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Abstract

We consider a combined restarting and adaptive backtracking strategy for the popular
Fast Iterative Shrinking-Thresholding Algorithm [11] frequently employed for accelerating the
convergence speed of large-scale structured convex optimization problems. Several variants
of FISTA enjoy a provable linear convergence rate for the function values F (xn) of the form

O(e−K
√

µ/L n) under the prior knowledge of problem conditioning, i.e. of the ratio between the
( Lojasiewicz) parameter µ determining the growth of the objective function and the Lipschitz
constant L of its smooth component. These parameters are nonetheless hard to estimate in
many practical cases. Recent works address the problem by estimating either parameter via
suitable adaptive strategies. In our work both parameters can be estimated at the same time by
means of an algorithmic restarting scheme where, at each restart, a non-monotone estimation
of L is performed. For this scheme, theoretical convergence results are proved, showing that

a O(e−K
√

µ/Ln) convergence speed can still be achieved along with quantitative estimates of
the conditioning. The resulting Free-FISTA algorithm is therefore parameter-free. Several
numerical results are reported to confirm the practical interest of its use in many exemplar
problems.

1 Introduction

The Fast Iterative Soft-Thresholding Algorithm (FISTA) has been popularized in the work of Beck
and Teboulle [11] as an extension of previous works by Nesterov [33, 34] where improved O(1/n2)
convergence rate was shown upon suitable extrapolation of the algorithmic iterates. In [34], such
rate is shown to be optimal for the class of convex functions, outperforming the one of the classical
Forward-Backward algorithm [19]. In its vanilla form, FISTA is indeed an efficient strategy for
computing solutions of convex optimization problems of the form

min
x∈RN

F (x) := f(x) + h(x), (1.1)
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where F : RN → R ∪ {+∞} belongs to HL, the class of composite functions with f convex and
differentiable with L-Lipschitz gradient and h convex, proper and lower semicontinuous (l.s.c.) with
simple (i.e. easily computable) proximal operator. We also assume: X∗ := arg minx F (x) ̸= ∅.

Due to its wide use in many areas of signal/image processing, many extensions of FISTA
enjoying monotonicity [10], general extrapolation rules [4], inexact proximal point evaluations [42],
variable metrics [14] and improved o(1/n2) convergence rate [5] were proposed along with a large
number of FISTA-type algorithms addressing specific features (e.g., FASTA [24], Faster-FISTA [29]
to name a few). The question on the convergence of iterates of FISTA was solved in [17] whose
results were then further investigated in several other papers, see, e.g., [28, 29]. The algorithmic
convergence of FISTA relies on an upper bound on the algorithmic step-size, which depends on
the inverse of the Lipschitz constant L. Practically, the estimation of L may be pessimistic and/or
costly, which may result in unnecessary small step-size values. To avoid this, several backtracking
strategies have been proposed based either on monotone (Armijo-type) [11] or adaptive updates
[41].

Interestingly, when the function F satisfies additional growth assumptions such as strong con-
vexity or quadratic growth, first-order methods may provide improved convergence rates. Under
such hypotheses, Heavy-Ball type methods provide the fastest convergence rates1. Such methods
rely on a constant-in-time inertial coefficient which is chosen according to κ = µ

L where µ > 0 is
the parameter appearing in the growth condition. In fact, κ is the inverse of the condition number

and knowing its value is crucial for these methods to reach rates of the form O
(
e−K

√
κn
)

for some

real constant K > 0. We refer the reader to [6, Table 2] for further details and comparisons. Note
that in such a setting the Forward-Backward method guarantees in fact a decay of the error in
O (e−κn) which is much slower since κ≪ 1 in general. Different approaches requiring the explicit
prior knowledge of both strong convexity parameters µf and µh of the functions in (1.1) have been
studied in [15,18,22] and endowed with possible adaptive backtracking strategies.

In [7] it has been shown that unlike Heavy-Ball methods, FISTA does not significantly benefit
from growth-type assumptions. The presence of an inertial coefficient growing with the iterations
amplifies the effect of inertia, so the scheme can generate oscillations when the function F is sharp.
From a theoretical viewpoint, the decay of the error cannot be better than polynomial although
the finite-time behavior of FISTA is close to the one of Heavy-Ball methods. Restarting FISTA for
functions satisfying some growth condition is a natural way of controlling inertia, which allows to
accelerate the overall convergence. The main idea consists in reinitializing to zero the inertial coef-
ficient based on some restarting condition. Elementary computations show that by restarting every

k∗ iterations for some k∗ depending on
√
κ, the worst-case convergence improves to O

(
e−K

√
κ n
)

for some K > 0 [21, 31, 43]. Nonetheless, such restarting rule requires the knowledge of κ and
provides slower worst-case guarantees than Heavy-Ball methods. On the other hand, adaptive
restarting techniques allow the adaptation of the inertial parameters to F without requiring any
knowledge on its geometry (apart from L). In [37], the authors propose heuristic restart rules
based on rules involving the values of F or ∇F at each iterate. These schemes are efficient in
practice as they do not require any estimate of κ, but they do not enjoy any rigorous convergence
rate. Fercoq and Qu introduce in [20] a restarting scheme achieving a fast exponential decay of
the error when only a (possibly rough) estimate of µ is available. In [1–3], Alamo et al. propose
strategies ensuring linear convergence rates only using information on F or the composite gradient
mapping at each iterate. Roulet and d’Aspremont propose in [40] a restarting scheme based on a
grid-search strategy providing a fast decay as well. Note that by restarting FISTA an estimate of

1We call Heavy-Ball methods the schemes that are derived from the Heavy-Ball with friction system which
includes Polyak’s Heavy-Ball method [38], Nesterov’s accelerated gradient method for strongly convex functions [34],
iPiasco [36] or V-FISTA [9, Section 10.7.7]
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the growth parameter can be done as shown by Aujol et al. in [8], where fast linear convergence is
shown.

Adaptive methods exploiting the geometry of F without knowing its growth parameter µ are
useful in practice since estimating µ is generally difficult. In the same spirit, numerical schemes
for strongly convex functions where the growth parameter is unknown are provided by Nesterov
in [35, Section 5.3] and by Gonzaga and Karas in [25]. In the case of strongly convex objectives,
Lin and Xiao introduced in [30] an algorithm achieving a fast exponential decay of the error by
automatically estimating both L and µ at the same time.

In this paper we consider a parameter-free FISTA algorithm (called Free-FISTA) with provable
accelerated linear convergence rates of the form O(e−K

√
κn) for functions satisfying the quadratic

growth condition:

(∃µ > 0) s.t. (∀x ∈ RN )
µ

2
d(x,X∗)2 ≤ F (x)− F ∗, (1.2)

assuming that both the growth parameter µ > 0 and the Lipschitz smoothness parameter L > 0
of ∇f are unknown. By a suitable combination of existing previous work combining an adaptive
restarting strategy for the estimation of µ [8] and a non-monotone estimation of L performed via
adaptive backtracking at each restart [15,41], Free-FISTA adapts its parameters to the local geom-
etry of the functional F , thus resulting in an effective performance on several exemplar problems
in signal and image processing. The proposed strategy relies on an estimate κj of κ which is
rigorously showed to provide a restarting rule that guarantees fast convergence.

2 Preliminaries and notations

We are interested in solving the convex, non-smooth composite optimization problem (1.1) under
the following assumptions:

• The function f : RN → R+ is convex, differentiable with L-Lipschitz gradient:

(∃L ≥ 0) (∀x, y ∈ RN ) ∥∇f(x)−∇f(y)∥ ≤ L∥x− y∥.

