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Abstract—A major challenge to deploying robots widely is nav-
igation in human-populated environments, commonly referred to
as social robot navigation. While the field of social navigation has
advanced tremendously in recent years, the fair evaluation of
algorithms that tackle social navigation remains hard because it
involves not just robotic agents moving in static environments
but also dynamic human agents and their perceptions of the
appropriateness of robot behavior. In contrast, clear, repeatable,
and accessible benchmarks have accelerated progress in fields
like computer vision, natural language processing and traditional
robot navigation by enabling researchers to fairly compare algo-
rithms, revealing limitations of existing solutions and illuminating
promising new directions. We believe the same approach can
benefit social navigation. In this paper, we pave the road towards
common, widely accessible, and repeatable benchmarking criteria
to evaluate social robot navigation. Our contributions include (a)
a definition of a socially navigating robot as one that respects
the principles of safety, comfort, legibility, politeness, social
competency, agent understanding, proactivity, and responsiveness
to context, (b) guidelines for the use of metrics, development
of scenarios, benchmarks, datasets, and simulators to evaluate
social navigation, and (c) a design of a social navigation metrics
framework to make it easier to compare results from different
simulators, robots and datasets.

I. INTRODUCTION

The study of social robot navigation has a long history, but
a crisp definition of what makes navigation “social” remains
elusive. Researchers on social robot navigation often have a
personal sense of what it is and use that intuition to guide their
research into how to make robots move better around people,
but the field does not yet have a consensus on a definition of
social navigation or how to achieve it. Indeed, at the Social
Navigation Symposium', a diverse spectrum of researchers
presented a variety of views on robotic social navigation and
their approaches to it, including a range of definitions, variants,
problems and subproblems.
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Ideas presented at the the Symposium included various
methods and procedures to evaluate social navigation perfor-
mance, often involving different experimental setups, evalua-
tion metrics, robot simulators, social datasets, and deployment
environments. As the researchers continued their discussions
during and after the symposium, a taxonomy of aspects of
social navigation began to emerge, which helped clarify the
social robot navigation problem and converged to a set of
general recommendations on how to evaluate solutions in ways
that were more comparable.

This paper summarizes the work done by symposium par-
ticipants to define the social robot navigation problem, identify
a taxonomy of its important aspects, create guidelines for its
evaluation, and improve existing simulators by providing a
common implementation of these guidelines. After a review of
related work in Section II, Section III proposes a definition of
social navigation and a strategy for achieving it by respecting
other agents’ goals through principles of safety, comfort,
legibility, politeness, social competency, agent understanding,
proactivity, and responsiveness to context. Section IV reviews
the different scientific questions asked by social navigation
researchers, and Section V outlines our taxonomy for ana-
lyzing social navigation benchmarks, datasets and simulators.
Section VI then discusses the metrics that have been developed
for measuring social navigation, including subjective human
evaluation metrics, analytic metrics that can be directly com-
puted, and research efforts designed to create learned metrics.
Section VII discusses the typical scenarios used in social
navigation, and Section VIII describes benchmarks built on
these scenarios, while Section IX reviews datasets collected on
social navigation. Section X reviews simulators and presents
our work to create a unified interface across simulators.

Figures 1 and 2 illustrate the principles and guidelines we
present for the development and evaluation of social navi-
gation. Principles are high-level goals that social navigation
methods should try to achieve, as illustrated in Figure 2.
Guidelines are concrete, actionable recommendations that
practitioners of social navigation research may consider when
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R1: Preserve Safety

R2: Respect Human Participants
R3: Ensure Clear Scientific Objectives

P1: Safety

P2: Comfort

P3: Legibility

P4: Politeness

P5: Social Norms

P6: Agent Understanding

P7: Proactivity

P8: Contextual Appropriateness

Principles Principles
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Guidelines

S1:
S2:
S3:
S4:
S5:
S6:
S7:
S8:
S9:

Use Standardized APls
Include Standard Metrics

Support Common Morphologies
Support Human Labeling
Support Dataset Generation
Support Benchmark Creation
Support Detailed Pedestrians
Extensibility

Provide Options for Behavior Authoring

M1: Report Widely Used Metrics

M2: Validate First with Algorithmic Metrics
M3: Parameterize Metrics in Context

M4: Learned Metrics for Acceptance Tests
M5: Use Validated Human Surveys

M6: Seek and Eliminate Sources of Bias
M7: Analyze Experiments Iteratively

M8: Report Results in Depth

N1: Specify Research Context

N2: Define Intended Robot Task

N3: Define Intended Human Behavior
N4: Define Success Metrics

N5: Cover Common Scenarios

N6: Ensure Scenario Flexibility

N7: Evaluate Fitness for Purpose

N8: Use Scenario Cards

Metrics

Guidelines

: Evaluate Social Behavior

: Include Quantitative Metrics

: Provide Baselines for Comparison

: Efficient, Repeatable and Scalable

: Ground Human Evals in Human Data
: Validate Evaluation Instruments

Simulators

D1: Make datasets as broad as possible
D2: Scope datasets based on resources
D3: Ensure each scenario is well-sampled
D4: Use robots if robot behavior is desired
D5: Use diverse robot platforms

D6: Record behavior generation commands
D7: Collect annotations systematically

D8: Consider privacy issues early

Fig. 1: We identify eight broad principles of social robot navigation - including safety, comfort, legibility, politeness, social competency, agent
understanding, proactivity, and contextual appropriateness - which serve to motivate specific guidelines for experiments, metrics, scenarios,
benchmarks, datasets, and simulators. Principles and guidelines are labeled with two-letter codes, with P for principles, R for real-world
issues, M for metrics, N for scenarios, B for benchmarks, D for datasets, and S for simulators.

creating and testing their solutions, as summarized in Figure 1
and unpacked in the rest of the document. We hope our work
helps researchers create fair and comparable evaluations of
their social navigation solutions, which will shed light on the
field’s current state and point the way to the challenges ahead.

II. RELATED WORK

The field of social robot navigation is vast and we will not
attempt to summarize it here; instead, we refer to multiple
recent surveys on social navigation, including [1-10]. Among
recent surveys, [6] specifically focuses on evaluating social
robot navigation algorithms, reviewing 177 recent papers to
gather evaluation methods, scenarios, datasets, and metrics, us-
ing their findings to discuss shortcomings of existing research
and to make recommendations for future research directions.
Another recent survey by Mavrogiannis et al. [7] focuses on
the core challenges of social navigation with respect to nav-
igation algorithms, human behavior models, and evaluation.
Our work builds on the works of [6] and [7] and similar
surveys to map the field. We contribute a crisp definition of
social robot navigation based on discussions held at the 2022
Social Navigation Symposium, an overview of methodologies
for research, and a taxonomy of the field which we use to
examine existing metrics, scenarios, benchmarks, datasets, and
simulators, and shared principles to make social navigation
evaluations comparable across the community.

[10] proposes new metrics specifically evaluating the prin-
ciples defined in [1], comfort, naturalness, and sociability.
Our effort proposes to expand the principles in [I] to a
broader set including safety, comfort, legibility, politeness,
social norms, agent understanding, proactivity, and contextual
appropriateness, and proposes a lifecycle of social navigation
with recommendations for metrics, scenarios, benchmarks,
datasets and simulators, along with specific guidelines for
metric usage and recommended metrics.

Beyond social navigation, clear, repeatable, and accessible
benchmarks have accelerated progress in fields like computer
vision [11] and natural language processing [12—14] enabling
researchers to compare algorithms, revealing limitations of
existing solutions, and illuminating promising new directions.
Our effort builds on benchmark challenges in traditional
robot navigation [15-20], social navigation benchmarks and
challenges [21-29] and social navigation scenario develop-
ment [30-32]. We review social navigation scenarios and
benchmarks in depth in Sections VII and VIII; this work
contributes guidelines for scenario development, a review of
scenarios in the literature, a social navigation scenario card,
as well as guidelines for social navigation benchmarking and
social navigation dataset development.

Simulators are a key component in social navigation, though
many simulators exist with diverse APIs which are largely
not compatible. [21], discussed in more detail in Section VIII
is a benchmark which provides an API for easily generating



new worlds and tasks for two different simulators. This paper
proposes guidelines for simulator development and usage, as
well as a common API design to unify simulator outputs to
facilitate common evaluations using shared metrics.

III. TOWARDS A DEFINITION OF SOCIAL NAVIGATION

Social navigation has referred to a range of behaviors from
simple navigation around dynamic obstacles, to complying
with complex social norms, up to navigating with commu-
nicative intent. As such, social navigation risks becoming a
“suitcase word”, defined by Marvin Minsky [33] as words
that carry other concepts inside them, like memory, emotions,
or consciousness; these terms must be unpacked to fully
understand their meanings.

In this section, we unpack the term “social robot naviga-
tion”. First, we briefly examine social robotics and what it
means; then we focus more narrowly on the social navigation
problem itself. Then we expand this further by examining the
subproblems important in social navigation and how context
can affect what navigation behaviors are considered social,
formulating these subproblems as principles to guide research.

A. What is a Social Robot?

Intuitively, we expect social robots to be able to recognize
social cues, norms, and expectations, to have the understanding
to interpret them correctly, and to have the capabilities to
respond appropriately. This raises the question of what “social”
is, and what kinds of sensing, interpretation and capabilities
social robots need to effectively navigate social interactions.

In their review of Human-Robot Interaction (HRI) for social
robotics, Kanda and Ishiguro [34] argue that in addition to
navigation (moving robots from place to place) and manip-
ulation (changing objects in the environment) capable robots
must also leverage social interactions, i.e., be able to interplay
with humans or other robots in the environment to perform
tasks. Further, they distinguish robots that simply encounter
humans from those which have specifically designed socially
interactive features, such as voices, expressive faces or the
ability to gesture.

But simply having socially interactive features in a robot
does not mean that the quality of its interactions would be
acceptable to humans or efficient for other robots; additional
principles are needed to apply these features in a positive
way. Developing solutions that create high-quality social in-
teractions autonomously is difficult; many social interactions
that Kanda and Ishiguro studied could not be accomplished
with the technology of the time and required a human to
teleoperate the robot. What distinguishes “social” robotics
from pure interactivity?

To define “social” more precisely, we examined the terms
social and antisocial for humans. Social sometimes means par-
ticipating in society, i.e., participating in an interacting group
whose individuals modify their behavior to accommodate the
needs of others while achieving their own. But social has a
second meaning: a social individual has outstanding skills to
work with others, based on an understanding of their feelings
and needs and adapting to them. Antisocial individuals, in

contrast, fail to follow the customs of society or live without
consideration for others.

