Parameter-Free FISTA by Adaptive Restart and Backtracking - Archive ouverte HAL
Article Dans Une Revue SIAM Journal on Optimization Année : 2024

Parameter-Free FISTA by Adaptive Restart and Backtracking

Résumé

We consider a combined restarting and adaptive backtracking strategy for the popular Fast Iterative Shrinking-Thresholding Algorithm frequently employed for accelerating the convergence speed of large-scale structured convex optimization problems. Several variants of FISTA enjoy a provable linear convergence rate for the function values $F(x_n)$ of the form $\mathcal{O}( e^{-K\sqrt{\mu/L}~n})$ under the prior knowledge of problem conditioning, i.e. of the ratio between the (\L ojasiewicz) parameter $\mu$ determining the growth of the objective function and the Lipschitz constant $L$ of its smooth component. These parameters are nonetheless hard to estimate in many practical cases. Recent works address the problem by estimating either parameter via suitable adaptive strategies. In our work both parameters can be estimated at the same time by means of an algorithmic restarting scheme where, at each restart, a non-monotone estimation of $L$ is performed. For this scheme, theoretical convergence results are proved, showing that a $\mathcal{O}( e^{-K\sqrt{\mu/L}n})$ convergence speed can still be achieved along with quantitative estimates of the conditioning. The resulting Free-FISTA algorithm is therefore parameter-free. Several numerical results are reported to confirm the practical interest of its use in many exemplar problems.
Fichier principal
Vignette du fichier
Free_FISTA.pdf (2.29 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-04172497 , version 1 (27-07-2023)

Identifiants

Citer

Jean-François Aujol, Luca Calatroni, Charles Dossal, Hippolyte Labarrière, Aude Rondepierre. Parameter-Free FISTA by Adaptive Restart and Backtracking. SIAM Journal on Optimization, 2024, 34 (4), pp.3259-3285. ⟨10.1137/23M158961X⟩. ⟨hal-04172497⟩
193 Consultations
131 Téléchargements

Altmetric

Partager

More