• The function h : RN → R+ ∪ {+∞} is proper, l.s.c. and convex. Its proximal operator will
be denoted by:

proxh(z) = arg min
w∈RN

h(w) +
1

2
∥w − z∥2, z ∈ RN . (2.1)

For this class of functions a classical minimization algorithm is the Forward-Backward algorithm
(FB) whose iterations are described by:

xk+1 = proxτh(xk − τ∇f(xk)), τ ∈
(

0,
2

L

)
.

To define in a compact way the Forward-Backward iteration performed on y ∈ RN with a step-size
τ > 0, we will use the notation Tτ (y) = proxτh(y − τ∇f(y)). while for assessing optimality via a
suitable stopping criterion, we will consider a condition of the form 0 ∈ ∂F (y), or, equivalently,
gτ (y) = 0 with the composite gradient mapping being defined by:

gτ (y) :=
y − Tτ (y)

τ
=

1

τ
(y − proxτh (y − τ∇f(y))) , y ∈ RN .

This last formulation is convenient for defining an approximate solution to the composite problem,
and thus to deduce a tractable stopping criterion:
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Definition 1 (ε-solution) Let ε > 0 and τ > 0. An iterate y ∈ RN is said to be an ε-solution of
the problem (1.1) if: ∥gτ (y)∥ ⩽ ε.

Given an estimation L̂ > 0 of L and a tolerance ε > 0, the exit condition considered will then read
∥g1/L̂(y)∥ ⩽ ε. As a shorthand notation, we also define the class of functions satisfying (1.2):

Definition 2 (Functions with quadratic growth, G2µ) Let F : RN → R ∪ {+∞} be a proper
l.s.c. convex function with X∗ := arg min F ̸= ∅. Let F ∗ := inf F . The function F satisfies a
quadratic growth condition G2µ for some µ > 0 if:

(∀x ∈ RN ),
µ

2
d(x,X∗)2 ⩽ F (x)− F ∗. (2.2)

Condition (2.2) can be seen as a relaxation of strong convexity. As shown in [13, 23] in a
convex setting such condition is equivalent to a global  Lojasiewicz property with an exponent 1

2 .
In particular, the following lemma states an implication that is required in the later sections.

Lemma 1 Let F : RN → R ∪ {+∞} be a proper, l.s.c. and convex function with a non-empty
set of minimizers X∗. Let F ∗ = inf F . If F satisfies G2µ for some µ > 0, then F has a global

 Lojasiewicz property with an exponent 1
2 :

(∀x ∈ RN ),
µ

2
(F (x)− F ∗) ⩽ d(0, ∂F (x))2.

3 Free-FISTA

In this paper we propose a parameter-free restart algorithm based on the original FISTA scheme
proposed by Beck and Teboulle in [10]:

yk = xk +
tk − 1

tk+1
(xk − xk−1), xk+1 = proxτh(yk − τ∇f(yk)),

where the sequence (tk)k∈N is recursively defined by: t1 = 1 and tk+1 = (1 +
√

1 + 4t2k)/2. For the
class of convex composite functions, the convergence rate of the method is given by [10,33]:

(∀k ∈ N), F (xk)− F ∗ ⩽
2L∥x0 − x∗∥2

(k + 1)2
.

When L is available, a classical strategy introduced in [32] is to restart the algorithm at regular
intervals. Necoara and al. [31] propose an optimized restart scheme, proving that restarting Nes-

terov accelerated gradient every ⌊2e
√

L
µ ⌋ iterations ensures that F (xk) − F ∗ = O

(
e−

1
e

√
µ
Lk
)

for

the class of µ-strongly convex functions. This restart scheme and its convergence analysis can be
extended to composite functions satisfying some quadratic growth condition G2µ [31, 37].

In this paper we consider the case when both the Lipschitz constant L and the growth parameter
µ are unknown. The first main ingredient of our parameter-free FISTA algorithm is the use of an
adaptive backtracking strategy used at each restart to provide a non-monotone estimation of the
local Lipschitz constant L. More precisely, we propose a backtracking variant of FISTA (FISTA-
BT), widely inspired by the one proposed in [15] and described in Section 3.1. The second main
ingredient is an adaptative restarting approach, described in Section 3.2, taking advantage of the
local estimation of the geometry of F (via online estimations of the parameter κ = µ

L ) for avoiding
oscillations due to inertia. The main steps of Free-FISTA are the following: at each restart, given
a current iterate rj−1, a fixed number of iterations nj−1 and a current estimation L+

j−1 of the
Lipschitz constant L,
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1. Compute rj a new iterate and Lj a new estimation of L by performing nj−1 iterations of
FISTA-BT algorithm parameterized by the estimate L+

j−1.

2. Compute an estimation κj of the geometric parameter κ = µ
L .

3. Update the number nj of iterations of FISTA-BT for the next restart loop. It depends on
nj−1 and on κj .

The whole algorithm is carefully described in Section 3.3 and its convergence is proven. All technical
proofs are reported in a dedicated Appendix A.

3.1 Adaptive backtracking

In order to provide at each restart of Free-FISTA an estimation of L adapted to the current
estimate of the growth parameter, we describe in the following an instance of FISTA endowed with
non-monotone backtracking previously considered, e.g., in [41, Algorithm 2] and [15, Algorithm
2] with µ = 0. Differently from standard approaches following an Armijo-type (i.e. monotone)
backtracking rule [11], the use of a non-monotone strategy further allows for a local decreasing of
the estimated valued L̂ of L (equivalently, an increasing of τ w.r.t. to the optimal 1/L) in the
neighborhoods of “flat” points of the function f (i.e. where L is small), thus improving practical
performances.

Following [15], the proposed adaptive backtracking strategy is derived from the classical descent
condition holding for FISTA at x+ := Tτ (x) with x ∈ RN , which reads: for any y ∈ RN ,

F (x+) +
∥y − x+∥2

2τ
+

(
∥x+ − x∥2

2τ
−Df (x+, x)

)
≤ F (y) +

∥y − x+∥2

2τ
, (3.1)

which is defined in terms of the Bregman divergence Df : RN × RN → R+ associated to f and
defined by: Df (x, y) = f(x) − f(y) − ⟨∇f(y), x − y⟩. Choosing y = x in (3.1), the descent of F
between two iterates x and x+ = Tτ (x) is at least of:

F (x+)− F (x) ⩽ −∥x
+ − x∥2

2τ
, provided that Df (x+, x) ≤ ∥x

+ − x∥2

2τ
. (3.2)

This last condition is true whenever 0 < τ ≤ 1/L. When only a local estimate Lk of L is available,
the idea is to enforce (3.2) by applying a backtracking strategy t by τk = 1

Lk
: testing a tentative

step-size τk = τk−1/δ with δ ∈ (0, 1) greater than the one τk−1 considered at the previous iteration,
decrease the step τk by a factor ρ ∈ (0, 1) as long as condition (3.2) is not satisfied. This condition

can be rewritten as
2Df (x

+,x)
∥x+−x∥2 > ρ

τk
= ρLk, where τk/ρ denotes the last step before acceptance.

