Principles and Guidelines for Evaluating Social Robot Navigation Algorithms - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2023

Principles and Guidelines for Evaluating Social Robot Navigation Algorithms

Anthony Francis
  • Fonction : Auteur
Claudia Pérez-d'Arpino
  • Fonction : Auteur
Chengshu Li
  • Fonction : Auteur
Fei Xia
  • Fonction : Auteur
Hao-Tien Lewis Chiang
  • Fonction : Auteur
Tsang-Wei Edward Lee
  • Fonction : Auteur
Sören Pirk
  • Fonction : Auteur
Peng Xu
  • Fonction : Auteur
Alexander Toshev
  • Fonction : Auteur

Résumé

A major challenge to deploying robots widely is navigation in human-populated environments, commonly referred to as social robot navigation. While the field of social navigation has advanced tremendously in recent years, the fair evaluation of algorithms that tackle social navigation remains hard because it involves not just robotic agents moving in static environments but also dynamic human agents and their perceptions of the appropriateness of robot behavior. In contrast, clear, repeatable, and accessible benchmarks have accelerated progress in fields like computer vision, natural language processing and traditional robot navigation by enabling researchers to fairly compare algorithms, revealing limitations of existing solutions and illuminating promising new directions. We believe the same approach can benefit social navigation. In this paper, we pave the road towards common, widely accessible, and repeatable benchmarking criteria to evaluate social robot navigation. Our contributions include (a) a definition of a socially navigating robot as one that respects the principles of safety, comfort, legibility, politeness, social competency, agent understanding, proactivity, and responsiveness to context, (b) guidelines for the use of metrics, development of scenarios, benchmarks, datasets, and simulators to evaluate social navigation, and (c) a design of a social navigation metrics framework to make it easier to compare results from different simulators, robots and datasets.
Fichier principal
Vignette du fichier
social_nav_guidelines.pdf (14.13 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-04164243 , version 1 (18-07-2023)

Identifiants

  • HAL Id : hal-04164243 , version 1

Citer

Anthony Francis, Claudia Pérez-d'Arpino, Chengshu Li, Fei Xia, Alexandre Alahi, et al.. Principles and Guidelines for Evaluating Social Robot Navigation Algorithms. 2023. ⟨hal-04164243⟩
116 Consultations
104 Téléchargements

Partager

More