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Abstract
Speech enhancement in ad-hoc microphone arrays is often hin-
dered by the asynchronization of the devices composing the mi-
crophone array. Asynchronization comes from sampling time
offset and sampling rate offset which inevitably occur when the
microphones are embedded in different hardware components.
In this paper, we propose a deep neural network (DNN)-based
speech enhancement solution that is suited for applications in
ad-hoc microphone arrays because it is distributed and copes
with asynchronization. We show that asynchronization has a
limited impact on the spatial filtering and mostly affects the
performance of the DNNs. Instead of resynchronising the sig-
nals, which requires costly processing steps, we use an attention
mechanism which makes the DNNs, thus our whole pipeline,
robust to asynchronization. We also show that the attention
mechanism leads to the asynchronization parameters in an un-
supervised manner.
Index Terms: speech enhancement, ad-hoc microphone arrays,
asynchronization

1. Introduction
Due to their increased number of microphones, their spatial
coverage and their flexibility of use, ad-hoc microphone ar-
rays offer great potential to speech enhancement. This poten-
tial however may be limited by a series of challenges. One of
the main challenges is the need for a distributed strategy which
does not rely on a fusion center as most of classic beamform-
ers do. Distributed algorithms have been proposed for speech
enhancement in ad-hoc microphone arrays [1, 2, 3, 4] and re-
cently, a deep neural network (DNN)-based distributed solution
has also been introduced to combine the increased modelling
capacity of DNNs with the flexibility of use of ad-hoc micro-
phone arrays [5]. Besides, because the microphones embedded
in different devices do not share the same hardware and soft-
ware implementations, they are acquired at different sampling
rates (SRs), causing a sampling rate offset (SRO), and triggered
at different starting times, causing a sampling time offset (STO).
These phenomena cause asynchronization [6, 7]. Asynchro-
nization can have a negative impact on speech enhancement
[8], especially on solutions relying on an accurate estimation of
the direction-of-arrival, like the minimum variance distortion-
less response beamformer [9, 10, 11].

Solutions to asynchronization can be broadly classified into
two categories. In the first category, specific signals are sent
among the nodes. These signals can be either calibration sig-
nals [8, 12] or time stamps [13, 6, 7]. The second category
gathers so-called blind approaches, because no signals are ex-
changed but the ones captured by the microphones of the nodes.
Out of these observations, the SRO and STO can be estimated
and compensated for based on the coherence [14, 15], the corre-
lation [16] or the cross-correlation [17, 18, 15, 19] between sig-

nals of different nodes. These solutions proved to be efficient,
but they suffer from two limitations. The first one is that they
require extra computing steps, which might overload the small
devices of ad-hoc microphone arrays and add some latency to
the processing. It is here interesting to note that some works
showed that asynchronization could be tolerated in speech en-
hancement tasks without any attempt to resample the signals
[20, 21]. The second limitation is that none of these works stud-
ies the impact of asynchronization on DNNs although DNNs
take a more and more important place in speech enhancement.

In this paper, we propose to study the impact of asynchro-
nization on a speech enhancement solution for ad-hoc micro-
phone arrays based on DNNs. We show that the impact of SR
and sampling time offsets on spatial filtering is limited, but that
their impact on the DNN performance is not negligible. To cope
with this, instead of resampling the signals, we decide to use an
attention mechanism which implicitly realigns the input signals
of the DNN. This avoids an explicit search of the asynchroniza-
tion parameters.

This paper is organized as follows. In Section 2 we de-
scribe the problem, the notations used throughout the paper and
we introduce our speech enhancement system. The experimen-
tal setup is described in Section 3. In Section 4 we analyse the
impact of STO and SRO on our speech enhancement system. In
Section 5, we introduce a solution to cope with the asynchro-
nization effects on the DNN performance in our system. Lastly,
Section 6 concludes this paper.