Note that by the condition above, for all k ≥ 0 there holds:

τk ≥
ρ

L
⇔ Lk ≤

L

ρ
, (3.3)

which can be used to get the desired convergence result.
The algorithm FISTA adaBT is reported in Algorithm 1. The parameter Lmin > 0 provides a

lower bound of the estimated Lipschitz constants at any k, i.e Lk = 1
τk

⩾ Lmin. This property will
be needed to prove the theoretical asymptotic convergence rate of the global restarting scheme.
Such parameter has to satisfy the condition Lmin < L. However, since this value should be taken
as small as possible this condition is not restrictive and it practically does not affect the choice
(3.4). We observe that whenever δ < 1, the increasing of the algorithmic step-size is attempted
at each outer iteration of Algorithm 1, while, when δ = 1, the same value τk estimated at the
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Algorithm 1 FISTA + adaptive backtracking, FISTA adaBT(x0, n, L0, Lmin; ρ, δ)

Initializations: τ0 = 1/L0, ρ ∈ (0, 1), δ ∈ (0, 1], x−1 = x0 ∈ X , t0 = 1, Lmin sufficiently small.

for k = 0, 1, . . . , n do

τ0k+1 = min

{
τk
δ
,

1

Lmin

}
; (3.4)

i = 0;
repeat

τk+1 = ρi τ0k+1;

tk+1 =
1 +

√
1 + 4 τk

τk+1
t2k

2
; (3.5)

βk+1 =
tk − 1

tk+1
;

yk+1 = xk + βk+1(xk − xk−1);

xk+1 = proxτk+1h
(yk+1 − τk+1∇f(yk+1));

i = i+ 1;

until Df (xk+1, yk+1) ≤ ∥xk+1 − yk+1∥2/2τk+1

end for
Return (xk+1, Lk+1 = 1

τk+1
)

previous iterations is used. In both cases, a standard Armijo-type backtracking is then run to
adjust possible over-estimations.

Convergence of Algorithm 1 is stated in the following Theorem, which is a special case of [15,
Theorem 4.6] suited for the particular case µ = 0 (no strong-convexity).

Theorem 1 (Convergence of Algorithm 1 [15]) Let n ∈ N. The sequence (xk)k=0,...,n gener-
ated by the Algorithm 1 satisfies for all k = 0, . . . , n:

F (xk+1)− F ∗ ≤ 2L̄k+1

(k + 1)2
∥x0 − x∗∥2, (3.6)

where, by setting Li := 1/τi the quantity L̄k+1 is defined by:

L̄k+1 :=

 1
1

k+1

∑k+1
i=1

1√
Li

2

. (3.7)

The (harmonic) average appearing in (3.6) depends only on the estimates of L performed along
the iterations of Algorithm 1. In particular, it does not depend on the unknown value of the
Lipschitz constant L. However, recalling (3.3), we have for all k = 1, . . . , n, ρL̄k+1 ⩽ L, hence the
following bound:

2L̄k+1

(k + 1)2
≤ 2L

ρ(k + 1)2
(3.8)

which, plugged in (3.6), entails the well-known convergence rate for FISTA endowed with Armijo-
type backtracking showed, e.g., in [11].
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Remark 1 Regarding the choice of the extrapolation rule (3.5), we remark that in [8] a different
update based on [17] was considered to guarantee the convergence of the iterates of the resulting
FISTA scheme. Since the convergence result in Theorem 1 cannot be adapted to this different
choice in a straightforward manner, we consider in this work a Nesterov-type update, inspired by
previous work [15, 41].

We can now state the main proposition (whose proof is detailed in Appendix A.1) which will
be used in the following to formulate the proposed adaptive restarting strategy described in Sec-
tion 3.2:

Proposition 1 Let F be a function satisfying HL and G2µ for some L > 0 and µ > 0. If Lmin ∈
[0, L), then for any fixed n ∈ N∗, the sequence (xk)k=0...n provided by Algorithm 1 satisfies for all
k ∈ N:

(i) F (xk+1)− F ∗ ⩽
4L

ρµ(k + 1)2
(F (x0)− F ∗) , (3.9)

(ii) F (xk+1) ⩽ F (x0), (3.10)

3.2 Adaptive restarting

Having provided an estimate of L after one algorithmic restart j ≥ 1, intuitively, let us now
describe the strategy of Free-FISTA. The structure of the algorithm relies on two main ingredients:
a tractable stopping criterion suitable to cope with the hypothesis that the Lipschitz constant L
is not available, and a strategy to approximate the unknown value of the conditioning parameter
κ = µ

L by a sequence (κj)j whose values will be needed to define the number nj of inner FISTA-BT
iterations to be performed at each restart.

3.2.1 A tractable stopping criterion

Let ε > 0 be the expected accuracy and (rj , Lj) be the j − th output of Algorithm 1 for nj−1

iterations at the j− th restart. When the Lipschitz constant L is available, the notion of ε-solution
can be seen as a good stopping criterion for an algorithm solving the composite optimization
problem for three reasons: first it is numerically quantifiable. Secondly controlling the norm
of the composite gradient mapping is roughly equivalent to having a control on the values of the
objective function. Lastly, it will enable to analyze and compare algorithms in terms of the number
of iterations needed to reach the accuracy ε.

Algorithm 2 Forward-Backward step with Armijo-backtracking, FB BT(r, L0; ρ)

Require: r ∈ RN , L0 > 0, ρ ∈ (0, 1).

i = 0
repeat

τ = ρi

L0

r+ = Tτ (r)
i = i+ 1

until Df (r+, r) ⩽ ∥r+ − r∥2/2τ
Return r+, L+ = L0

ρi−1

When only estimations Lj of L are available at each restart, there is no guarantee that the
condition ∥g1/Lj

(rj)∥ ⩽ ε will enable to control the values of the objective functions. To get a
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tractable stopping criterion, we propose to add a Forward-Backward step with Armijo backtracking
before the next restart. Such an algorithm, denoted by FB BT, is detailed in Algorithm 2. This
extra step ensures that the following condition holds for all j ⩾ 1:

Df (r+j , rj) ⩽
L+
j

2
∥r+j − rj∥

2, (3.11)

where (r+j = T1/L+
j

(rj), L
+
j ) denote the outputs of Algorithm 2, and g1/L+

j
(rj) = L+

j (rj−r+j ) with,

by construction: L+
j ⩾ Lj . Note that the computational cost of the composite gradient mapping

g1/L+
j

(rj) is therefore very low. The stopping criterion of Free-FISTA thus reads:

∥g1/L+
j

(rj)∥ ⩽ ε. (3.12)

The condition (3.12) is a “good” stopping criterion in the sense that it enables to control the values
of the objective function along the iterations. Our analysis relies on the following Lemma whose
proof is detailed in Appendix A.3:

Lemma 2 Let F be a function satisfying HL and G2µ for some L > 0 and µ > 0. Then for all

x ∈ RN and τ > 0 we have:

F (Tτ (x))− F ∗ ⩽
2(1 + Lτ)2

µ
∥gτ (x)∥2.

Applying Lemma 2 to the iterate rj , we get:

F (r+j )− F ∗ ⩽
2(1 + L/L+

j )2ε2

µ
,

where, importantly, does not require the computation of F ∗. In addition, remembering that the
parameter Lmin ∈ (0, L) from Algorithm 1 provides a lower bound on the estimates Lj and that
L+
j ⩾ Lj , we necessarily have: L+

j ⩾ Lmin and thus:

F (r+j )− F ∗ ⩽
2(1 + L/Lmin)2ε2

µ
.

Remark 2 An alternative choice for Lj following from (3.6) is Lj = L̄j with

L̄j =

(
1

1
nj−1

∑nj−1

k=1
1√
Lk

)2

being the average (3.7) estimated at the j-the restart. Nonetheless, we prefer Lj = 1
τnj−1

⩽ L
ρ ,

as the last estimation of L at the j-th restart approximates the local smoothness of the functional.
Moreover, its value is in general smaller than the value L̄j, which, when used for the next call of
Algorithm 1 is expected to require fewer adjustments, thus improving the overall efficiency.

3.2.2 Estimating the geometric paramater κ

Once the stopping criterion is well defined, the next issue is to determine the number of FISTA-BT
iterations to perform at each restart. The global principle of our restart scheme is as follows: at
the j-th restart,
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• Compute (rj , Lj) = FISTA adaBT(r+j−1, nj−1, L
+
j−1, Lmin; ρ, δ) where rj is the iterate com-

puted after nj−1 iterations of FISTA adaBT and Lj the associated estimate of the Lipschitz
constant L.

• Perform an extra step of backtracking Forward-Backward:

(r+j , L
+
j ) = FB BT(rj , Lj ; ρ).