Inspired by these terms when applied to humans, we gen-
eralize this notion to other agents, and offer this definition of
social robot navigation:

A socially navigating robot acts and interacts
with humans or other robots, achieving its
navigation goals while modifying its behavior
so the experience of agents around the robot is
not degraded or is even enhanced.

This social quality may be reflected through overt behavior
changes, such as respecting social norms, or through an
understanding of other agents’ needs, feelings, and/or com-
municating capabilities.

B. Principles of Social Navigation

It is often difficult for an agent to know exactly what
other agents, especially humans, need to achieve, or what
they feel and like, and social norms that could guide us are
often not verbalized. To operationalize these concerns, we
identified principles of social navigation that can be used to
evaluate the quality of social behavior, including (1) safety, (2)
comfort, (3) legibility, (4) politeness, (5) social competency, (6)
understanding other agents, (7) proactivity, and (8) responding
appropriately to context, as illustrated in Figure 2.

Seen from the lens of optimization, the first seven principles
of social navigation can be formalized as additional objectives
that the robot needs to optimize for while still achieving its
main objective, and the eighth principle, context, can be seen
as weighting which principles are most important at any given
time, as shown in Figure 3. These principles are not com-
pletely orthogonal: improving legibility might improve safety
and even comfort, whereas nonverbal politeness depends on
understanding other agents’ trajectories. In addition, what is
considered appropriate or polite behavior depends on both
the cultural context [35] and the robot’s main objective: for
example, a delivery robot arguably should maintain a greater
distance from humans than one functioning as a guide.

The principles mentioned above guide the development of
metrics to evaluate social robots, discussed in more depth
in Section VI. Properly studying these principles of social
navigation directly impacts which metrics to measure [6],
what datasets to collect, how to build simulators, and how
to structure benchmarks. In the following sections, we unpack
these principles as often used in social robotics research:

Principle P1: Safety - Protect humans, other robots
and their environments. A minimal requirement for robots
and human sociality is not harming others in the course of
business [36, 37], as the robot fails to do in the first scenario
in Figure 2 when it collides with a human’s toe. Avoiding
collisions with humans is important but is not the only safety
concern [7, 38, 39]; robots can damage each other or their
environments. While it might be acceptable for a factory robot
to bump a guardrail defining the edge of its workspace, social
robots should generally avoid damaging human environments,
which often contain important objects that can be damaged or



P2: Comfort

Avoid causing
annoyance or
stress in humans.

P1: Safety

Avoid damage to
humans, robots or
their environments.

P5: Social Norms

Comply with social
norms for navigating
in shared space.

P5: Agent Understanding

Predict and accomodate the
behavior of other agents.

P3: Legibility
Behave so robot

goals can be
understood.

P4: Politeness

Be respectful and
considerate of
other agents.

P8: Contextual
Appropriateness
Behave properly in
the current context.

P7: Proactivity

Take the initiative
to resolve potential
deadlocks.

Fig. 2: We define a socially navigating robot as one that interacts with humans and other robots in a way that achieves its navigation goals
while enabling other agents to achieve theirs. To make this objective achievable, we propose eight principles for social robot navigation:
safety, comfort, legibility, politeness, social competency, agent understanding, proactivity, and contextual appropriateness.

wall coverings whose visual appearance is important. Robots
should also avoid damaging each other, or behaving in a way
that induces humans or other robots to injure themselves.

Principle P2: Comfort - Do not create annoyance or
stress. Humans should also feel comfortable around robots,
defined in [1] as the absence of annoyance and stress for
humans in interaction with robots. Many features contribute
to comfort, including maintaining human-robot distance, not
cutting humans off, and naturalness of motion. Unacceptable
robot speed, navigation jitter and unexpected head movements
are factors that degrade humans’ perception of comfort. Addi-
tionally, social robots should arguably not behave in a way
that triggers the safety layers of other robots. [1] further
argue that annoyance can be triggered by a failure to respect
proxemics, the virtual personal space around a human that
other humans instinctively respect [40]. Figure 2 illustrates
proxemics with the “intimate” distance of 0.45m shown in red
and the “personal” distance of 1.2m; after initially violating
a human’s personal distance, the robot is shown attempting
to stay in “personal” or more distant “social” spaces, except
as required by the geometric context. Proxemics is a rich and
controversial field; for an in-depth survey see [2].

Principle P3: Legibility - Behave so goals can be under-
stood. Legibility refers to the property of an agent’s behavior
that makes it possible for other agents to infer their goals
[41]. This includes not only the robot’s goal but also incidental
interactions when performing other tasks, e.g., moving to the
right or left when passing in a hallway. Dragan and colleagues

[41] suggests that legibility involves relaxing constraints such
as predictability of trajectories (in the sense of an agent’s
own predictable style) in favor of more clearly understood
behaviors (in the sense of moving to make goals explicit).
Legibility arguably can help other robots understand another
social robot’s goals. While [41] focused on changes to robot
paths to make them legible, a robot capable of communicating
could explicitly announce its intentions, the way restaurant
staff are trained to call “corner” when entering a blind corner,
as the robot does in the middle of Figure 2.

Principle P4: Politeness - Be respectful and considerate.
Politeness refers to behavior that is respectful and considerate
of people. There are at least two dimensions: physical polite-
ness (how robots navigate around people, such as not cutting
people off) and communicative politeness (gestures or verbal
signals, such as saying “excuse me”, or “on your left”, as the
robot does in Figure 2 when a narrow hallway forces it to
transgress on a human’s personal space). Politeness can have
a strong effect on people’s perception of robots [42, 43]. Social
robots should also be considerate of each other, so they do not
prevent other robots from accomplishing their tasks.

Principle P5: Social Competency - Comply with social
norms. Robots should comply with social, political, and
legal norms for sharing space. Many social competencies
are matters of following conventions rather than optimizing
performance [43-45]. For example, in the absence of norms
there is no optimization preference for driving on the left
or right, but identifying and following the local norms helps
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Fig. 3: Contextual factors of social navigation. While the first seven principles represent factors to optimize, the eighth principle, contextual
appropriateness, calls out that the weighting of these factors can be affected by many features, including cultural, diversity, environmental,
task and interpersonal context. Lines in the diagram are representative of common interactions but are not exclusive.

prevent conflicts [8] in the the third hallway interaction in
Figure 2. Some social competencies, like turn-taking, can
emerge naturally [46], whereas others must be specifically
engineered (or simulated with wizard-of-oz studies [34] if
existing policies are not up to the task). Social norms may
apply to more than just humans; conventions of behaviors may
make it easier for robots to interact.

Principle P6: Understanding Other Agents - Predict and
accommodate the behavior of other agents. A significant
portion of the discussion during the symposium revolved
around the need to understand other agents in order to be
able to correctly fulfill the principles listed above and be
considered a capable social agent. Understanding, accommo-
dating, and even facilitating other agents’ goals, activities, and
motions was agreed to be a key element of social behavior.
Accommodating the goals and comfort of other agents requires
understanding of what they are perceiving, doing, and trying to
accomplish. For example, to pass between two agents politely,
it is important to understand whether they are in conversa-
tion [47]. Understanding when the interaction potential - the
likelihood of robots entering human personal space - should
be minimized [48, 49] or maximized [50] depends on the
task. Further, understanding how agents move can reduce the
potential for conflicts (short-term encounters in which humans
and robots would collide without intervention [8, 51]), as in the
right side of Figure 2, where a robot recognizes the human’s
path will cross theirs and stops to prevent a conflict.

Principle P7: Proactivity - Taking the Initiative to Pre-
vent and Resolve Issues Simply understanding other agents
is not enough, however: in some circumstances, being social
involves taking the initiative. Perhaps the canonical example is
several cars meeting at a four-way intersection: if all drivers
act conservatively, there can be considerable delay [52]. To
resolve the conflict in a timely fashion, one driver must
either take the initiative and go first, or proactively propose a
solution by waving other drivers through the intersection [53].
Studies of self-driving vehicles suggest that non-conservative
(or “aggressive”) behavior may even be desirable if that is
expected by a population of drivers [54, 55]. While it is less
likely that socially navigating robots will be mistaken for
humans as frequently as autonomous vehicles are mistaken for
human-driven ones, appropriately resolving potential issues,
similar situations to the four-way intersection deadlock can
arise, such as when two pedestrians dodge to the same side
or contend for the same doorway. In these cases, a socially
navigating robot that can take the initiative to avoid a human
or proactively suggest a solution will arguably be more social
than one that is not, as in the right side of Figure 2, where the
robot proactively proposes that the human enter the elevator
first to prevent this kind of deadlock. Section VII discusses
measuring proactivity with scenarios designed to explicitly
elicit this phenomenon.

Principle P8: Contextual Appropriateness - Behave
properly in the current context. Social navigation should be



evaluated within the context that it is to be deployed. Context
helps us understand the relative importance of the previous
objectives, and is a complex construct in its own right, as
shown in Figure 3. An example shared in the symposium was
a CRASH CART robot in a hospital bringing an emergency drug
to a doctor: politeness is less important than task success. Also,
when navigating a narrow corridor, we may be “less polite”
and get closer to other agents. We identified several forms
of context, including cultural context, environmental context,
diversity, task context, and interpersonal context, all of which
can change which response is right in a given situation:

« Cultural Context: Different cultures have different social
norms, as notably documented in [40]; more recently [38,
56] and [35] examined cultural norms in social robotics
but concluded more work needs to be done.

« Diversity Context: Different individuals with different
abilities or different background histories may need dif-
ferent accommodations [35].

o Environmental Context: The environment may affect
the social navigation problem [57], and includes both ge-
ometric factors - the shape of the space - and operational
factors - how that shape is to be used.

— Geometric Context: The geometry of the environment
may affect the social navigation problem . For example,
the more crowded the space is, the smaller the accept-
able distance is between the robot and other people.

— Operational Context: The operational domain the
robot is intended to work in in affects what behaviors
are considered good: for example, a robot may drive
slower in a daycare than an office, even if the two
settings had identical geometric layouts.

o Task Context: In turn, the task the robot operates in
affects what behaviors are appropriate: for example, even
in a single environment like a hospital, whether a robot
is performing mail delivery or is a crash cart changes its
weighting of politeness against speed.