2. Problem formulation
2.1. Notations

In the following, signals are considered in the short-time Fourier
transform (STFT) domain, where time and frequency indices
are dropped for the sake of conciseness. Bold lowercase let-
ters represent vectors. Bold uppercase letters represent ma-
trices. Regular lowercase represent scalars. We consider an
ad-hoc microphone array of K nodes of Mk microphones
each. The m-th microphone of the k-th node records a noisy
mixture yk,m = sk,m + nk,m according to an additive
noise model, where sk,m and nk,m are respectively the tar-
get speech and the noise components recorded by the micro-
phone. The signals recorded by node k are stacked in a vector
yk = [yk,1, · · · , yk,Mk ]

T .
The SRO of a node k relatively to a reference node will be

denoted by εk. The STO of a node k relatively to a reference
node will be denoted by τk.

2.2. Distributed speech enhancement in ad-hoc microphone
arrays

In a previous work, we introduced a distributed speech enhance-
ment system for ad-hoc microphone arrays, called Tango [5].



Figure 1: Graphical representation of our distributed speech
enhancement solution. Bold arrows represent multichannel sig-
nals, simple arrows represent single-channel signals.

It processes in two steps, highlighted in Figure 1. In the first
step, at each node k, a multichannel Wiener filter (MWF) wkk

is applied on the local signals yk. To do this, a single-node
DNN (SNDNN) is used to predict a time-frequency (TF) mask
mk out of the reference signal yk,1. The TF mask is used to
compute the spatial covariance matrices of the speech and noise
required by the spatial filter.

Filtering the mixture with this beamformer yields
a so-called compressed signal zk = wH

kkyk . The
compressed signals are exchanged among nodes, so
node k receives K − 1 compressed signals z−k:
z−k = [z1, ..., zk−1, zk+1, ..., zK ]T . In the second
step, a global MWF wk is applied on ỹk =

[
yT
k , z

T
−k

]T
. The

compressed signals z−k are used for the spatial filtering oper-
ation, but they are also fed to a multi-node DNN (MNDNN)
to predict the TF mask m̃k required by the spatial filter. The
spatial filters at both filtering steps are computed following the
rank-1 generalized eigenvalue decomposition (GEVD) of the
covariance matrices of the mixture and of the noise proposed
by Serizel et al. [22].

We showed that this algorithm could efficiently process
the spatial information conveyed by the compressed signals
and outperforms an oracle voice activity detector (VAD)-based
MWF [23]. We also showed that it performs comparatively well
to FaSNet [24], while allowing for a trade-off between noise re-
duction and speech distortion, and relying on a much simpler
DNN architecture [5]. For these reasons, we continue using this
system for the current work.

3. Experimental setup
3.1. Signal setup and DNN settings

All the signals are sampled at 16 kHz and last between 5 s and
10 s. The STFT is computed with a Hann window of 32 ms
with an overlap of 16 ms. The convolutional recurrent neural
network (CRNN) architecture is composed of three convolu-
tional layers followed by a recurrent layer and a fully-connected
layer. The convolutional layers have 32, 64 and 64 filters, with
kernel size 3 × 3 and stride 1 × 1. Each convolutional layer
is followed by a batch normalisation and a maximum-pooling
layer of kernel size 4× 1 so that no pooling is applied over the
time axis. The recurrent layer is a 256-unit GRU. The fully-
connected layer has 257 units with a sigmoid activation func-

tion. The input of the model are the magnitudes of the STFT
windows of 21 consecutive frames and the ground truth labels
are the corresponding frames of the ideal ratio mask. At test
time, only the middle frame of the predicted window is con-
sidered to estimate the mask, so sliding windows of the input
are fed to the DNN. The mask of the whole signal is predicted
before being used to enhance the speech in a batch mode.

3.2. Training and evaluation data

The data used to train and evaluate our systems is extracted
from the DISCO dataset.1 Room impulse responses in shoebox-
shaped rooms are simulated. The rooms have a length, width
and height randomly picked in the ranges J3; 8K m, J3; 5K m
and J2; 3K m respectively. 2 sources, one target source and one
noise source, are randomly laid in the room. 4 nodes of 4 mi-
crophones each are randomly laid in the room and record the
scene. The only constraint is that the sources and the micro-
phones should not be closer than 50 cm from each other and
from the walls.