• Update the number of iterations nj for the next restart.

Inspired by [8], the update of the number nj of iterations relies on the estimation of the inverse
κ = µ

L of the conditioning at each restart loop by comparing the values F (rj)−F ∗ and F (rj−1)−F ∗

at each restart j. More precisely, applying the first claim of Proposition 1 at the j-th restart, we
have: for all j ∈ N∗

F (rj) − F ∗ ⩽
4L

ρµ(nj−1 + 1)2
(
F (r+j−1) − F ∗) ⩽

4L

ρµ(nj−1 + 1)2
(F (rj−1) − F ∗) ,

observing that by the property (3.11), we have: F (r+j ) ⩽ F (rj) as explained in Section 3.1. We
thus deduce:

(∀j ∈ N∗), κ ⩽
4

ρ(nj−1 + 1)2
F (rj−1)− F ∗

F (rj)− F ∗ . (3.13)

Since F ∗ is often not known in practice and noticing that the application u 7→ F (rj−1)−u
F (rj)−u is non

decreasing on [F ∗, F (rj)] (since F (rj) ⩽ F (rj−1)), we deduce:

(∀j ∈ N∗), κ ⩽
4

ρ(nj−1 + 1)2
F (rj−1)− F (rj+1)

F (rj)− F (rj+1)
.

Using such inequality, it is thus possible to get a sequence (κj)j estimating κ at each restart j ⩾ 2

by comparing F (rj−1)− F (rj) and F (rj−2)− F (rj) by defining:

(∀j ⩾ 2), κj := min
i∈N∗
i<j

4

ρ(ni−1 + 1)2
F (ri−1)− F (rj)

F (ri)− F (rj)
. (3.14)

By construction the sequence (κj)j∈N is non-increasing along the iterations :

Lemma 3 Let F be a function satisfying HL and G2µ for some L > 0 and µ > 0. Then the sequence
(κj)j⩾2 defined by (3.14) satisfies

(∀j ⩾ 2), κj ⩾ κj+1 > κ. (3.15)

3.3 Free-FISTA: structure and convergence results

Free-FISTA is detailed in Algorithm 3. Note that the ‘free’ dependence on parameters stressed here
relates to the two smoothness and growth parameters, L and µ, respectively. The hyperaparameters
ρ ∈ (0, 1), δ ∈ (0, 1], Lmin > 0 required by Free-FISTA to perform adaptive backtracking and to
assess the expected precision (0 < ε≪ 1) do not affect its convergence properties.

To summarize, Free-FISTA Algorithm 3 relies on a few sequences:

• the sequence (rj)j∈N corresponds to the (outer/global) iterates. For all j > 0, rj is the output
of the j-th execution of Algorithm 1 after one extra application of Algorithm 2.

9



Algorithm 3 Free-FISTA: parameter-free FISTA with adaptive backtracking and restart

require: r0 ∈ RN , j = 1, L0 > 0, Lmin > 0, ρ ∈ (0, 1), δ ∈ (0, 1], 0 < ε≪ 1
n0 = ⌊2C⌋
(r1, L1) =FISTA adaBT(r0, n0, L0, Lmin; ρ, δ)
n1 = ⌊2C⌋
(r+1 , L

+
1 ) = FB BT(r1, L1; ρ)

repeat

j = j + 1
(rj , Lj) =FISTA adaBT(r+j−1, nj−1, L

+
j−1, Lmin; ρ, δ)

κj = mini<j
4

ρ(ni−1+1)2
F (ri−1)−F (rj)
F (ri)−F (rj)

if nj−1 ≤ C
√

1
κj

then

nj = 2nj−1

else
nj = nj−1

end if
(r+j , L

+
j ) = FB BT(rj , Lj ; ρ)

until ∥g1/L+
j

(rj)∥ ⩽ ε

return r = r+j

• the sequence (nj)j∈N refers to the number of estimated iterations of Algorithm 1 to be
performed at the j-th restart. For all j ⩾ 0 we thus have:

(rj+1, Lj) = FISTA adaBT(r+j , nj ;L
+
j , Lmin; ρ, δ),

where (r+j , L
+
j ) is obtained after an extra Forward-Backward step with backtracking applied

to (rj , Lj).

• the sequence (Lj)j estimating L at each restart.

• the sequence (κj)j⩾2 estimating at each restart the true problem conditioning κ = µ/L by
comparing the cost function F at three different iteration points.

Let us finally explain our strategy to update the number nj of iterations required by Algorithm 1
at the j-th restart. Once an estimate κj is computed, the strategy performed by Free-FISTA
consists in updating nj using a doubling condition that depends on a parameter C > 0 to be
defined:

nj−1 ≤ C

√
1

κj
(3.16)

Thus, Free-FISTA checks whether such condition is fulfilled: if it holds true, then nj−1 is considered
too small and doubled so that nj = 2nj−1. Otherwise, the number of iterations is kept unchanged.
By construction, the sequence (nj)j∈N is non-decreasing, and satisfies the following lemma.

Lemma 4 Let F be a function satisfying HL and G2µ for some L > 0 and µ > 0. Then the sequence
(nj)j∈N provided by Algorithm 3 satisfies

∀j ∈ N, nj ⩽ 2C

√
1

κ
.

10



Note that for all j ⩾ 2, the number of iterations nj is defined according to nj−1, κj and the
predefined parameter C > 0. The proof of Lemma 4 is straightforward by induction: first observe

that n0 = ⌊2C⌋ ⩽ 2C ⩽ 2C
√

1
κ . Assume that nj−1 ⩽ 2C

√
1/κ. By construction, either (3.16)

is satisfied and nj = 2nj−1 ⩽ 2C
√

1
κj

⩽ 2C
√

1
κ , by monotonicity of (κj)j∈N (see Lemma 3), or

(3.16) is not satisfied, and nj = nj−1 ⩽ 2C
√

1/κ by assumption.
We can now state the main convergence results of Free-FISTA. Their proof can be found in

Appendix A.5 and Appendix A.6, respectively.

Theorem 2 Let F be a function satisfying HL and G2µ for some L > 0 and µ > 0. Let (rj)j∈N and
(nj)j∈N be the sequences provided by Algorithm 3 with parameters C > 4/

√
ρ and ε > 0. Then, the

number of iterations 1 +
∑j

i=0 ni required to guarantee ∥g1/L+
j

(rj)∥ ⩽ ε is bounded and satisfies

j∑
i=0

ni ⩽
4C

log
(

C2ρ
4

− 1
)√

L

µ

(
2 log

(
C2ρ

4
− 1

)
+ log

(
1 +

16

C2ρ− 16

2L(F (r0)− F ∗)

ρε2

))
.

Corollary 1 Let F be as above. If C > 4/
√
ρ, ε > 0 and Lmin ∈ (0, L), then the sequences (rj)j∈N

and (nj)j∈N provided by Algorithm 3 satisfy

F (r+j )− F ∗ = O

e
−

log

(
C2ρ
4

−1

)
4C

√
κ

j∑
i=0

ni

 .

Moreover, the trajectory of total number of FISTA iterates has a finite length and the method
converges to a minimizer x∗ ∈ X∗.

Specifically, if C maximizes
log

(
C2ρ
4 −1

)
4C , namely C ≈ 6.38/

√
ρ, then there exists K > 1

12 such that
the sequences (rj)j∈N and (nj)j∈N satisfy

F (r+j )− F ∗ = O

e
−√

ρK
√
κ

j∑
i=0

ni

 .