« Interpersonal Context: While there are many different
areas of context that are appropriate, interpersonal context
(e.g. whether humans are independent pedestrians, are
traveling in a group, or stopped and conversing is critical
to know how to navigate among them)

As an illustration of context, the robot in Figure 2 is first
shown violating a person’s intimate space distance in red,
then attempting to avoid proxemics violations going forward.
However, the corridor around the bend is too narrow to prevent
the robot from passing though a person’s personal space
distance in yellow, prompting the robot to politely call out its
presence. Then, in the relatively small elevator, the standard
interpersonal distances are no longer easy to achieve, and both
the robot and human adjust their perceived proxemics radii
based on the current context, shown as a contraction of the
proxemics circles from their original size.

Social navigation should be evaluated within the context
that it is intended to be deployed. While defining context in a
sufficiently precise way for a robot to identify or respond to
it is a challenging problem, at the least the intended context
should be defined well enough in terms of cultural, diversity,

environmental, operational, task and interpersonal context for
other researchers to gauge the applicability of the ideas and
findings conveyed by research.

IV. RESEARCH METHODOLOGIES OF SOCIAL NAVIGATION

Benchmarks require measures and an evaluation method-
ology for comparing social robot navigation systems. Be-
cause social robot navigation is concerned with methods
for controlling mobile robots to operate effectively around
people, many at the symposium argued social robot evalu-
ation methodologies should involve the collection of human
perceptions of robot behavior; however, others argued there
are important scientific questions that can be answered, such
as an algorithm’s response to dynamic obstacles, which can
affect social principles like safety and comfort. Ultimately, the
scientific questions a benchmark asks are important in deciding
its scope and content. These scientific questions lead to varied
types of studies which gather different types of data, which in
turn guide the development of methods, creating a lifecycle of
social navigation research.

A. Research Questions of Social Navigation

The overarching research question of social robot naviga-
tion is developing a scientific understanding of the problem
sufficient to build computational models that enable robots
to perform acceptably in human environments. This involves
understanding the factors that influence social navigation, de-
veloping models of those factors, and implementing algorithms
that take those factors into account. To fairly evaluate how
those algorithms compare to each other, we need bench-
marks that help us understand their differences and, ideally,
to identify the ones that are better. Given the complexity
of social navigation, different benchmarks often focus on
different aspects of the problem and thus different, more
specific scientific questions. Some of these questions arise
from traditional robot navigation research and can arguably
be evaluated using traditional methods, with adjustments for
human participants:

+« How do methods compare with each other against
baselines? Some aspects of method evaluation involve
quantitative metrics that can be performed in simulation,
such as revealing problems in a robot’s safety layer as
it faces increasing obstacle densities. However, when
human evaluations are required, these are typically con-
ducted in the real world, though toolkits are now coming
into use that enable labeling simulated trajectories as
well [58].

« How do components of a method affect its overall
performance? These are generally conducted by turning
method components off, often called “ablation studies” in
analogy to ablation studies in neuroscience [59]. While
in theory ablation studies could be conducted on-robot,
in practice these studies are often only conducted in
simulation, as real human participant time can be wasted
on variants of the algorithm expected to perform poorly
(or known to perform poorly in simulation).



« How do behaviors generalize to different environ-
ments? Benchmarks can test methods under different
conditions to evaluate this, a task that is easier (though
less realistic) in simulation.

Success at task performance is often measurable quan-
titative, but determining whether a robot is satisfying the
principles of social navigation is trickier. While the physical
aspects of principle P1, safety, may arguably be measureable
quantitiatively (at least in the sense that the lack of safety can
be measured through damage and collisions), other principles
like P4, politeness, often require human evaluation, and still
others like P2, comfort, are often explicitly defined in terms
of human reactions. Scientific questions involving these sub-
jective aspects therefore generally require measuring human
perceptions and reactions to robot behaviors, and are best
investigated through HRI studies:

o Human Ratings: How do humans rate the socialness
of social navigation methods, either intrinsically or in
comparison to a baseline? For some researchers, human
ratings of policy behavior in real contexts are the gold
standard for policy performance, but for these ratings to
be effective, studies must follow proper HRI protocols
and use validated survey instruments [60].

o Behavior Analysis: How does human behavior change
when exposed to different robot navigation policies?
While ratings are explicit, behavior change is implicit or
even unconscious. Studies should be conducted according
to HRI guidelines to ensure conditions are appropriately
blinded so participant and rater reactions are valid.

o Issue Discovery: Benchmarks can also be used to con-
duct exploratory analyses. For example, these analyses
could find out the frequency of encounter types between
humans and robots as well as the frequency of problems
that affect a given policy. This can guide research in the
direction of problems that occur in the wild. These studies
must be conducted with a robot in a live deployment.

Many benchmarks focus on a subset of the questions above,
which is legitimate as different researchers have different aims
and different groups have different needs. The consequence,
however, is that social navigation evaluation methodologies
have become fragmented and a comprehensive evaluation
methodology does not yet exist.

Because different lines of research have different needs, we
do not aim to provide a specific, singular evaluation protocol
to be used for all social navigation methods, but a method-
ology by which researchers can make principled decisions
to guide their own evaluation protocol. Such a protocol will
allow researchers to compare social navigation methods along
the dimension relevant to a specific subdomain. The direct
comparison of methods, via principled evaluation protocols,
will allow us to interrogate the strengths and weaknesses of
the methods in question and push knowledge discovery in the
field and increase method performance.

In Section VIII we argue that because social navigation
involves understanding of both how robots affect other agents
and which methods are effective, most benchmarks will benefit
from incorporating both HRI components that evaluate human

reactions in the real world as well as ablation studies, even if
those are constrained to simulation.

B. Types of Social Navigation Studies

To enable progress on both social navigation policy de-
velopment and the community’s scientific understanding of
social navigation, we advocate viewing in-the-wild studies and
controlled scenarios as part of a lifecycle of study of social
navigation phenomena. To define terms, we can distinguish
several different major classes of social navigation studies:

1) Field Studies: Field studies involve pedestrians who are
not confederates of the experimenters, such as a mall,
campus or boardwalk. Such studies are often called “in
the wild” as they are conducted in uncontrolled environ-
ments. Field studies provide an opportunity to collect
natural data about robot-human interactions outside the
influence of experiments or instructions, but individual
encounters are not directly reproducible. Very large-scale
studies offer a proxy of reproducibility when rare events
re-occur with enough statistical frequency to be analyzed;
however, large-scale field studies are the most resource-
intensive, complex and potentially dangerous to conduct.

2) Robot Deployments: Robot deployments are conducted
in environments partially under the control of the exper-
imenters, such as an office, a classroom building, or fac-
tory. In this case, robot deployments necessarily involve
experimenters informing participants about the robots,
which may change their responses compared to someone
encountering a robot in the wild; furthermore, participants
necessarily develop experience about the robots that can
distort human-robot interactions. Symposium participants
reported that users unfamiliar to robots were less ac-
cepting of errors than robot researchers, who in turn
were less accepting than experienced “robot wranglers”
responsible for managing the deployment; these anecdotal
reports mirror studies which found evidence that both
general computer user skill level [61] and familiarity
with particular robots [62—-64] could improve assessments
of robot capabilities and behavior. Semi-controlled robot
deployments are similar to, but less naturalistic than field
studies, but because robot deployment environments are
more controlled than true in-the-wild studies, larger scale
is often more practicable by conducting experiments over
a longer period of time. For example, [65] collected 1,000
kilometers of navigation data in a set of buildings on a
college campus, and the system described in [31] was part
of a deployment in two Google buildings that collected
over 3,000 kilometers of data.

3) Laboratory Experiments: Laboratory experiments are
sometimes considered the gold standard in science, but
have distorting effects on human behavior due to the con-
trolled environment and experiment instructions. While
A/B testing in field studies or robot deployments can
compare some algorithms, laboratory experiments are of-
ten necessary to answer scientific questions about human
reactions to changes in robot behavior or to evaluate algo-
rithmic changes prior to larger-scale deployments. How-
ever, we also need to ensure that laboratory experiments



have good ecological validity, defined as the degree to
which laboratory results generalize to the real world [66—
68]. For social navigation experiments, the ecological
validity of an experiment in turn depends on whether the
scenario it tests has been properly validated. We discuss
a methodology for scenario design in Section VII-A,
but validating scientific instruments to determine whether
they correctly evaluate the variables they are designed
to test, often called construct validity, can take several
iterations of experiment and analysis [69, 70].

4) Social Navigation Scenarios: Social navigation scenar-
ios, such as FRONTAL APPROACH, PEDESTRIAN OVER-
TAKING, and INTERSECTION, can be viewed as a subset
of laboratory experiments which test specific scenarios
discovered through field studies or robot deployments,
with well-defined configurations validated through the-
oretical analysis, pilot studies, or social navigation issue
discovery in existing datasets. The social navigation com-
munity is collecting a growing set of scenarios to guide
experiments, enable data collection for imitation learning,
and serve as regression tests for behavior.

5) Staged Social Interactions: Due to the excessive costs
of field studies and the lack of rare, naturally-occuring
human-robot encounters in robot deployments and labo-
ratory experiments, researchers developed Staged Social
Interactions to evaluate robot social navigation. In staged
social interactions, participants are recruited to act in a
structured but free-form fashion; this can be an explicit set
of scripts (so-called “Guided Crowd Scenarios”) or a less
structured activity such as a “Robot Happy Hour” where
participants are recruited to perform a social activity
around where robots are operating. These studies are less
controllable than social navigation scenarios, and their
“staged” nature makes them closer to robot deployments
or laboratory experiments than true field studies. How-
ever, they can create higher-density free-form interactions
than may otherwise be available.

C. Lifecycle of Social Navigation Research

Arguably, social navigation research should be driven by
data collected from field studies or robot deployments, but
these can be prohibitively expensive; conversely, validated
social navigation scenarios enable analysis of known problems,
but may not cover novel experimental conditions or detect
problems that show up in the wild. Rather than focus on one
or the other, it is more useful to think of the following lifecycle
of social navigation benchmarking:

1) Data Collection: Field studies and robot deployments
can be used for the first step of the scientific process: data
collection. Ideally, field studies and robot deployments
should be used for more than just A/B testing; they should
be used to generate datasets that can be shared to extend
the power of the social navigation research community
to collect data at scale. Data that can be collected in-
cludes but is not limited to robot and human behavior,
surveys (e.g., subject’s opinions on safety or comfort), or
biometric data (e.g., heart rate, skin impedance).
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Fig. 4: Lifecycle of social navigation research. Field studies, robot
deployments, and staged social interactions can be used to collect
data, which helps identify issues and their prevalence. Issues dis-
covered guide laboratory experiments and the development of social
navigation scenarios, which in turn can inform data collection. Issue
discovery also helps guide the development of benchmarks that test
these issues, along with public benchmark challenges; attempts at
solutions of these challenges can also help identify issues.

