation of all the subset-
minimal contrastive explanations for x given (f,Σ) can be
done in time polynomial in the size of the input. As a direct
consequence, the computation of all the minimum-size con-
trastive explanations for x given (f,Σ) can also be achieved
in time polynomial in the size of the input. So in the case
when Σ is a Krom CNF formula, the results obtained for the
case when Σ is valid still hold.

Proposition 5. Let (f,Σ) be a constrained decision-function,
where f is a decision tree, Σ is a Krom CNF formula, and let
x ∈ [Σ] be an instance. Computing all the subset-minimal
contrastive explanations for x given (f,Σ) can be done in
time polynomial in the size of the input.

Proof. First of all, if f(x) = 1 (resp. f(x) = 0), then we
turn f (resp. f ) into an equivalent DNF formula

∨m
i=1 γi (it

is well-known that this can be achieved in time linear in the
size of f ). Then the goal is to determine models xc of Σ ∧∨m

i=1 γi (i.e., contrastive instances) such that the set-theoretic
difference of tx minus txc is minimal w.r.t. set-inclusion.
Now, Σ∧

∨m
i=1 γi is equivalent to

∨m
i=1(Σ∧ γi). This shows

that to get the models xc we look for, we can look at the
models of each Σ ∧ γi (i ∈ [m]). Every γi such that Σ ∧ γi
is unsatisfiable can be detected in polynomial time since Σ is
tractable and Σ ∧ γi is unsatisfiable if and only if Σ |= ¬γi
where ¬γi is a clause. When Σ ∧ γi is unsatisfiable, γi can
be set aside since no model xc among the ones we look for
can be a model of Σ∧γi because Σ∧γi has no model. If this
happens for every i ∈ [m], then Σ ∧

∨m
i=1 γi has no model,

so that no contrastive explanation exists.
The next step is to prove that for every γi that is remaining,

there exists a unique model xci of Σ ∧ γi such that tx minus
txci

is minimal w.r.t. set-inclusion. Clearly enough, every
candidate xci must satisfy γi so the truth value of every literal
` of tx such that ` ∈ γi must be switched in xci , while the
truth value of every literal ` of tx such that ` ∈ γi is kept
in xci as it is in tx. More generally, every literal ` such that
Σ ∧ γi |= ` must be satisfied by xci since xci must be a
model of Σ ∧ γi. The set Li of literals ` entailed by Σ ∧ γi
can be computed in polynomial time because Σ is tractable
(Σ∧γi |= ` holds if and only if the clause¬γi∨` is entailed by
Σ). So let xci be defined as the assignment that satisfies every
literal from Li and that coincides with x on every variable
x so that neither x nor x belongs to Li. By construction,
all the models of Σ ∧ γi give the same truth values to the
literals in Li. Hence tx minus txci

is minimal w.r.t. set-
inclusion. Therefore, it remains to show that xci is a model
of Σ ∧ γi. Since it is a model of γi, one just has to show
that xci is a model of Σ. Consider any clause δ of Σ. There
are two cases. (1) If δ contains at least one literal ` ∈ Li,
then δ is satisfied by xci since xci sets ` to true. (2) Else, no
literal of δ = `1 ∨ `2 belongs to Li. In this case, neither `1
nor `2 belongs to Li as well, otherwise by unit propagation
we would have been in case (1) or Σ ∧ γi would have been
unsatisfiable. So the variables of `1 and `2 are set in xci to
the same truth values as the ones they have in x. But since x
satisfies Σ, x satisfies δ, hence xci satisfies δ as well.

Notably, the theories Σ obtained by encoding numerical
and/or ordinal attributes are Krom CNF formulae. This is also
the case of theories encoding categorical attributes, provided
that an open world assumption is made. What we mean here
is that if V = {v1, . . . , vp} is the set of values of a categori-
cal attribute A such that nodes of the type (A = vi) (i ∈ [p])
are encountered in the decision tree f , then Σ is equivalent to
the Krom CNF formula

∧
vj ,vk∈V |vi 6=vk

((A = vj)∨(A = vk),



i.e., the values in V are mutually exclusive. Thus, the con-
straint

∨
vj∈V vj is not implied by Σ: other values than those

listed in V are considered as possible for attributeA. So when
considering decision trees f based on numerical and/or ordi-
nal features and/or categorical features under an open world
assumption, the generation of all the subset-minimal con-
trastive explanations for an instance x given (f,Σ) can be
achieved in polynomial time. And, as a consequence, the
generation of all the minimum-size contrastive explanations
for an instance x given (f,Σ) can be achieved in polynomial
time as well.