Corollary 1 states that the Free-FISTA algorithm 3 provides asymptotically a fast exponential
decay. This convergence rate is consistent with the one expected for functions F satisfying HL

and G2µ where both the parameters L and µ are unknown a priori. Note that in this setting
Forward-Backward algorithm provides a low exponential decay The variation of Heavy-Ball method
introduced in [6], the FISTA restart scheme introduced in [20] and fixed restart of FISTA require
to estimate the growth parameter to ensure a fast exponential decay. FISTA algorithm has the
same fast decay as Free-FISTA in finite time (see [7]), but with a smaller constant.

4 Numerical experiments

In this section, we report several applications of the Free-FISTA Algorithm 3 showing how an
automatic estimation of the smoothness parameter L and the growth parameter µ can be beneficial.
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The combined approach is compared with vanilla FISTA [11], FISTA with restart [8] and FISTA
with adaptive backtracking (Algorithm 1) [15]. The first two examples show the advantages of
Free-FISTA in comparison with other schemes, while the last example highlights some existing
limitations of restarting methods. The codes that generate the figures are available in the following
GitHub repository: https://github.com/HippolyteLBRRR/Benchmarking_Free_FISTA.git

4.1 Logistic regression with ℓ2-ℓ1-regularization

As a first example, we focus on a classification problem defined in terms of a given dictionary
A ∈ Rm×n and labels b ∈ {−1, 1}m. We consider the minimization problem:

min
x∈Rn

F (x) :=
λ1

2∥AT b∥∞

m∑
j=1

log
(

1 + e−bja
T
j x
)

+
λ2
2
∥x∥2︸ ︷︷ ︸

:=f(x)

+ ∥x∥1︸︷︷︸
:=h(x)

, (4.1)

where aj = (Ai,j)j ∈ Rm is the j-th row of A, λ1 > 0 and λ2 > 0. By definition, the value x∗

minimizing F is expected to satisfy P(bi = 1|ai) = 1

1+e−aT
i

x∗ for any i ∈ J1,mK. Note that the ℓ2

term aims to smooth the objective function while the ℓ1 regularization sparsfies the solution which
helps preventing from overfitting. An upper estimation of L can easily be computed:

L̂ =
λ1∥AT b∥2

8∥AT b∥∞
+ λ2, (4.2)

which may be large whenever ∥AT b∥ ≫ 1. We note that the function F satisfies the assumption G2µ
for some growth parameter µ > 0 whose estimation is not straightforward. We solve this problem
for a randomly generated dataset with n = 30000 and m = 100. We compare the following
methods:

• FISTA [11] with a fixed stepsize τ = 1
L̂

;

• FISTA restart [8] with a fixed stepsize τ = 1
L̂

,

• FISTA adaBT (Algorithm 1) with ρ = 0.8 and δ = 0.95,

• Free-FISTA (Algorithm 3) with ρ = 0.8 and δ = 0.95.

We set λ1 = 10, λ2 = 3 and x0 ← U ([−1, 1]). We get that L̂ ⩾ 9 · 105 is an upper bound of L.
An estimate of the solution of (4.1) is pre-computed by running Free-FISTA for a large number of

iterations. This allows us to compute for all methods log
(
F (rj)− F̂

)
with F̂ ≈ F ∗.

In Figure 1 the convergence rates of each algorithm are compared w.r.t. the total number of
iterations without taking into account the inner iterations required by the backtracking loops. We
observe that the use of the adaptive backtracking accelerates both FISTA and FISTA restart. The
improved efficiency provided by the combination of restarting and backtracking strategies is high-
lighted since Free-FISTA is the fastest method. Note, however, that an exhaustive information on
the efficiency of each method can not directly be deduced by this plot as the computational bur-
dens required by the use of the inner backtracking routines are not reported. We thus complement
our considerations with Figure 2 which allows us to compare the methods w.r.t. the computation
time. One can observe that the additional computations required by the backtracking strategy do
not prevent the corresponding schemes from being faster.
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Figure 1: Convergence rates w.r.t. the number of total iterations (backtracking iterations are not
taken in account) for problem (4.1).

Figure 2: Convergence rates w.r.t. CPU times for problem (4.1).

Figure 3 shows the convergence rate of Free-FISTA w.r.t. the computation time for several
parameter choices. We take ρ = 0.8, δ ∈ {0.95, 0.995} and L0 ∈ {1, L̂} where L̂ is the upper
estimation of the Lipschitz constant of ∇f given in (4.2) and 1 is an arbitrary value. This graph
shows that Free-FISTA is not highly sensitive to parameter variations in this example. Note that
the choice δ = 0.95 seems to perform better than δ = 0.995. Indeed, as the Lipschitz constant of
∇f in this problem is poorly estimated, taking a small δ allows the scheme to explore different
choices more efficiently. The value of L0 has a small influence on the overall efficiency of the
scheme.

Figure 4 gives an overview of the estimations of the Lipschitz constant w.r.t. to FISTA iterations
for each parameter choice. We can see that the theoretical upper bound L̂ ⩾ 9 · 105 is significantly
large compared to the estimations computed by Free-FISTA for any set of parameters (the last
estimates are approximately equal to 3000). This explains the substantial performance gap between
schemes involving a constant stepsize and backtracking methods (see Figure 1) as a lower Lipschitz
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Figure 3: Convergence rates of Free-FISTA for several choices of parameters ρ, δ and L0 w.r.t.
CPU time for problem (4.1).

constant allows larger stepsizes. In addition, Figure 4 shows that a lower value of δ encourages
larger variations of estimates of L per FISTA iteration, allowing for greater flexibilty.

Figure 4: Estimation of the Lipschitz constant of ∇f according to the number of FISTA iterations
for problem (4.1).

In Figure 5, we compare the differences observed between choosing a lower or an upper esti-
mation L0 of the Lipschitz constant L. Setting L0 as a lower estimate forces the backtracking
routine to compute a significant number of backtracking iterations before finding an estimate L̃
such that the stepsize 1

L̃
is admissible. Once this is done, this estimation is generally tight and

the number of backtracking iterations decreases critically. By taking L0 as an upper estimate, we
observe that the total number of backtracking iterations is smaller, but the estimation of L stays
poor for several Free-FISTA iterations (see Figure 4). Both approaches are equally efficient for
this example because the high cost of the backtracking routines in the first case is compensated
by the small stepsizes in the first FISTA iterations of the second case.
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Figure 5: Number of backtracking calls per total FISTA iterations for problem (4.1).

We now follow the experiments provided in [20] and consider the dataset dorothea (n = 100000

and m = 800) with λ1 = 10 and λ2 = λ1∥AT b∥2

80∥AT b∥∞n
= 0.9097. Table 1 compares the efficiency of

the backtracking and restarting strategies for this example evaluated in terms of the CPU time
required to satisfy the stopping condition with ε = 10−5. One can observe that methods involving
adaptive backtracking are significantly faster. Algorithm 3 is the most efficient algorithms, being,
in addition, fully automatic. Some sensitivity to parameters ρ and δ is observed, which, however,
does not seem to significantly impact the overall computational gains.

Algorithm ρ δ Time (s)

FISTA - - 28594

FISTA restart - - 12825

FISTA adaBT 0.85 0.95 3292
0.8 0.95 2348

Free-FISTA 0.85 0.95 1173
0.8 0.95 989

Table 1: CPU times (mean over 5 runs) of different algorithms solving (4.1) for the dataset dorothea
(n = 106 and m = 800), λ1 = 10, λ2 = 0.9097 and ε = 10−5.

4.2 Image inpainting

We now consider the problem of retrieving an image x̂ ∈ RN from incomplete measurements
y = Mx̂ where M ∈ RN×N is a masking operator. We consider the regularized approach:

arg min
x

F (x) := f(x) + h(x) =
1

2
∥Mx− y∥2 + λ∥Tx∥1, (4.3)

where T ∈ RN×N is an orthogonal transformation ensuring that T x̂ is sparse. For this example we
consider x̂ to be piece-wise smooth, so that T can be chosen as an orthogonal wavelet transform.
The function F satisfies the growth condition G2µ for some µ > 0 which is not easily computable. In
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Figure 6: Data for problem (4.3): the damaged
image y (left) and an inpainted result (right).