2) Issue Discovery: The foundation of social robot nav-
igation is humans interacting with robots. Issue dis-
covery refers to mining human-robot encounter datasets
for repeating problematic scenarios that can be reliably
detected, enabling the statistical analysis of their fre-
quency and properties. Ideally the focus should be on
high-frequency issues (challenging scenarios that often
occur, like frontal approach in a narrow hallway or the
freezing robot problem) and high-risk issues (challenging
scenarios where there is a high risk, like compromising
a person’s safety). Robot deployments in desired target
environments are often the best way to collect this data,
but large-scale field studies can serve as a proxy.

3) Laboratory Experiments: Many scientific questions
about human-robot interaction can be conducted even
if large-scale datasets or issue statistics do not exist.
Research groups not positioned to conduct large-scale
studies or deployments can nevertheless formulate scien-
tific questions and answer them. Where feasible, these
experiments should use benchmarking procedures and
metrics which have been validated by the research com-



munity, such as those discussed in Section VI. Ideally,
these should also use scenarios identified as frequent
issues in the target domain.

4) Scenario Development: One outcome of data collection,
issue discovery and laboratory experiments should be
the identification of social navigation scenarios which
can be reliably detected in datasets, occur frequently in
target environments, and can be replicated in controlled
laboratory settings. While social navigation scenarios are
not a substitute for in-the-wild data collection, using
validated social navigation scenarios in laboratory experi-
ments can ensure that experiments are ecologically valid,
and can ensure that A/B tests are backed up by regression
tests of known social navigation issues. Scenarios also
aid targeted data collection for both analysis of human
behavior and generation of datasets for imitation learning.

5) Social Benchmarking: Social navigation scenarios can
be composed to create benchmarks for social navigation.
Most social navigation benchmarks consist, at least im-
plicitly, of a set of social navigation scenarios, real or
simulated, that are used to test robot social navigation
behavior, along with metrics to gauge performance; many
also define datasets of social navigation behavior for
comparisons, and may also provide simulation environ-
ments where the scenarios are defined. From a lifecycle
perspective, using reliable, validated scenarios frequently
occurring in target environments would make a social
navigation benchmark more valuable.

6) Benchmark Challenges: Finally, benchmarks can be
publicly released as “challenges” which include success
criteria, a call for solutions, methods for collecting and
evaluating solutions, and a leaderboard of ranked solu-
tions. Benchmark challenges have been used for a wide
variety of embodied Al tasks and have proved useful for
promoting improvements in the field, sometimes leading
to challenges being solved and retired (see discussion in
[20]). The iGibson Challenge [71] was one of the first
publicly available social navigation challenges.

D. Guidelines for Real-world Studies

Real-world social navigation studies have aspects that do
not come up in simulated experiments or even traditional
navigation experiments. Robots controlled by untested policies
can damage themselves, other robots, humans, or their envi-
ronments; human participants captured by robot sensors have
privacy and consent concerns. Here we present guidelines for
conducting social navigation experiments in the real:

Guideline R1: Preserve Safety. Real-world benchmarks
should preserve the safety of humans, robots, and the environ-
ment through active measures such as experiment monitors and
safety layers. In particular, policies which have been ablated to
illuminate sources of power may have unintuitive behavior; if
a safety layer is not available to prevent unsafe actions, either
these policies should be tested in simulation, or an experiment
monitor should be ready to stop the robot in case of issues.

Guideline R2: Respect Human Participants. The privacy,
needs and time of human participants should be respected,

along with their informed consent. For academic studies, insti-
tutional review board (IRB) approval may be required before
proceeding with experiments; for industry studies, an early
privacy review can help illuminate potential legal concerns.

Guideline R3: Ensure Clear Scientific Objectives. As
real-world experiments are valuable, the purpose of real-world
benchmark studies should be clearly defined and the use of the
data specified. Conducting an experiment which costs time and
money and exposes humans, robots and their environments to
risk should be justified with a clear notion of what is to be
learned from conducting the experiment.

V. A TAXONOMY OF SOCIAL NAVIGATION

Our workgroup does not aim to provide a single compre-
hensive evaluation protocol to be used for all social navigation
research, because social navigation research spans a wide
range of domains with different goals and priorities. Instead,
we are developing principles and guidelines to guide the devel-
opment of protocols that enable fair comparisons of methods.
To enable this comparison, we have developed a taxonomy for
social navigation research in terms of the metrics, datasets,
simulators, and benchmarks used, analyzed with a common
vocabulary for factors of analysis.

A. A Taxonomy for Analysis

We propose that social navigation research instruments can
be analyzed along a set of formal axes which include the
metrics they collect, the datasets that they use, if any, the
simulator platforms they use, if any, and any formalized
scenarios or benchmarks they use for comparison.

¢ Metrics: Recent surveys of social navigation metrics have
uncovered close to a hundred different metrics in use (see
[6, 8] for recent reviews). However, these metrics can
be grouped by broader features, such as algorithmically
computed (such as Success-weighted Path Length (SPL)
[15]) or gathered by surveys of humans (such as comfort
ratings). Surveyed metrics can further be divided into
those collected explicitly via questionnaires (e.g., about
perceived comfort) or implicitly through sensors (such as
stress in human facial expressions). Algorithmic metrics
in turn can be hand-crafted or learned from data gathered
from surveys. Other axes of metrics include the type of
variable(s) being modeled, and whether metrics cover the
behavior of the robot at a specific point in time (step wise)
or during a whole navigation task (episode wise). Metrics
are further discussed in Section VI.

« Scenarios: Social navigation studies include field studies
of behavior in the wild, long-term robot deployments at
particular sites, controlled laboratory experiments, social
navigation scenarios that aim to create a particular in-
the-wild behavior, and “staged” scenarios that attempt to
recreate the chaos of crowd scenarios. We have developed
a “scenario card” which enables us to compare scenarios,
discussed in further depth in Section VII.

« Benchmarks: Social navigation benchmarks involve an
evaluation protocol for collecting metrics for social robot
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Fig. 5: A taxonomy of social navigation. Most social navigation instruments share common factors like overall context, physical environments,
human user type, robot role and task, and so on. However, datasets, benchmarks and simulators have additional factors particular to them.

navigation methods in social navigation scenarios. Cur-
rent benchmarks are discussed in further depth in Section
VIII. “Challenges” are benchmarks that are publicly
available, include success criteria, and provide evaluation
mechanisms along with leaderboards to compare solu-
tions; challenges have shown success in other fields in
promoting the improvement of the state of the art [20].

« Datasets: We have used these factors to analyze social
navigation datasets, discussed in further depth in Sec-
tion IX. Note that datasets require additional parameters
for analysis such as coverage, sampling distribution,
annotations, and privacy and fairness handling.

« Simulators: Social navigation simulators enable the eval-
uation of policies controlling agents around other agents
in simulation, discussed in further depth in Section X.
Many simulators have different APIs and metrics. To en-
able clearer comparison across simulation environments,
we are working to create a common simulator APIL.

We next unpack factors common to metrics, scenarios,

benchmarks, datasets and simulators before drilling into these
topics in more detail in Sections VI, VII, VIII, IX, and X.

B. Factors Common to Social Navigation

Participants in the workshop argued that it is important
to explicitly define the setups of social navigation bench-

marks. But this is equally true of datasets and simulators.
Benchmarks, datasets, and simulators for social navigation all
face similar challenges: characterizing contexts, representing
environments, defining robot roles, tasks, and embodiments,
and so on. Rather than analyzing benchmarks, datasets and
simulators separately, we argue that many factors are shared
among all three, and here present common factors in attempt
to create a common vocabulary for analysis.

1) Context: Broadly speaking, the context of a social nav-
igation endeavor refers to its scope, objective, and in-
tended application. As discussed in Section III-B, context
is a complex construct, and symposium participants did
not come to an agreement on a crisp definition, often
preferring to use more specific terms when available.
However, when it is used, the context of a social nav-
igation research tool often refers to factors implicit in
its definition, e.g., a “pedestrian outdoor dataset” or a
“benchmark for indoor environments”. Often, the generic
concept of “context” is cashed out into the currency of
environment, human behavior, or robot tasks; simulators
may have aspects of the context embedded into their
design. Aspects of context include the scope of a dataset,
what a benchmark tests and what it doesn’t, and what the
focus of experiments are: perception, trajectory forecast-
ing, collision avoidance, algorithm benchmarking, human



2)

3)

4)

5)

simulation testing, gesture and gaze interaction, body
language and affect sensing, human-robot collaboration,
indoors vs outdoors, and individuals vs crowds.

« Synonyms: Application, Scope

« Related Factors: Robot Role

Physical Environment: Although it could be considered
part of the “Context”, the physical space in which the
robot(s) and humans operate is particularly relevant. The
description of the physical environment includes high-
level descriptions such as indoor or outdoor and can
be as detailed as one desires. For example, “nearby a
water cooler in an office space crowded with cubicles”.
Simulator environment definitions may be scanned from
the real or authored. Environment definitions also include
constraints such as the layouts and traversability of areas
of the scene, as robot objectives and constraints are con-
ditioned on the scene layout. Variations of environments
can include indoor (relatively constrained environments)
or outdoor (relatively spacious environments). The repre-
sentation of this may be an explicit scene or map, or may
be implicit in the physical layout of the experiment.

« Synonyms: Location, Scene Type, Context

« Related Factors: Environmental Constraints

Type of Human User: Specifying who the intended
or expected human users are is also important. Key is
gauging whether the humans are familiar with robots.
Humans behave quite differently when they see the robot
the first few times, then they get used to it. This type of
behavior shift should be noted in a benchmark or dataset
since benchmark results obtained by interacting with a
group of roboticists may not be representative of when
the robot interacts with the public.