We now focus on domain theories Σ that are tractable but
do not reduce to Krom CNF formulae. Among them are
(for instance) Horn CNF formulae. Such Horn theories are
tractable and they are interesting because they can be used for
encoding hierarchical features, for instance the fact that every
plane geometry object that satisfies the property “rectangle”
and the property “diamond” must have the property “square”
as well. Because of Proposition 3, we already know that the
generation of all subset-minimal contrastive explanations for
an instance x given (f,Σ) cannot be achieved in polynomial
time when Σ is a Horn CNF formula (so the result extends
to tractable theories in the general case). Thus, we need to
focus on computationally easier problems, namely the gener-
ation of one subset-minimal contrastive explanation and the
generation of one minimum-size contrastive explanation.

We have obtained the following results:
Proposition 6. Let (f,Σ) be a constrained decision-function,
where f is a decision tree, Σ is a tractable theory, and let
x ∈ [Σ] be an instance. Computing one subset-minimal con-
trastive explanation for x given (f,Σ) can be done in time
polynomial in the size of the input.

Proof. The proof goes through a number of intermediate re-
sults.

The first step of the proof is similar to the first step in the
proof of Proposition 5. If f(x) = 1 (resp. f(x) = 0), then
we turn f (resp. f ) in linear time into an equivalent DNF for-
mula

∨m
i=1 γi. Then one looks for a model xc of Σ∧

∨m
i=1 γi

such that the tx minus txc is minimal w.r.t. set-inclusion.
Since Σ ∧

∨m
i=1 γi is equivalent to

∨m
i=1(Σ ∧ γi), for each

i ∈ [m], we look first to a model xi
c of Σ ∧ γi such that tx

minus txi
c

is minimal w.r.t. set-inclusion (among the models
of Σ ∧ γi).

Given two instances x,x′ ∈ {0, 1}n, we define x ⊕ x′ as
the element of {0, 1}n such that for each j ∈ [n], (x⊕x′)j =
1 if xi 6= x′

i and (x ⊕ x′)j = 0 if xi = x′
i. Observe that

x ⊕ x′ is totally defined from x and x′, and that conversely,
x′ is totally defined from x and x ⊕ x′ (we have x′ = x ⊕
(x ⊕ x′)). Stated otherwise, given x, x′ and x ⊕ x′ are in
one-to-one correspondance.

We consider two orderings over {0, 1}n: the product order-
ing ≤prod induced by 0 < 1 (it is a partial ordering) and the
lexicographic ordering ≤lex over {0, 1}n induced by 0 < 1
(it is a total ordering). It is well-known that ≤lex is a linear
extension of ≤prod , meaning that for any x′,x′′ ∈ {0, 1}n, if
x′ ≤prod x′′ holds, then x′ ≤lex x′′ holds.

For any x,x′,x′′ ∈ {0, 1}n we note x′ vx x′′ precisely
when x ⊕ x′ ≤prod x ⊕ x′′, and x′ �x x′′ precisely when

x ⊕ x′ ≤lex x ⊕ x′′. By construction, we have x′ vx x′′

holds if and only tx \ tx′ ⊆ tx \ tx′′ holds.
Now, since ≤lex is a total ordering, for each i ∈ [m], the

set {x ⊕ x′ : x′ ∈ [Σ ∧ γi]} has a least element w.r.t. ≤lex .
Let x ⊕ xi

c denote this element. By construction, xi
c is the

least element of [Σ ∧ γi] w.r.t. �x.
In order to compute xi

c we can take advantage of the fol-
lowing algorithm:

Algorithm 1 Computing xi
c

Require: a tractable theory Σ, a term γi such that Σ 6|= ¬γi,
and an instance x = (`1, . . . , `n) ∈ [Σ ∧ ¬γi]

Ensure: txi
c
, where xi

c is the least element of [Σ ∧ γi] w.r.t.
�x

t← γi
for i = 1 to n do

if Σ 6|= ¬t ∨ ¬`i then
t← t ∧ `i

else
t← t ∧ ∼ `i

end if
end for
return (t)

This algorithm runs in polynomial time whenever Σ is
tractable for clausal entailment. Basically, the term t that
is computed by this algorithm implies γi and every literal
of tx is conjoined with t in sequence, provided that it does
not conflict with Σ once augmented by the literals of tx that
have been previously conjoined (note that we could simplify
the loop and avoid testing whether Σ 6|= ¬t ∨ ¬`i whenever
`i ∈ γi, but we keep the pseudo-code as it is for the sake of
readability).