In our experiments, the effects of SRO and STO are con-
sidered separately. Their joint impact is left for future work.
To simulate asynchronization, in each simulated configuration,
one node k among the four is chosen as the reference node.
Its SR (resp. sampling start) is left unchanged, this is why we
have εk = 0 (resp. τk = 0) for this node. The SRO is simu-
lated by resampling the signals of nodes j 6= k at various sam-
pling frequencies. The STO is simulated by padding zeros at
the beginning of the signals of nodes j 6= k. Because of the
symmetry of the SRO and STO effects, only positive SROs and
STOs will be considered. For each node j 6= k, the SRO εj is
randomly taken between 0 parts per million (ppm) and a max-
imum value SROmax. 6 different values of SROmax are consid-
ered, leading to 6 evaluation conditions. The STO is randomly
taken between 0 ms and a maximum value STOmax. 5 different
values of SROmax are considered, leading to 5 evaluation condi-
tions. Because the signals of one node share the same hardware
and software implementation, we assume that they are synchro-
nized. As a consequence, asynchronization can only affect the
second filtering step of Tango.

4. Impact of asynchronization on
DNN-based speech enhancement

In this section, the system described in section 2.2 is evaluated
on the data described in section 3.2. However, the MNDNNs
of the second filtering step are trained with synchronized data:
at train time, the compressed signals received by a given node
are perfectly synchronized with the mixtures recorded by the
receiving node.

The speech enhancement performance of our system un-
der such conditions is reported in Figure 2 in terms of SIR,
SAR [25] and STOI [26], where the bars represent the 95 %
confidence interval. It seems from Figure 2a that the SRO has
a limited impact on the performance of our system, even for
high values of SROs. This is probably explained by the fact
that the signals are rather short, so that the effect of the SRO on
the signals alignment is limited. Thus, given a rough estimation
of the SRO, resampling the signals with this estimation at large
intervals is enough to cope with SROs.

The impact of STO on our system is stronger. The SIR
seems robust to STO, probably because of the rank-1 decompo-

1https://github.com/nfurnon/disco/tree/
master/dataset_generation



(a) SRO impact

(b) STO impact

Figure 2: Impact of SRO and STO on the speech enhancement
performance of our system.

sition of the MWF. However, the other metrics, especially the
STOI, are sensitive to this kind of asynchronization, in particu-
lar when the STO exceeds 16 ms, corresponding to the duration
of one frame.

As a conclusion of this section, asynchronization does have
a negative impact on our system, especially because of STO.
In the sequel, we will therefore focus on the impact of STO on
our distributed speech enhancement system and consider that no
SRO affects the recordings. A solution to compensate for STO
without resampling the signals is proposed in the next section.

5. Solution to asynchronization of the input
signals of DNNs

We propose to use an attention mechanism to compensate for
the negative impact of STO on our speech enhancement sys-
tem. Since the consequence of asynchronization is that the sig-
nals recorded on different devices are not aligned in time, we
propose to use an alignment mechanism to implicitly shift the
asynchronized signals [27, 28]. To this effect, a temporal align-
ment attention mechanism is used, which is inspired by the one
introduced by Schulze-Forster et al. in a different application
field [29]. It is described in the next section.

5.1. Temporal alignment attention mechanism

Let Ck be a reference channel and Cj an input channel, both of
size T ×F ; let ck(m) and cj(n) be theirm-th and n-th column
respectively. A score between these two columns is computed
as:

s̃k,j(m,n) = ck(m)Wcj(n)
T ,

where ·T denotes the transpose operator and W is a learnable
matrix. In the sequel, we will always consider the first channel
of the MNDNNs as the reference channel, so we will drop the
index k. We have: s̃j(m,n) = s̃k,j(m,n). All the elements
s̃j(m,n) are gathered in the matrix S̃j of size T×T . A softmax
operation is applied on the rows of S̃j to obtain the so-called

Figure 3: Illustration of the attention-based CRNN.

similarity matrix Sj :

Sj = softmax
(
S̃j

)
. (1)

The idea of this mechanism is that Sj should contain the prob-
ability of the frames of Cj being aligned with the frames of the
reference channel C1. These probabilities are multiplied with
{c1(i)}i=1..T , the columns of C1 following:

pj(m) =

T∑
i=1

sj(m, i)c1(i) .

The output matrix Pj of columns {pj(m)}m=1..T is concate-
nated with the input matrix Cj over the frequency axis.