« Synonyms: Human Role

« Related Factors: Human Behavior, Robot Role

Human Behavior: A description of the actions taken
by specific humans or groups of humans as they relate
to the robot. In benchmarks, the desired agent behavior
needs to be specified. In simulation, this means the algo-
rithms and scripts that guide the movements of simulated
pedestrians. In the real, this means the instructions to
human participants; these could range from a scripted
setting, where humans are instructed to perform a specific
task or trying to go to a specific location, to unscripted
scenarios, where the humans are not explicitly instructed
how to move. Examples of behavior descriptions include
humans navigating to specific waypoints, humans block-
ing the robot, or passing. These range from in-the-wild
behaviors to carefully specified tasks and everything in-
between. Simulated human behavior is currently far more
constrained than behaviors in the wild.

« Synonyms: Pedestrian Behaviors, Human Tasks

« Related Factors: Robot Task, Robot Role

Robot Task: The piece of work assigned to the robot. The
typical robot task is navigation from the robot’s current
location to a goal location. Further, higher-level tasks
could be specified, such as the delivery of an object, or

6)

7)

8)

9)

10)

1)

12)

guarding of an area in the physical environment.

« Synonyms: Robot Behaviors
o Related Factors: Robot Role, Human Behavior

Robot Role: The relationship intended between the robot
and the humans, e.g., servant, companion, or fellow
pedestrian in a space.
« Related Factors: Robot Task, Type of Human User
Scenarios: A specific configuration of physical environ-
ment, human behavior, and robot task. Scenarios combine
three other factors into a package to enable specific con-
figurations of environment, behavior and task of research
interest to be shared in the community. A scenario can be
as detailed as a scripted interaction, although free-form
scenarios, which are unscripted, are also possible. Robot
role may be specified as part of a scenario, or it may be
a variable which is changed and tested.
« Scenario Classifiers and Behavior Graphs are meth-
ods to automatically extract scenarios from data and/or
to provide an unambiguous way of labeling

Coverage: The breadth and frequencies of scenarios
is also important. Datasets, benchmarks and simulators
can focus on narrowly specified scenarios, a suite of
scenarios, or a broad range of cases. Even if the coverage
is broad, the distribution of the tests are important, as is
explicit coverage of corner cases, such as tests or data
collection that include erratic, non-cooperative humans.

o Synonyms: Edge Cases, Regression Tests

Robot Hardware Platform: The specific robot morphol-
ogy, including its shape, sensors, effectors, displays and
communications modalities. Robot hardware platforms
can be instantiated in the real world or in simulation or
both; while many robots have associated simulators, not
every robot is represented in every simulator. Unifying
robot embodiments is unnecessary and likely impossible,
as different robot embodiments are used in different con-
texts. For this reasons, while some benchmarks specify
robot embodiments, others are embodiment agnostic.

« Synonyms: Form Factor, Platform, Embodiment
Sensors: The devices which detect or measure physical
properties and record, indicate, or otherwise respond to
them. Sensing can include on-board sensors only, or may
include external sensors or trackers.

o Synonyms: Inputs, Observation Space
e Major Divisions: Robot Sensors on the robot and
Third-Person Sensors in the environment.

Robot Actuators: What is the action space of the robot?
Conceivably, this may also include third-party actuators
such as automatic doors, but this usage is rare.

« Synonyms: Effectors, Action Space

Communications Modalities: How can humans and
robots communicate? Not at all, the robot speaking
but not hearing, the robot hearing but not speaking, or
two-way? Some possible modalities of communication
includes but are not limited to communicating through
visual and audio signals, through the body and head



motion, or no communication at all.

Data Collected: In addition to any robot sensation, actu-
ation, and communication, benchmarks, datasets or simu-
lators may collect other data such as people tracks, maps
of the spaces, and so on. This can include information
about pedestrians, such as access to explicit pedestrian
states (e.g., position, velocity) or just sensor data; sensor
data itself can include third-person sensors like external
cameras, or be restricted to the robot’s observation space.
Pedestrian and robot data can be ground truth (either
from a simulator or from motion capture in the real)
or noisily extracted with detection and tracking. The
range of visibility of pedestrian is also important, as is
whether the visibility is restricted to that of robot sensors
(including range, occlusions, directionality, and sensing
delay) or ground truth (again, from the simulator or non-
robot sensors). This is further discussed in Section IX.
Metrics Collected: Metrics transform raw collected data
into standardized measures with shared definitions that
can be compared across different algorithms, robots,
and scenarios. Having shared metrics is important for
communicating benchmarks, datasets and simulators and
is being looked at by several research groups; we present
a view of this field in Section VI.

Human Behavior Authoring Methods: How are the
human behaviors generated for the dataset or benchmark?
E.g. real pedestrians, confederates of the experimenters,
recordings, simulated via a standard social model, or
generated by a policy. For simulated environments, these
behaviors may include non reactive (pedestrians driven
by pre-recorded data), reactive (ORCA, social force, or
generative models), and animated (character animations
including static moving shapes and animated walking);
for real environments, these may include natural behav-
iors, scripted behaviors, or randomized behaviors. For
both simulated and real environments, goals of the move-
ment may be random, context-relevant, or goal-directed.

13)

14)

15)

¢ Synonyms: Pedestrian Simulation, Crowd Simulation,
Microscopic Crowd Simulation
16) Robot Behavior Authoring Methods: These are similar
to the human behavior authoring methods, except there is
no “real robot” class corresponding to “real pedestrians”,
just the robot policies under test.
« Synonyms: Agent Behaviors, Baseline Policies
17) Simulation vs Real: Whether the dataset or benchmark
is in simulation, in the real, or some combination of
both. Sim and/or real: Is the benchmark operated in the
simulation or in the real world? The participants noted
that the simulation can be effectively used for issue

discovery but cannot replace real world testing.

o Subfactors: Simulation Fidelity, which ranges from
dots in an abstract geometrical space to fully rendered
simulations. This includes both Human Simulation
Fidelity and Robot Simulation Fidelity, as robots are
simulated more often than full humans.

While the above factors are common across many social
navigation instruments, one size does not fit all: there are addi-

tional factors particular to benchmarks, datasets or simulators:

« Dataset Properties include: trajectory count, kilome-
ters traveled, duration traveled, number of pedestrian
encounters, people count and density, robot count and
density, primary view type (robot POV, pedestrian POV,
third-person POV), dataset annotations, dataset diversity,
privacy support, and sensor suite type (moving robot /
stationary robot / third-person sensor suite)

« Benchmark Properties include: the simulation platform,
associated dataset, provided baselines, challenge leader-
board, downloadability, and the most recent update.

« Simulator Properties include: abstraction level, scene
representation, agent representation, physics simulation
fidelity, level of detail of robot simulation (points, cylin-
ders, robot morphologies), level of detail of pedestrian
simulation (with or without gait), pedestrian visual fi-
delity (basic meshes, movements, photorealistic), han-
dling of multiple agents (flow-based crowd, agent-based
individuals), environmental assets (realistic scenes or
simulated layouts; indoors, outdoors or abstract scenes).

VI. SoCIAL NAVIGATION METRICS

Unlike traditional navigation, where the community largely
agrees on a few evaluation metrics, such as Success weighted
by Path Length (SPL) [15], finding a consensus for social nav-
igation metrics is challenging. One reason for this difficulty is
that we care about multiple aspects of human-robot encounters
in social robot navigation, e.g., how safe a robot’s behavior is
nearby people and how well the robot communicates its intent
in order to facilitate motion coordination. Measuring any one
of these factors from a human perspective is difficult, let alone
deciding how to combine them into a single metric.

For example, while safety is a generally agreed upon
factor that drives the implementation and evaluation of social
navigation systems, safety is a complex construct [36]. While
one can think of physical safety in terms of collisions, as is
often the case in the broader robot navigation literature (and
is captured in Principle P1, Safety), safety also can be viewed
from a psychological standpoint [72] (which might be captured
in Principle P2, comfort), or even in terms of not disrupting
social and moral values [37] (which might be captured in
Principle P5, Social Norms). Careful thought must be put into
even obvious terms as the context of their usage may change
their meaning (Principle P7, Contextual Appropriateness).

The next section provides a taxonomy of social navigation
metrics, followed by a discussion of the challenges of mea-
suring social navigation. We then present recommendations on
metrics for social navigation, along with guidelines for using
metrics to evaluate the success of social navigation systems.

A. Taxonomy of Existing Social Navigation Metrics

In the past years, a wide range of metrics have been
proposed to quantitatively measure key aspects of social robot
navigation and allow for fair comparison among social naviga-
tion solutions (see [0, 8] for recent reviews). We describe three
ways social navigation metrics can be classified according to,
a) their nature, b) the variable being modeled and, c) their



Fig. 6: The proposed taxonomy suggests classifying metrics accord-
ing to three aspects: the type of variable (or variables) they model,
their nature, and their temporal scope. To quickly identify metric
types, we suggest using a three-letter code based on these factors. For
example Success Rate (SR) is a Non-Social, Hand-Crafted, Task-Wise
metric, or NHT metric; a sensor metric gauging moment-to-moment
human facial reactions to robot behavior would be a Social, Sensor,
Stepwise metric, or SSS metric; and a questionnaire asking about the
overall quality of a robot’s navigation would be an All-Encompassing,
Questionnaire, Task-Wise metric, or AQT metric.

temporal scope. To fully classify a metric, it should therefore
be classified according to the three taxonomies.

1) Taxonomy based on their nature: We can distinguish two
main groups of metrics, those that are algorithmic, and those
that are not computed but surveyed (see Fig. 6).

Surveyed metrics are usually human ratings of desired
properties of social robot navigation, e.g. safety, comfort,
legibility. They can in turn be classified into questionnaire-
based (in-situ or ex-situ), where the rates are explicitly re-
quested, or sensor-based, where the rates are transduced from
sensor data. Although they arguably are the best (or correct)
metrics to measure success for social navigation, they are
expensive, difficult to scale, and time-consuming. While small-
scale human studies are commonly conducted, the results can
have high variance and can be non-reproducible. To address
this shortcoming, researchers have also created a variety of
algorithmic metrics that serve as proxies for surveyed metrics.
These algorithmic metrics are cheap to compute and repro-
ducible, two properties that are key for benchmarking. Unlike
in traditional navigation, where SPL [15] is a commonly
accepted metric, social navigation has no single metric of
reference. Instead, method comparison is usually performed
using multiple metrics.