Figure 7: Data for problem (4.5): ground-truth
SMLM ISBI13 frame (left), and low-resolution
data (right).

this case, it is trivial to show that an estimate of the Lipschitz constant of ∇f is L = 1. Therefore,
applying a backtracking strategy may seem superfluous as it involves additional computations.
Nonetheless, we apply the methods previously introduced to test their performance with/without
restarting. These tests are done on a picture with a resolution of 225× 225 pixels, considering the
wavelet Daubechies 4 and λ = 2. Figure 8 shows that the backtracking procedure slightly improves

Figure 8: Convergence rates in function values VS. total number of FISTA iterations (backtracking
iterations are not taken in account) for problem (4.3).

the convergence of plain FISTA and FISTA restart w.r.t. the total number of FISTA iterations.
Observe that the benefits of backtracking are not as significant as in the previous example since
the estimate of the Lipschitz constant L = 1 is here accurate. In Figure 9 we observe that the
additional backtracking loops do not affect the efficiency of the schemes in terms of CPU time. In
this example, evaluating f is indeed not expensive which explains their low computational costs.
In Figure 10 we compare the performance of Free-FISTA for different values of δ and in comparison
with ADLR. We observe that δ should be taken rather large in this case. Contrary to the previous
example, if δ is small (δ = 0.95), Free-FISTA performs many unnecessary backtracking iterations
to compensate for the over-estimation of the step-sizes, which results in longer CPU times. This
can be observed in Figure 11 and Figure 12. By taking δ = 0.99, a more gentle estimation with
less variability of L is observed over time, with fewer backtracking iterations per FISTA iteration.
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Figure 9: Convergence rates in function values w.r.t the CPU time for problem (4.3).

Figure 10: Convergence rates in function valuesw.r.t the CPU time for problem (4.3).

4.3 Poisson image super-resolution with ℓ1 regularization

As a last example, we consider the image super-resolution problem for images corrupted by Poisson
noise, a problem encountered, for instance, in fluorescence microscopy applications [27,39]. Given
a blurred and noisy image z ∈ Rm

+ , the problem consists in retrieving a sparse and non-negative
image x ∈ Rn

+ from z = P(MHx + b) ∈ Rm with m = q2n, q > 1, where M ∈ Rm×n is a q-
down-sampling operator of factor, H ∈ Rn×n is a convolution operator computed for a given point
spread function (PSF), b = b̄em ∈ Rm

>0 is a positive constant background term2 and P(w) denotes
a realization of a Poisson-distributed m-dimensional random vector with parameter w ∈ Rm

+ . To
model the presence of Poisson noise in the data, we consider the generalized Kullback-Leibler
divergence functional [12] defined by:

f(x) = KL(MHx+ b; z) :=

m∑
i=1

(
zi log

zi
(MHx)i + b̄

+ (MHx)i + b̄− zi
)
, (4.4)

2We use the notation ed to denote the vector of all ones in Rd.
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Figure 11: Estimation of the Lipschitz constant of ∇f according to the number of FISTA iterations
for problem (4.3).

Figure 12: Number of backtracking calls per total FISTA iterations for problem (4.3).

and where the convention 0 log 0 = 0 is adopted. We enforce sparsity by means of a ℓ1 penalty
and impose non-negativity of the solution using the indicator function ι≥0(·) of the non-negative
orthant, so as to consider:

min
x∈Rn

F (x) := KL(MHx+ b, z) + λ∥x∥1 + i≥0(x). (4.5)

We can compute ∇f(x) = (MH)T em − (MH)T
(

z
MHx+b

)
. Following [26,39], we have that ∇f is

Lipschitz continuous on {x : x ≥ 0} and its Lipschitz constant L can be overestimated by:

L =
max zi
b̄2

max((MH)T em) max(MHen). (4.6)

The theoretic estimation of L in (4.6) may be significantly large in particular, when b̄ ≪ 1.
Furthermore, as showed in [16], the Kullback-Leibler functional (4.4) is (locally) 2-conditioned,
hence F satisfies G2µ for some unknown µ > 0. The use of the Free-FISTA Algorithm 3 thus
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seems appropriate. Results are showed in Figure 13. For this problem, a clear advantage in the
use of Free-FISTA in comparison with FISTA with adaptive backtracking cannot be observed.
We observe that FISTA with adaptive backtracking is indeed faster in terms of iterations and
consequently in terms of complexity (Free-FISTA requires additional computations being based
on restarts). We argue that the inefficiency of the restarting strategy can be explained here by
the geometry of F in (4.5). The lack of any oscillatory behavior of FISTA endowed with adaptive
backtracking suggests indeed that the function F is flat, or, in other words, that µ is significantly
small. Since restarting methods aim to handle the excess of inertia and oscillations, it appears not
pertinent to apply such a method in this context.

Figure 13: Convergence rates in function values VS. CPU time for problem (4.5).

A Proofs of the main results

A.1 Proof of Proposition 1

(i) As F satisfies HL for some L > 0, Theorem 1 combined with (3.8) states that the sequence
(xk)k=1,...,n provided by Algorithm 1 satisfies for all k = 1, . . . , n

F (xk+1)− F ∗ ≤ 2L

ρ(k + 1)2
∥x0 − x∗∥2,

for all x∗ ∈ X∗, whence

F (xk+1)− F ∗ ⩽
2L

ρ(k + 1)2
d(x0, X

∗)2. (A.1)

Since F further satisfies G2µ (2.2), we deduce (3.9) by combining (2.2) and (A.1).
(ii) At each iteration k ≥ 0 of Algorithm 1, the following condition is satisfied:

Df (xk+1, yk+1) ⩽
∥xk+1 − yk+1∥2

2τk+1
.
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As a consequence, the descent condition (3.1) becomes:

F (xk+1) +
∥xk+1 − xk∥2

2τk+1
⩽ F (xk) +

∥yk+1 − xk∥2

2τk+1

⩽ F (xk) +
(tk − 1)2

t2k+1

∥xk − xk−1∥2

2τk+1
⩽ F (xk) +

(tk − 1)2

t2k+1

τk
τk+1

∥xk − xk−1∥2

2τk
. (A.2)

By definition, there holds τk+1tk+1(tk+1 − 1) = τkt
2
k. Hence:

(tk − 1)2

t2k+1

τk
τk+1

=
(tk − 1)2tk+1(tk+1 − 1)

t2kt
2
k+1

⩽ 1,

hence, from (A.2) we get:

F (xk+1) +
∥xk+1 − xk∥2

2τk+1
⩽ F (xk) +

∥xk − xk−1∥2

2τk

for all k ≥ 0, whence we deduce (3.10).

A.2 Proof of Lemma 3

Let (κj)j⩾2 be the sequence defined by

∀j ⩾ 2, κj := min
i∈N∗
i<j

4

ρ(ni−1 + 1)2
F (ri−1)− F (rj)

F (ri)− F (rj)
.

We prove in this section that (κj)j⩾2 is non increasing and bounded from below by the true inverse
of the conditioning of the considered optimization problem.

First of all, according to Proposition 1, remember that we have (3.13) i.e.

∀i ∈ N∗, κ ⩽
4

ρ(ni−1 + 1)2
F (ri−1)− F ∗

F (ri)− F ∗ .

Since the application u 7→ F (ri−1)−u
F (ri)−u is non decreasing on [F ∗, F (ri)] (since F (ri) ⩽ F (ri−1)), we

deduce that for all i ∈ N∗,

∀i < j, κ ⩽
4

ρ(ni−1 + 1)2
F (ri−1)− F (rj)

F (ri)− F (rj)
.

