SAMbA: Speech enhancement with Asynchronous ad-hoc Microphone Arrays - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2021

SAMbA: Speech enhancement with Asynchronous ad-hoc Microphone Arrays

Résumé

Speech enhancement in ad-hoc microphone arrays is often hindered by the asynchronization of the devices composing the microphone array. Asynchronization comes from sampling time offset and sampling rate offset which inevitably occur when the microphones are embedded in different hardware components. In this paper, we propose a deep neural network (DNN)-based speech enhancement solution that is suited for applications in ad-hoc microphone arrays because it is distributed and copes with asynchronization. We show that asynchronization has a limited impact on the spatial filtering and mostly affects the performance of the DNNs. Instead of resynchronising the signals, which requires costly processing steps, we use an attention mechanism which makes the DNNs, thus our whole pipeline, robust to asynchronization. We also show that the attention mechanism leads to the asynchronization parameters in an unsupervised manner.
Fichier principal
Vignette du fichier
interspeech2022_v2.pdf (666.42 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-04173974 , version 1 (31-07-2023)

Identifiants

Citer

Nicolas Furnon, Romain Serizel, Slim Essid, Irina Illina. SAMbA: Speech enhancement with Asynchronous ad-hoc Microphone Arrays. 2021. ⟨hal-04173974⟩
49 Consultations
52 Téléchargements

Altmetric

Partager

More