Algorithmic metrics can be subsequently classified into
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hand-crafted and learned, based on whether they are the
result of intuition and experience, or modeled using statisti-
cal analysis or machine learning. Hand-crafted metrics are
objective (i.e., in what they compute, not necessarily their
interpretation), scalable and can be easily computed given
certain assumptions, yet oftentimes they cannot fully capture
the desired property of social robots. Learned metrics can
be considered a compromise between survey-based and hand-
crafted metrics. These evaluative models can be trained on
large-scale offline datasets of human ratings and then used to
score robot behavior. They are reproducible and have minimal
inference cost, but compiling the necessary datasets can be
very time consuming. Learned metrics can be further split
into distribution-specific metrics, which rely on assumptions
on the properties of the dependent variable to model [73],
and distribution-agnostic metrics, which aim to model these
variables without making any relevant assumptions [74, 75].

2) Taxonomy based on the variable being modeled: Re-
gardless of the nature of the metrics, algorithmic or surveyed,
learned or hand-crafted, the variables they model can refer
to different phenomena. Most common metrics assess either
social or non-social aspects, but a metric could also combine
both into an all-encompassing metric (see Fig. 6). Non-
social metrics have generally been developed with PointGoal
navigation in mind and focus on aspects such as path and
energy efficiency or success rate. They generally have the
advantages of being objective, reproducible, and are usually
fast to compute, but do not provide any social performance
information. Social metrics focus on one or more social
aspects of robot navigation, such as comfort, acceptance,
trustworthiness, or predictability. All-encompassing metrics
aim to model the overall scores humans would provide in robot
navigation, considering both social and non-social aspects.
Although these metrics would arguably be the most desirable,
very few have been proposed [75, 76].

3) Taxonomy based on temporal scope: 1t is also useful to
consider metrics’ temporal scopes, as they determine where
a metric can be applied. Here we distinguish task wise and
step wise metrics (see Fig. 6). Step wise metrics provide a
score per time step, and are well suited for path planning.
Task wise metrics are the most appropriate for benchmarking
social navigation algorithms, as they provide a single score
per task. Step wise metrics can potentially be combined into
task wise metrics, such as by averaging across all steps
within a task. However, not all moments within a social
navigation task have an equal impact on social performance.
To address this, task wise metrics can also combine step wise
data with temporal data to capture features such as reversals
in step wise metrics over time, more heavily weight task-
relevant periods of the task, or measure how long a robot
was able to navigate with high quality step wise metrics
[77]. For reinforcement learning-based social navigation, task
wise metrics (AAT specifically, according to the proposed
taxonomy) can be preferable over step wise metrics, depending
on their properties. Although using task wise metrics would
produce delayed rewards, a step wise metric would only be
advisable if its cumulative value reflects task performance,
which is generally not the case.



B. The Challenges of Measuring Social Navigation

The evaluation of robot navigation has evolved as the field
has matured, moving from success metrics to quality metrics
to social metrics. Early work focused on success metrics
that gauged whether the robot did its task, such as success
rate or kilometers without incident [78]. Later work proposed
quality metrics that gauged how well the robot did its task,
such as SPL [15]. More recent work such as [10] proposes
social metrics that gauge how the robot behavior affects other
agents, such as personal space compliance (PSC) [71] or
questionnaire-based metrics [30-32].

However, because social metrics involve robots interact-
ing in complex real-world environments with humans whose
learning changes their behavior over time, several additional
factors must be considered to evaluate these social metrics
accurately and reliably. These include (1) the challenges of
dynamic environments, (2) the impact of long-term exposure
on study participants, (3) how robot behavior may be changed
by deployments, and (4) limitations of metrics themselves.

1) The Challenges of Dynamic Environments: When mea-
suring the performance of a social robot, an important consid-
eration is the dynamic nature of the environment and of the
other pedestrians around. These elements are often controlled
when performing in-lab studies, but evaluation in the wild is
much more intricate, especially when looking at longer periods
of time, as robots become more and more capable of long-
term deployment [65]. Results of performance measures like
accuracy might be affected by simple changes such as lighting
conditions and weather. Speed may be similarly affected by
the percentage of remaining battery. While almost impossible
to mitigate such effects, they should be acknowledged and
highlighted when reporting relevant results.

2) Challenges Based on How Robots Change People: Yet,
a more challenging aspect to measure is the dynamic nature
of pedestrians when interacting, even casually, with a robot
[79]. When people interact with a navigating robot for the first
time, they adapt their beliefs and expectations to the robot’s
behavior, which can cause immediate improvement in various
metrics such as fluency, time, and efficiency.

This phenomenon can be leveraged to train pedestrians
around robots, rather than adapting the robot to the pedes-
trians. One such use of passive demonstrations was shown to
significantly reduce the number of conflicts between a person
and a robot passing one another in a hallway, by having the
robot demonstrate in advance how it signals its intentions [80].

Beyond the novelty effect of the first encounters, people
will refine their behavior around a robot as they interact with
it for a longer period of time. A person will behave and
react differently to a navigating robot on the tenth interaction
than on the one-hundredth time [81, 82]. Answering questions
regarding how people adapt to the presence of navigating
robots remains mostly unanswered, and more research on this
topic is needed [83], but studies of other social interactions
such as asking favors [64] and information delivery [62]
indicate that adaptation is likely.

When conducting research on social navigation in academia,
it is not uncommon to rely on students, especially those
with STEM and robotics backgrounds, as participants in

an empirical study; this reliance on students has long been
known to the psychological field as a potential source of
bias [84, 85]. Measuring acceptance, animacy, and fluency
can all be affected by this biased population that has been
exposed to robots as part of their studies. Moreover, as robots
are being deployed around campus, other students are also
being exposed to these robots and thus over longer periods of
time might also be biased in their expectations regarding the
behavior of robots, based on their past encounters. Industry
researchers in the symposium also reported differences of so-
cialness ratings between naive subjects and robot researchers,
and even between robot researchers and experienced robot
“wranglers” who logged far more hours of direct robot time.

3) Challenges Based on How People Change Robots:
When a robot is deployed for a long period of time, people
may become familiar with it and thus more willing to accept
risky behavior from it: it may be able to drive at higher
velocities, which will affect speed measurements, or it might
get closer to others, which may affect efficiency and accep-
tance. Some symposium participants noted multiple instances
of robots colliding with visitors after a good track record
of avoiding collisions around the development team; a post-
mortem revealed that this was likely due to the development
team implicitly learning to keep a collision-free distance.

Moreover, people’s attitudes towards the robot over longer
periods may require additional metrics that better capture how
people perceive a long interaction with a robot. For example,
in a long-term study of a socially assistive robot, the faults of
the system did not affect the overall acceptance of the system
by the participants [86]. Similar phenomena are likely to be
observed in a social navigation context and thus should be
reasoned about when measuring long-term interactions.

4) The Limitations of Social Metrics Themselves: In ad-
dition to these concerns, metrics themselves have challenges,
including subjectivity and scaling, relevance and weighting,
and the transferability of results between robot morphologies.

1) Human ratings are subjective. Human ratings are by

their very nature subjective, and they depend on many
factors such as cultural context, environmental context,
goals or priorities within a scenario, or their overall
familiarity with robots. It is important to account for the
factors that all human participants experience, as well
as attempt to characterize unique factors relevant to the
scenario that can affect how they receive the scenario.

2) Subjective metrics are difficult to scale. Expanding to

a larger participant pool can help to mitigate variations
between individuals, but it can be hard to execute com-
plicated scenarios with a large number of participants.
Creating analytical models of certain sub-elements of
human reactions, such how comfortable observers are
with the proximity of the robot, can potentially be done
with studies of a more targeted scope, and then used in
broader models of human responses to robot behavior.

3) Real-world evaluation is difficult to scale. The closer a

study can get to emulating a real-world scenario such as
a busy street, a crowded airport, or a packed restaurant,
the more it can capture the effectiveness of a robot in this
domain. However, creating these scenarios in a laboratory



environment is difficult. Eliciting natural behavior can
be challenging, and many social environments have a
large volume of people entering and exiting that can be
hard to represent. Therefore, efforts are being made to
record natural human behavior for use in simulations to
address this issue, along with blending multiple metrics to
account for the many aspects of a real-world deployment.

4) Choosing which variables are relevant. Measuring all
possible signals humans generate in response to a robot is
difficult. However, selecting any subset can neglect other
useful signals. For example, using only 2-dimensional
poses disregards other very important inputs such as face
expressions, gestures or gaze [87]. Putting thought into
which signals are most relevant to a scenario and able to
be robustly collect them is important.

5) Weighting Multiple Metrics. The variety of useful
metrics and their context dependence suggest applying
an ensemble of metrics, weighted to account for the
parameters of a specific scenario. The optimal method for
doing this, however, remains open. It is worth considering
if this weighting may vary not only across different
environments but also over the course of a single path
as the audience or priorities of the robot change.

6) Non-homogeneous hardware. Robots have varying sen-
sors and actuators. While some only have access to
their wheels’ motors and a LiDAR, others can inform
pedestrians of their presence and intentions, or share
information using sound and visual cues. It is difficult to
consider these additional aspects analytically, so standard-
ized metrics do not take them into account. Unfairly, this
limitation can make robots able to share such information
appear less socially capable than they are.

C. Assessment of Existing Social Navigation Metrics

For all the reasons outlined above, quantifying the quality
of different social navigation strategies is difficult. A social
scenario can include many different stakeholders with varying
priorities, and context is extremely important. For example, a
passerby may primarily be focused on metrics of discomfort
as the robot passes them, while the recipient of a handoff may
prefer more detailed information about the robot’s movements.
A warehouse may focus more on expediency, while in a
restaurant excess speed or urgency may be unnerving. Social
preferences also vary across cultures and groups.

In all of these cases, subjective metrics reported by humans
directly experiencing these scenarios is the gold standard. This
can be difficult, however, in terms of scaling the number of
participants. A secondary issue is that the higher the density of
feedback requested, the more disruption to the social scenario
being measured. Both of these issues increase the demand for
analytical or learned subjective metrics, and we discuss the
considerations for this in section VI-B4.

New metrics are often created to address issues that come
up in new scenarios, and as social navigation is being deployed
in increasingly many new environments, more metrics are
created to address these scenarios. It is also unsurprising that
new metrics will be of particular value in the environments

that demanded their creation. This means that the number of
metrics available to assess performance can be daunting, and
their value very context-dependent.

After reviewing the related literature, we did not find a
convincing method to quantitatively compare different metrics
to determine whether one is strictly better than the other. We
suggest that when using any social navigation metric it is
essential to note both the metric’s original context and the
current one it is being applied to. As mentioned, survey-based
metrics are generally preferred for benchmarking, though their
results are difficult to reproduce if they are not run correctly
and they are resource intensive. All-encompassing learned
metrics would be the next best option for benchmarking, but
unfortunately, none of the existing ones (see [73-75]) satisfy
the requirements of all applications and scenarios. Metrics
focusing on specific phenomena are of great importance when
debugging and diagnosing an algorithm’s flaws, but are some-
times are difficult to use to compare disparate algorithms.