It turns out that the contrastive explanation c for x given
(γi,Σ) associated with xi

c and given by c = tx\txi
c

is subset-
minimal. Indeed, if it was not the case, there would exist a
subset-minimal contrastive explanation c′ for x given (γi,Σ)
such that c′ ⊂ c. Let xi

c′ be the corresponding contrastive
instance. We would have xi

c′ @x xi
c and as a consequence

(since �x extends @x), we would also have xi
c′ ≺x xi

c, con-
tradicting the fact that xi

c is the least element of [Σ∧γi] w.r.t.
�x.

Finally, we compute in polynomial time the least element
noted xc of {xi

c : i ∈ [m]} w.r.t. �x. This element is the
least element of [Σ ∧

∨m
i=1 γi] w.r.t. �x. Consequently, the

corresponding c = tx \ txc is a subset-minimal contrastive
explanation for x given (f,Σ).

Proposition 7. Let (f,Σ) be a constrained decision-function,
where f is a decision tree, Σ is a tractable theory, and let x ∈
[Σ] be an instance. Computing one minimum-size contrastive
explanation for x given (f,Σ) is NP-hard and this holds even
if Σ is a pure Horn CNF formula and f is a stump.

Proof. Suppose that a (deterministic) polynomial-time algo-
rithm for computing one minimum-size contrastive explana-
tion c for x given (f,Σ) exists. If f(x) = 1 (resp. f(x) = 0),



then |c| is the (minimal) Hamming distance between x and
[Σ ∧ f ] (resp. [Σ ∧ f ]). Accordingly, if such an algo-
rithm existed, one would be able to decide in (deterministic)
polynomial-time whether the Hamming distance between a
model x of Σ ∧ f and [Σ ∧ f ] is lower than or equal to any
given non-negative integer, say d′.

We now show that the latter problem is NP-hard by re-
ducing the well-known minimal hitting set problem (MHS)
to it. An instance of MHS is given by a pair (C, d) where
C is a finite set of subsets of a finite set S = {x1, . . . , xn}
and d is a non-negative integer; the instance is positive if and
only if there exists a subset H of S s.t. |H| ≤ d and H is
a hitting set of C, i.e., for every c ∈ C, H ∩ c 6= ∅. It
is known that MHS is NP-complete even if the case when
each c ∈ C contains at most two elements [Karp, 1972]
(which is an assumption we make here). With such an in-
stance (C, d), we associate in polynomial time the pure Horn
formula Σ =

∧
c∈C(

∨
xi∈c xi) ∨ x0 over {x0, x1, . . . , xn},

the stump f equivalent to x0, the instance x such that ∀j ∈
{0, . . . , n}, xj = 1, and d′ = d + 1. We can easily check
that x is a model of Σ ∧ f . Furthermore, Σ ∧ f is equivalent
to

∧
c∈C(

∨
xi∈c xi) ∧ x0. Since x0 is set to 1 in x and x0

does not occur in S, the Hamming distance between x and
Σ ∧ f is equal to 1 plus the Hamming distance between x
and

∧
c∈C(

∨
xi∈c xi). Since every variable is set to 1 in x,

updating x so as to satisfy a clause
∨

xi∈c xi where c ∈ C
requires to set to 0 in x at least one of the (at most two) vari-
ables xi. Since

∧
c∈C(

∨
xi∈c xi) must be satisfied, a minimal

change in terms of the number of variables to be flipped in
x to get a model of

∧
c∈C(

∨
xi∈c xi) (i.e., the Hamming dis-

tance between x and
∧

c∈C(
∨

xi∈c xi)) is given by the size
of a minimal hitting set of C. Thus, C has a hitting set of
size ≤ d if and only if a contrastive explanation c for x given
(f,Σ) of size ≤ d+ 1 exists. This concludes the proof.

5 Conclusion

In this paper, we have shown that leveraging a domain theory
indicating how the Boolean conditions occurring in a deci-
sion tree are logically connected may have a strong impact on
the complexity of generating provably correct explanations.
None of the explanation problems that are tractable when the
Boolean conditions used in the tree are independent (i.e., Σ
is valid) remain tractable when no assumptions are made on
the domain theory. Ensuring that Σ is tractable is enough to
preserve the results about the computation of abductive expla-
nations that hold when Σ is valid, but in general, it changes
significantly the picture concerning the computation of con-
trastive explanations (the sole contrastive explanation prob-
lem that is tractable when Σ is valid and that remains tractable
when Σ is a tractable domain theory is the computation of
one subset-minimal contrastive explanation). Contrastingly,
when Σ is a Krom CNF formula, all the explanation problems
that are tractable when Σ is valid remain tractable. The prac-
tical significance of this result comes notably from the fact
that the domain theories Σ obtained by encoding numerical
and/or ordinal attributes are Krom CNF formulae.
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