Hence, for a given j ∈ N∗ and taking the infimum over the indexes i ∈ N∗ such that i < j, we get:
κ ⩽ κj . To complete the proof, we have that for all j ≥ 2:

κj+1 = min
i∈N∗
i<j+1

4

ρ(ni−1 + 1)2
F (ri−1)− F (rj+1)

F (ri)− F (rj+1)
⩽ min

i∈N∗
i<j

4

ρ(ni−1 + 1)2
F (ri−1)− F (rj+1)

F (ri)− F (rj+1)

by simply observing that in (A.2) the minimum is taken over a larger set. By now applying (3.10)
at the j+ 1 restart iteration we have that F (rj+1) ⩽ F (rj). As a consequence the function defined

by y 7→ F (ri−1)−y
F (ri)−y is an increasing homographic function which implies that for all j ≥ 2:

κj+1 ⩽ min
i∈N∗
i<j

4

ρ(ni−1 + 1)2
F (ri−1)− F (rj+1)

F (ri)− F (rj+1)
⩽ min

i∈N∗
i<j

4

ρ(ni−1 + 1)2
F (ri−1)− F (rj)

F (ri)− F (rj)
= κj .
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A.3 Proof of Lemma 2

Suppose that F satisfies HL and G2µ for some L > 0 and µ > 0. Then, by Lemma 1

∀x ∈ RN , F (x)− F ∗ ⩽
2

µ
d(0, ∂F (x))2.

Let now x ∈ RN and τ > 0. By definition (2.1), x+ = Tτx is the unique minimizer of the
function defined by z 7→ h(z) + 1

2τ ∥z − x+ τ∇f(x)∥2. Thus, Tτx satisfies

0 ∈ ∂h(Tτx) +

{
1

τ
(Tτx− x) +∇f(x)

}
,

which entails: gτ (x)−∇f(x) +∇f(Tτx) ∈ ∂F (Tτx). By the L-Lipschitz continuity of ∇f we can
now deduce

∥gτ (x)−∇f(x) +∇f(Tτx)∥ ⩽ ∥gτ (x)∥+ ∥∇f(Tτx)−∇f(x)∥
⩽ ∥gτ (x)∥+ L∥Tτx− x∥ ⩽ (1 + Lτ)∥gτ (x)∥.

By combining all these inequalities we conclude that

F (Tτx)− F ∗ ⩽
2

µ
d(0, ∂F (Tτx))2 ⩽

2

µ
∥gτ (x)−∇f(x) +∇f(Tτx)∥2 ⩽

2(1 + Lτ)2

µ
∥gτ (x)∥2.

A.4 Sketch of the proof of Theorem 2

Since the proof is rather technical, we split it into the following two parts:

1. We show that there is at least one doubling step every T iterations for a suitable T . In
particular:

(a) We suppose that there is no doubling step from j = s+ 1 to j = s+ T for s ≥ 1.

(b) We show a geometrical decrease of (F (rj−1) − F (rj))j∈Js+1,s+T K where the factor rep-
resents the gain of the j-th execution of Algorithm 1.

(c) We state and apply Lemma 5 (whose proof is given in Subsection A.7) to show that
there exists an upper bound for ∥g1/L+

j−1
(rj−1)∥ depending on F (rj−1) − F (rj) for all

j ∈ Js+ 1, s+ T K.

(d) We show that the geometrical decrease in (b) entails that the exit condition ∥g1/L+
j−1

(rj−1)∥ ≤
ε is satisfied for j = s+ T .

2. We use 1. to show that the total number of restarting iterations
∑j

i=0 ni is necessarily
bounded by 2Tnj . The conclusion of Theorem 2 thus comes from Lemma 4 providing an
upper bound of nj .

A.5 Proof of Theorem 2

Let C > 4√
ρ and ε > 0. We first define

T := 1 +


log
(

1 + 16
C2ρ−16

2L(F (r0)−F∗)
ρε2

)
log
(

C2ρ
4 − 1

)
 .
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We claim that a doubling step is performed at least every T iterations.
For s ⩾ 1, assume that there is no doubling step for T − 1 iterations from j = s+ 1 to j = s+ T .
This means:

∀j ∈ Js+ 1, s+ T K, nj−1 > C

√
1

κj
, (A.3)

whence:
∀j ∈ Js, s+ T K, nj = ns, (A.4)

where the case j = s trivially holds. We deduce that ∀j ∈ Js+ 2, s+ T K:

κj = min
i∈N∗
i<j

4

ρ(ni−1 + 1)2
F (ri−1)− F (rj)

F (ri)− F (rj)
⩽ min

i∈N∗
s<i<j

4

ρ(ni−1 + 1)2
F (ri−1)− F (rj)

F (ri)− F (rj)

⩽ min
i∈N∗
s<i<j

4

ρni−1
2

F (ri−1)− F (rj)

F (ri)− F (rj)
⩽ min

i∈N∗
s<i<j

4

ρns
2

F (ri−1)− F (rj)

F (ri)− F (rj)

⩽
4

ρns
2

min
i∈N∗
s<i<j

F (ri−1)− F (rj)

F (ri)− F (rj)
,

due to (A.4). Using (3.10), we deduce that:

∀j ∈ Js+ 2, s+ T K, κj ⩽
4

ρns
2

F (rj−2)− F (rj)

F (rj−1)− F (rj)
. (A.5)

Combining now (A.3) with (A.4) and (A.5) we get:

ns > C

√
1

4
ρns

2

F (rj−2)−F (rj)
F (rj−1)−F (rj)

= ns
C
√
ρ

2

√
F (rj−1)− F (rj)

F (rj−2)− F (rj)

which leads to

F (rj−2)− F (rj) >
C2ρ

4
(F (rj−1)− F (rj)),

which further entails

F (rj−2)− F (rj−1) >

(
C2ρ

4
− 1

)
(F (rj−1)− F (rj)).

Since C > 4√
ρ >

2√
ρ we now get the following geometric functional decrease.

F (rj−1)− F (rj) <
4

C2ρ− 4
(F (rj−2)− F (rj−1)). (A.6)

We now consider the case j = s+ 1:

κs+1 = min
i∈N∗
i<s+1

4

ρ(ni−1 + 1)2
F (ri−1)− F (rs+1)

F (ri)− F (rs+1)
⩽

4

ρ(ns−1 + 1)2
F (rs−1)− F (rs+1)

F (rs)− F (rs+1)

⩽
4

ρ(ns

2 + 1)2
F (rs−1)− F (rs+1)

F (rs)− F (rs+1)
⩽

16

ρns2
F (rs−1)− F (rs+1)

F (rs)− F (rs+1)
,
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since ns ⩽ 2ns−1. By reapplying C > 4√
ρ , similar computations show that

F (rs)− F (rs+1) <
16

C2ρ− 16
(F (rs−1)− F (rs)). (A.7)

To carry on with the proof, we now state Lemma 5 which links the composite gradient mapping g
to the function F . The proof is reported in Appendix A.7:

Lemma 5 Let F satisfy the assumption HL for some L > 0. Then the sequence (rj)j∈N provided
by Algorithm 3 satisfies

∀j ⩾ 1,
ρ

2L
∥g1/L+

j
(rj)∥2 ⩽ F (rj)− F (rj+1),

where L+
j is an estimate of L provided by Algorithm 2.