D. Recommendations for Metric Usage and Development

While many in the symposium argued that surveyed met-
rics are the gold standard, others pointed out that they are
challenging to get right, expensive to collect and sometimes
inappropriate (e.g., for evaluating ablation studies where safety
cannot be guaranteed). Learned metrics have been proposed
as a solution, but are not ready for adoption. Therefore, to
measure social robot navigation, we recommend a balanced
approach, involving a common subset of hand-crafted metrics,
recommendations for the iterative validation of surveys, and
suggestions for future metric development.

1) Recommendations for Hand-crafted Metrics: Although
surveyed metrics are the arguably the most meaningful and
reliable metrics if the required surveys are carried out ade-
quately, they are expensive and time consuming. Additionally,
no task-wise learned metrics are yet available.

Therefore, to ensure a systematic and objective comparison
of social navigation algorithms we suggest using a subset
of existing hand-crafted navigation metrics. The suggestion
includes success-related metrics accounting for success itself,
collisions, and failures, as well as metrics related to trajectory
properties and social aspects. These recommended metrics can
be found in Table I, along with descriptions of the phenomena
accounted for, their required parameters, units, ranges and
references where a full mathematical definition can be found.

A relevant characteristic of many of these metrics is that
their values, and more importantly what would be considered
good ones, heavily depend on the task and the context where
the experiments take place and the parameters of the metric
(see Table I). It is therefore good practice to explicitly state
the parameters used and context when reporting results.

It is also worth noting that the metrics in Table I are
frequently reported as averages for a number of experiments
rather than for a single trajectory (e.g., Success (S) is often
found as the Success Rate (SR)). When reporting experimen-
tal results for multiple trajectories, providing distributional
information in addition to averages allows to show valuable
information, including outliers. This is key when consistency is
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Metric Short | Description Class. | Parameters Unit Range | Cited
Binary variable describing whether the robot
Success S reaches the goal. When averaged, it is referred as NHT - boolean {0,1} [15]
Success Rate (SR).
Number of collisions in the trajectory; when .
averaged it may be referred to as Collision Rate Collisions to
Collision o & ¥y e . . . NHT | terminate collision [0,00) [21]
2 (CR). If one collision terminates the episode, CR is .
-2 episode
£ the complement of SR.
=) ‘Wall Collisions wcC Number of collisions against walls. NHT - collision 0,00) R@G
% Agent Collisions AC Number of collisions against humans or robots. NHT - collision 0,00) R@G
3 . Number of collisions against humans. Also called _ .. - R@G
2 Human Collisions HC H-collisions [88]. NHT collision [07 ) [38]
Tlmeopt before TO Bmary variable accounting for failures caused by a NHT Time timeout (0,1} R@G
reaching goal timeout. threshold
S . R Distance &
Failure to progress FP Number of failures caused .by not d.ecream.lg the NHT time failure [0,00) R@G
distance to the goal for a given period of time. ) .
thresholds
. . Distance &
Stalled time ST Time where Fhe' magr.ntude of the speed of the NHT time s 10, 00) [89]
robot falls within a given threshold.
thresholds
Time to reach goal T Time between task assignment and completion. NHT - s [0,00) [9201]’
Path length PL Length of the trajectory. NHT - m [0,00) [9201]’
Success weighted using the normalized inverse path
Success weighted length, i.e., weighted using path length divided by } . .
by path length SPL the maximum of the minimum distance and the NHT suceess [0.1] [15]
path length [15].
. Vmina o . . .
Velocity-based Vore, Mlnlmum, average and maximum linear velocity on SHT ) mjs [21]
features a trajectory. (—o0,00)
Vmwc
Linear acceleration s Minimum, average and maximum linear 5
2 based features Aavg, acceleration on a trajectory. SHT ) m/s (—o0,00) (21]
=) max
5t i .. . . .
g . > Minimum, average and maximum linear jerk (i.e., 3
= Movement jerk ;”Vg > | the second-order derivative of the linear speed). SHT ) m/s (—o0,00) (211
Q max
<3
b= Clearing distance CDyin. Mlplmum and average distance to obstacles in a SHT ) m 10, 00) [21]
< trajectory.
> CDyax
% Ratio of the trajectory with the minimum distance
2 . to a human under a given threshold. If the Distance
= Space compliance s¢ threshold is 0.5m, it is referred to as Personal SHT threshold mn [O’ 1) (71]
Space Compliance (PSC) [26].
Minimum distance . . . . .
to human DH,;, Minimum distance to a human in a given trajectory. SHT - m [0,00)
Minimum time to Minimum time to collision with a human agent at
collision TTC | any point in time in the trajectory, should all robots SHT - m [0,00) [28]
and humans move in a linear trajectory.
Aggregated Time AT Time tak'en for a subset of cooperative agents to SHT Coope’ranve : [0,00) [10]
meet their goals. agents’ set

TABLE I: Suggested hand-crafted metrics for the evaluation of social navigation systems. The first tranche in the table are traditional
navigation metrics, included to ensure that social navigation systems do not regress on traditional navigation performance; the second tranche
concern aspects of the quality and socialness of navigation. Citations refer to either papers or challenges defining the term, or R@G for
metrics from an unpublished Robotics at Google[91] robot deployment.

important, as it is the case of safety. Distributional information
can be provided, for instance, as histograms.

2) Recommendations for Survey Development: Gathering
human perception with surveys has a long history in human-
robot interaction (see for example the discussion in [92]), but
there is not yet a unified approach to questionnaire develop-
ment in social robot navigation. Following the social scenario
development approach of [30-32], we recommend an iterative
approach in which versions of questionnaires are proposed and
then empirically tested to determine their validity [69].

While survey validity is a complex topic worthy of its own
book [70], several concerns for the design of questionnaires
include assessing test-retest reliability (whether a survey gives

stable results over time), construct validity (whether a survey
measures what it purports to measure), and sources of bias
(distorting factors that make the results hard to interpret).
Assessing these factors involves reviewing both individual
questions and the design of the survey as a whole.

For surveys as a whole, the longer a survey is, the less
reliable the answers are [93, 94], and the more frequently
surveys are given, the less likely people are to participate [95]
a phenomenon known as survey fatigue or more generally
response burden on participants. Reducing response burden
is important not just to improve the quality of results but to
respect the time of participants; nevertheless, issuing surveys
multiple times can help measure test-retest reliability, issuing



surveys to multiple populations can help measure bias, and
including redundant questions can help measure construct
reliability and question utility.

For individual survey questions it is important to ask them
using techniques which have been validated. For example,
Likert scales [96] are a widely-used technique which provide
a range of options like “Strongly Agree, Agree, Disagree, or
Strongly Agree.” While it is tempting to use consistent word-
ing between questions, to reduce cognitive load on participants
it is arguably better to formulate Likert scale responses so they
form direct responses to each question, along with an option to
indicate the question is not applicable. For example, to assess
Principle P1, Safety, a question might ask “How safe was the
robot’s motion?” and give the responses “Unsafe, Somewhat
Unsafe, Somewhat Safe, Safe, or Not Applicable.” To evaluate
overall navigation quality, some researchers have explored
Likert scales similar to performance-based employee rating
systems (e.g., “Outstanding, Very satisfactory, Satisfactory,
Unsatisfactory, Poor”?) but no consensus yet exists here.’

Statistical analysis of experiments is discussed in depth
in standard textbooks such as [69, 97], but we highlight
some key concerns for social navigation. Terms such as
“significance” often refer to statistical significance, a specific
and contentious term in psychological literature [98] which
should not be used unless the proper statistical tests are
conducted. To do so, experimental conditions tested should be
properly balanced counts (especially if questions are presented
in multiple orders to reduce first-response bias, which creates
sub-conditions within the experiment). Properly balanced ex-
periment conditions enable the analysis of variance with tools
like ANOVAs [69, 97, 99] and Cronbach’s alpha [69, 100].
Cronbach’s alpha in particular can help determine whether
a given question is a reliable factor (see for example the
discussion in Appendix D.4 of [31]) or should be dropped
in future surveys in favor of more reliable questions.

3) Recommendations for Future Metric Development:
Because conducting human surveys is expensive, sympo-
sium participants expressed interest in finding hand-crafted
or learned algorithmic proxies. For example, to gauge safety,
some benchmarks measure ‘time-to-collision’ (TTC) [28]. To
gauge comfort, some researchers [101, 102] have proposed
some metrics to measure and limit the unnecessary motion
and direction changes by the robot in the presence of humans;
others have proposed ‘visibility indices’ which gauge the
distance and angle at which robots first impinge on a human’s
field of view [103, 104]. Legibility is also highly connected
to field of view, as observers need to be able to see a robot to
make inferences about its movements and goals[77].

Future metric development should continue to explore
learned or hand-crafted algorithmic proxies for surveyed met-
rics which can be efficiently computed, enabling the develop-
ment of more efficient, repeatable and scalable benchmarks.
Validating these metrics might require collecting and annotat-
ing a large-scale dataset with both algorithmic and surveyed
metrics, which could be used to compute the correlations

Zhttps://helpjuice.com/blog/employee-evaluation-form
3https://www.performyard.com/articles/performance-review-ratings-scales-
examples

between algorithmic proxies and their surveyed counterparts.
This dataset could also be used to learn metrics which capture
the surveyed results, as done in [74, 75]. Another approach to
learning social metrics could be AutoRL [76], which learns
dense reward functions useful for learning based on a sparse
true objective; conceivably, data from surveys could be used
as the true objective to train a learned social reward.

E. Metric Guidelines

In general, social navigation systems should not just be
good social systems, but robust navigation systems, with a
high success rate, low collision rate and a good SPL to ensure
efficient experiments and the safety of human participants.
Many of these features can be determined in simulation before
deploying policies on potentially dangerous robots, but how
social these policies are can only be determined with reference
to human reactions to robot behavior - either through direct
human surveys, or learned metrics derived from human data.

Our recommendations for social metrics expand on these
insights and summarize our broader recommendations from
Section VI-D: use a broad set of navigation metrics to en-
sure robustness, attempt to use human survey metrics where
feasible to evaluate socialness, validate those metrics with
standard tools, guard against sources of bias, but use metrics
appropriately in each stage of development.