5.2. Integration of the temporal alignment mechanism in
Tango

The previously described attention mechanism is used at the in-
put of the CRNN. Since only the second filtering step is affected
by asynchronization, they are integrated into the MNDNN only.
The new architecture is represented in Figure 3. Since the input
data has twice more features on the frequency axis compared
to the initial MNDNN, the last maximum-pooling layer has a
kernel size 8×1 to keep the size of the GRU layer the same. On
each node, the first channel, corresponding to the local mixture,
is taken as the reference channel.

5.3. Quantitative evaluation and analysis

Three systems are compared to evaluate our solution. The first
system is the same as in section 4, where the MNDNNs are
trained on synchronized data only. The second system has
MNDNNs trained on asynchronized data. The third system has
MNDNNs with the attention mechanism, trained on asynchro-
nized data. In the asynchronous training set, the SRO is set to
0 ppm and the STO is randomly taken between 0 ms and 32 ms.
During evaluation, the STO is randomly taken between 0 ms
and a maximum value STOmax. The same values of SROmax as
in Section 4 are considered. The results obtained with these
three systems are represented in Figure 4. The first conclusion
from this experiment is that training the MNDNN in matching
conditions brings robustness to the system in terms of SAR and
STOI. However, it does not have any significant impact on the
SIR. With the attention mechanism, even if the differences are
not significant, there is a noticeable improvement in terms of
SIR over the system where the MNDNNs are trained in matched
conditions but without attention mechanism. This experiment
confirms that this attention mechanism is adapted to the mis-
alignment problem, and that it makes our speech enhancement
system robust to asynchronization. Another advantage of using
such a mechanism is introduced in the next section.



Figure 4: Speech enhancement performance of three different
systems.

Figure 5: 2D view of the evaluation configuration. The STO of
all nodes, relatively to the first node, it also mentioned.

5.4. Qualitative evaluation and analysis

In this section, in order to highlight another advantage of using
the introduced temporal alignment mechanism, we simulate a
specific evaluation room to enhance the behaviour of the atten-
tion mechanism. The room configuration is represented in Fig-
ure 5 where the STOs of all nodes, relatively to the first node,
are also mentioned. We represent in Figure 6 the values of the
similarity matrices {Sj}j=1..4 in Equation 1 computed on the
first node of this room configuration. These matrices are the
weights applied by the first node on the channels at the input
of the MNDNN. It can be seen that these weights seem corre-
lated with the value of the STO. For the weights applied on the
second channel for example, an upper diagonal can be clearly
seen, linking the i-th output frames with the (i + 5)-th input
frames. Interestingly enough, the time duration of 5 frames,
equal to 80 ms,2 corresponds approximatively to the STO value
of the second channel. Similarly for the weights applied on the
third node, the clear diagonal dynamic indicates a correlation
between the i-th output frames with the (i− 7)-th input frames,
corresponding to a negative delay of approximatively 112 ms,

2To recall, one frame lasts 16 ms.

Figure 6: Weights of the similarity matrices {Sj}j=1..4 (see
Eq. 1) applied on the four input channels the MNDNN of the
first node of the configuration represented in Figure 5.

which is almost the STO value of the third node relatively to the
first node. The same qualitative analysis can be conducted on
the similarity matrix applied on the last channel.

As a conclusion of this analysis, the attention mechanism
leads to a coarse estimation of the STO between asynchronized
nodes in an unsupervised manner. This information could be
useful to some applications which rely on a rough alignment of
the signals [15].

6. Conclusions
We addressed the issue of asynchronization in a distributed
speech enhancement system based on DNNs. We showed that
SRO had a limited impact on our experiments, but that the in-
fluence of STO was detrimental to the speech enhancement per-
formance of our system. To cope with it, we introduced a tem-
poral alignment attention mechanism that makes the DNNs of
our system robust to STO. In addition, we show that the hid-
den values of the attention mechanism can be interpreted and
that they lead to a coarse estimation of the STO at all nodes.
We believe that our work introduces a novel and interesting use
of attention mechanisms for speech enhancement in ad-hoc mi-
crophone arrays. It would be interesting to apply this kind of
attention mechanisms on signals in the time domain rather than
in the time-frequency domain, where they would probably lead
to more precise results and higher performance.
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