By Lemma 5 and recalling inequalities (A.6) and (A.7), we can thus obtain the following
sequence of inequalities

ρ

2L
∥g1/L+

s+T−1
(rs+T−1)∥2 ⩽ F (rs+T−1)− F (rs+T )

⩽
4

C2ρ− 4
(F (rs+T−2)− F (rs+T−1))

⩽

(
4

C2ρ− 4

)T−1(
16

C2ρ− 16

)
(F (rs−1)− F (rs))

⩽

(
4

C2ρ− 4

)T−1(
16

C2ρ− 16

)
(F (r0)− F ∗)

⩽

(
4

C2ρ− 4

)
log

(
1+ 16

C2ρ−16

2L(F (r0)−F∗)

ρε2

)
log

(
C2ρ
4

−1

)
( 16

C2ρ− 16

)
(F (r0)− F ∗)

⩽

(
4

C2ρ− 4

) log

(
1+ 16

C2ρ−16

2L(F (r0)−F∗)

ρε2

)
log

(
C2ρ
4

−1

) (
16

C2ρ− 16

)
(F (r0)− F ∗)

⩽
1

1 + 16
C2ρ−16

2L(F (r0)−F∗)
ρε2

(
16

C2ρ− 16

)
(F (r0)− F ∗) ⩽

ρε2

2L
.

As a consequence, if there are T consecutive restarts without any doubling of the number of
iterations, then the exit condition ∥g1/L+

j
(rj)∥ ⩽ ε is eventually satisfied. This means that there

exists a doubling step at least every T steps and that for all s ⩾ 1 there exists j ∈ Js + 1, s + T K
such that

nj−1 < C

√
1

κj
,

which implies that nj = 2nj−1. Now, since (nj)j∈N is an increasing sequence, we get that ns+T ⩾
nj = 2nj−1 ⩾ 2ns, so that

ns ⩽
ns+T

2
, ∀s ⩾ 1. (A.8)

Let us now rewrite j as j = m+ nT where 0 ⩽ m < T and n ⩾ 0. By monotonicity of (nj)j∈N we
have

j∑
i=0

ni =

m+nT∑
i=0

ni =

m∑
i=0

ni +

n−1∑
l=0

T∑
i=1

nm+i+lT ⩽ T

n∑
l=0

nm+lT = T

n∑
l=0

nj−lT .
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According to equation (A.8) we have nj−T ⩽ nj

2 , that is

nj−lT ⩽

(
1

2

)l

nj , ∀l ∈ [[0, n]].

We thus obtain the following inequalities

j∑
i=0

ni ⩽ T

n∑
l=0

nj−lT ⩽ T

n∑
l=0

(
1

2

)l

nj ⩽ T

∞∑
l=0

(
1

2

)l

nj = 2Tnj . (A.9)

Combining (A.9) with Lemma 4 we thus finally get the desired result for j > 0

j∑
i=0

ni ⩽ 2Tnj ⩽ 4C

√
L

µ
T ⩽ 4C

√
L

µ

1 +


log

(
1 + 16

C2ρ−16

2L(F (r0)−F∗)
ρε2

)
log

(
C2ρ
4

− 1
)




⩽
4C

log
(

C2ρ
4

− 1
)√L

µ

(
2 log

(
C2ρ

4
− 1

)
+ log

(
1 +

16

C2ρ− 16

2L(F (r0) − F ∗)

ρε2

))
.

A.6 Proof of Corollary 1

Let F satisfy HL and G2µ for some L > 0 and µ > 0. Let (rj)j∈N and (nj)j∈N be the sequences
provided by Algorithm 3 with C > 4/

√
ρ, ε > 0 and let Lmin ∈ (0, L). We consider the case where

the exit condition ∥g1/L+
j

(rj)∥ ⩽ ε is satisfied at first for at least 8C
√

1
κ iterations. We define the

function ψµ : R∗
+ →

(
8C
√

1
κ ,+∞

)
by:

ψµ : γ 7→ 4C

log
(

C2ρ
4

− 1
)√L

µ

(
2 log

(
C2ρ

4
− 1

)
+ log

(
1 +

16

C2ρ− 16

2L(F (r0) − F ∗)

ργ

))
.

By Theorem 2, the number of iterations required to ensure ∥g1/L+
j

(rj)∥ ⩽ ε satisfies
∑j

i=0 ni ⩽

ψµ(ε2). As ψµ is strictly decreasing and
∑j

i=0 ni > 8C
√

L
µ , we deduce:

ψ−1
µ

(
j∑

i=0

ni

)
⩾ ε2,

where ψ−1
µ is the inverse function of ψµ. By now applying Lemma 2 and since by construction

L+
j ⩾ Lmin, we get:

F (r+j )− F ∗ ⩽
2

(
1 + L

L+
j

)2

µ
∥g1/L+

j
(rj)∥2 ⩽

2
(

1 + L
Lmin

)2
µ

ψ−1
µ

(
j∑

i=0

ni

)
. (A.10)

Elementary computations show that:

ψ−1
µ : n 7→ 2L

ρ

16

C2ρ− 16

1

e−2 log(C2ρ
4 −1)e

log(
C2ρ
4

−1)

4C

√
µ
Ln − 1

(F (r0)− F ∗),
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hence from (A.10), we get:

F (r+j ) − F ∗ ⩽
4L

(
1 + L

Lmin

)2

ρµ

16

C2ρ− 16

1

e−2 log(C2ρ
4

−1)e
log(

C2ρ
4

−1)

4C

√
µ
L

∑j
i=0 ni − 1

(F (r0) − F ∗)

We can thus conclude that

F (r+j )− F ∗ = O

(
e−

log(
C2ρ
4

−1)

4C

√
κ
∑j

i=0 ni

)
.

We can further maximize the function C 7→ log(C2ρ
4 −1)

4C to obtain the optimal value Ĉ ≈ 6.38/
√
ρ.

This choice leads to the desired convergence rate:

F (r+j )− F ∗ = O
(
e−

√
ρ

12

√
κ
∑j

i=0 ni

)
.

To conclude the proof, let now (xk,j)k∈J0,njK and (τk,j)k∈J0,njK denote the iterates of Algorithm 1

following the j-th restart and the corresponding step-sizes, respectively. Note that in particular we
have x0,j = r+j−1 and xnj ,j = rj . By applying standard arguments as in the proof of Proposition 1
(see Section A.1) we deduce that for any j ⩾ 0 and every k > 0:

F (xk,j) +
∥xk,j − xk−1,j∥2

2τk,j
⩽ F (x0,j).

Such inequality thus entails:

∥xk,j − xk−1,j∥2 ⩽ 2τk,j
(
F (r+j )− F ∗) ⩽ 2

Lmin

(
F (r+j )− F ∗) .

By applying the first claim of this Corollary on the right hand side of the inequality above, we
guarantee the existence of M > 0 such that for j large enough:

∀k ∈ J1, njK, ∥xk,j − xk−1,j∥2 ⩽
2M

Lmin
e−

log(
C2ρ
4

−1)

4C

√
κ
∑j

i=0 ni ,

which implies that
∑

j,k ∥xk,j −xk−1,j∥ < +∞, showing that the trajectory of the total number of
FISTA iterates has finite length.

A.7 Proof of Lemma 5

Since by definition (r+j , L
+
j ) = FB BT(rj , Lj ; ρ), for all j ⩾ 1 there holds: Df (r+j , rj) ⩽

L+
j

2 ∥r
+
j −

rj∥2, with r+j = T1/L+
j

(rj) which allows us to specialize the descent condition (3.1) as:

F (r+j ) +
L+
j

2
∥r+j − x∥

2 ⩽ F (x) +
L+
j

2
∥rj − x∥2,

for all x ∈ RN . By choosing x = rj and by definition of g1/L+
j

we get:

1

2L+
j

∥g1/L+
j
rj∥2 ⩽ F (rj)− F (r+j ).
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Since by (3.3), we further deduce L+
j ⩽ L

ρ ,

ρ

2L
∥g1/L+

j
(rj)∥2 ⩽ F (rj)− F (r+j ).

Inequality (3.10) ensures F (rj+1) ⩽ F (r+j ) which finally entails.

ρ

2L
∥g1/L+

j
(rj)∥2 ⩽ F (rj)− F (rj+1).
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