1) M1 - Ensure robustness using standard metrics: To
ensure social navigation algorithms are good navigation
systems, evaluations should report as many of the stan-
dard metrics of Table I as feasible.

2) M2 - Validate policies with algorithmic metrics in
simulation: Prior to deployment, algorithmic metrics
such as those in Table I can enable fast evaluation to
filter out bad policies prior to deployment.

3) M3 - Parameterize metrics appropriately in context:
Social metrics with parameters, such as failure to progress
or space compliance, should be appropriately parameter-
ized given the current context, and parameters should be
reported for those metrics that require them (see Table I).

4) M4 - Use learned metrics to help iterate on behavior:
Where learned metrics based on human data are available,
they can provide insights to improve robot behavior, or
acceptance tests prior to deploying policies on robot.

5) M5 - Use validated surveys to evaluate social per-
formance: Human surveys using validated instruments
should be used to test the social navigation scenarios once
the system is sufficiently robust and reliable.

6) M6 - Set up experiments consistently to avoid bias:
Environmental complexity, subject selection, robot famil-
iarity, survey fatigue and differing experimental setups
can all distort metrics. In particular, consider the use of
well-designed scenarios (see Section VII) to make metrics
easier to compare.

7) M7 - Analyze experiments iteratively: Social contexts
are complex and getting metrics and surveys right are dif-
ficult; therefore, researchers should analyze experiments
and iteratively improve them.

8) M8 - Report results in depth: Pointwise estimates
of single metrics can provide a distorted view of the
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performance of a system. Experimenters should report
a battery of traditional, learned, and surveyed metrics,
including both stepwise and taskwise metrics, as well as
histograms or other distributional information.

VII. SOCIAL NAVIGATION SCENARIOS

Social navigation scenarios are specifications of categories
of human-robot interactions that facilitate the collection of data
on human-robot behaviors and the communication of that data
between researchers in a common language.

Fundamentally, social robot navigation involves robots in-
teracting with humans. The situations in which we study these
interactions range from controlled scenarios in the laboratory
with small numbers of humans and robots to large-scale in-
the-wild studies with dozens of robots in many uncontrolled
pedestrian encounters. Following the symposium, participants
engaged in substantial discussion regarding the relative impor-
tance of studies along this spectrum.

o Proponents of large-scale in-the-wild studies argue that
these studies have good ecological validity, uncover long-
tail behaviors, enable more reliable assessments of human
perceptions of robot behavior, and enable data collection
for unsupervised and reinforcement learning. These stud-
ies can have good statistical reliability and can generate
large datasets; however, these studies are expensive to
run, take a long time to generate answers, require heavy-
weight software architectures, and are suitable for policies
that are already reliable.

« Proponents of controlled in-the-lab scenarios argue these
scenarios can also have good ecological validity, prevent
regressions on known scenarios, enable scientific analysis
of algorithms and behavior, and enable data collection
for supervised and imitation learning. These studies are
cheaper to run, generate data quickly, require less com-
plex software, and are more appropriate for fast iteration
on policies that are in an earlier stage of development;
however, it is harder to uncover long-tail behaviors or to
generate large datasets.

Social navigation scenarios are a research tool to help bridge
the gap between in-the-wild studies and controlled laboratory
experiments by defining a clearly specified set of scenarios
which can be identified in data collected in the wild, set up
as experiments in the lab, and analyzed consistently based
on the common definition. For example, the commonly-used
FRONTAL APPROACH scenario (Table III), which involves
a robot and a human traveling in opposite directions in an
environment large enough for them to pass each other, could
be used to in field studies, robot deployments, laboratory
experiments, and even imitation learning:

o Field Studies: A FRONTAL APPROACH definition could
be used to identify human-robot interactions in data
collected from an in-the-wild field study, perhaps using
the Behavior Graph method for analysis to distinguish
them from other interactions such as intersections or over-
taking. This suggests social navigation scenarios should
be construed broadly so that long-tail behavior can be
analyzed. For example, if during a FRONTAL APPROACH

a pedestrian trips and is helped up by the robot, the pedes-
trian and robot may not exit the environment normally,
but this is nevertheless an event that happens in FRONTAL
APPROACH scenarios and should be captured in the data.

« Robot Deployments: A FRONTAL APPROACH definition
could be used to set up a deployment to elicit desired
behaviors - for example, a robot could be deployed
traveling back and forth on a well-trafficked corridor.
Thus, social navigation scenarios should be well-specified
enough to eliminate counterexamples (for example, a
corridor must be wide enough for both robot and human
to pass to be considered FRONTAL APPROACH).

« Laboratory Experiments: A FRONTAL APPROACH def-
inition can be used to set up a laboratory experiment (or
regression test) to evaluate the performance of a given
policy compared to alternatives - for example [30]. For
the statistical analysis of this experiment to be successful,
both metrics and criteria for a successful test need to be
defined. For example, in a laboratory experiment, both
the robot and the human need to attempt to cross the
scenario environment, whereas in a robot deployment or
field study, humans may stop to take a phone call, or a
robot navigation stack may crash.

« Dataset Generation: When creating datasets for social
navigation, scenario definitions can be used to curate
existing data for inclusion into the dataset, or to guide
the setup of robot deployments or laboratory experiments
designed to build that data. This scenario categorization
can then be used to capture information about the dataset.
For example, a pedestrian dataset could collect episodes
each with a single scenario like FRONTAL APPROACH. In
contrast, a crowd dataset, with larger numbers of pedes-
trians interacting in a larger area, might have episodes
with several scenarios happening at once, like FRONTAL
APPROACH, INTERSECTION, and BLIND CORNER.

« Imitation learning: A FRONTAL APPROACH definition
can also be used to collect episodes for imitation learning.
For this to be successful, additional criteria must be
defined - for example, which behaviors are considered
successes or failures, or quality metrics which enable
rating episodes as better or worse - so a high-quality
set of episodes can be collected to enable training of a
policy. In other words, while creating imitation learning is
dataset generation, not all datasets are good for imitation
learning. In the imitation learning use case, FRONTAL
APPROACH episodes in which the robot or human fail to
cross the scenario environment may be marked as failures
so they can be excluded by the learning algorithm.

In the following section, we outline a methodology for
identifying and specifying social navigation scenarios which
supports this breadth of usage, present a “Social Navigation
Scenario Card” which enables scenarios to be clearly defined
and disseminated, list common scenarios in the literature,
present example scenario cards for some of the most com-
monly used ones, and conclude with guidelines for scenario
development and usage.



[ Social Navigation Scenario Card |
Scenario Metadata
Scenario Name

FRONTAL APPROACH

A robot and a human approach head-on in a
passable space.

Low-density pedestrian scenario applicable
indoors and outdoors.

Scenario Description

Scientific Purpose

Scenario Definition

A space wide enough for the robot and
human can pass each other.

The robot navigates from one side of the
space to the other

The human navigates in the opposite
direction of the robot.

Geometric Layout

Intended Robot Task

Intended

Human Behavior
Scenario Usage Guide
Success Metrics
Quality Metrics

Success Rate, (No) Collisions

Comfort, Politeness

Robot goes around human in a socially
acceptable manner.

1. Robot collides with human

2. Robot fails to exit in time limit

1. Robot and human face each other

2. Robot and human move towards each other
at start of episode

3. Sufficient clearance exists for robot and
human to pass each other

Ideal Outcome

Failure Modes

Labeling Criteria

TABLE 1I: Scenario Card for FRONTAL APPROACH

A. Scenario Design Methodology

Interactions occur between humans and robots wherever
robots are deployed. Many of their interactions are unique,
but others are common enough or important enough to warrant
special treatment - whether we are looking for them in data
collected from field studies, trying to recreate them in robot
deployments and laboratory experiments, or trying to make
them happen at scale for dataset generation or imitation
learning. Having a clear definition of what behavior we want
to identify, recreate or scale can ensure that we have good data
and can communicate it to other researchers.

To facilitate this, we propose the use of scenarios defining
human-robot interactions, and propose the following method-
ology for defining scenarios relevant to social navigation. This
consists of a three-step process:

1) Define the Scenario Scenario definitions should be clearly
specified enough to be identified in data or set up as an
experiment. Thus, the scenario designer should consider:

a) Intended Research Context: the research topic the
scenario is designed to explore, for example, low-
density indoor pedestrian navigation or high-density
outdoor crowd navigation. Many scenarios general
enough to apply to most research contexts.

b) Intended Robot Task: the high-level objective of the
robot, for example, navigation between two points, vi-
sual navigation, or guiding a person to a goal location.

c) Intended Human Behavior: the high-level objectives
of nearby people, for example, navigating between two
points, delivering a package, or following the robot to
a goal location.

d) Success Metrics: the criteria which define the success-
ful completion of the robot’s task. While scenarios may
play out in the wild in a variety of ways, the robot’s task
should be well-specified enough that it is unambiguous

whether it succeeded.

2) Evaluate the Definition: The way scenarios are designed
affects the aspects of robot behavior that they evaluate
and what behaviors they elicit in humans, sometimes in
unexpected ways Therefore, we propose that designers
should evaluate scenarios after their initial design, assessing
their ability to measure the desired robot behaviors. Well-
designed scenarios should have the properties of common-
ality, flexibility, and fitness to purpose.

a) Commonality: Well-designed scenarios should be de-
signed to evaluate the designer’s intended criteria while
maintaining identifiable characteristics that allow it to
be grouped and compared with similar scenarios in use
in the community. Common categories of scenarios are
listed as sections of Table III, and include “approach”
or “hallway” scenarios involving robots approaching
people or objects from specific directions, “intersec-
tion” scenarios where robots and humans cross paths,
and “interpersonal” scenarios such as robots leaving
or joining conversational groups. Scenario designers
should compare their scenarios with these common sce-
narios to avoid introducing redundant scenarios when
existing scenarios are available.

b) Flexibility: Well-designed scenarios should be broadly
specified enough to capture the full range of behavior
which occurs in the wild. It is important to avoid “solu-
tionizing” in which scenarios prescribe intended robot
or human behavior so narrowly that naturally occurring
variants are included. Instead, scenarios should have
broad, flexible definitions that enable them to capture
behaviors that happen, along with clear success metrics
to evaluate whether that behavior came out as intended.

c) Fitness to Purpose: Well-designed scenarios should
allow the scenario designer to evaluate the adaptations
of robot behaviors with which they are concerned.
For example, researchers have explored how proactive
robot behaviors can improve social interactions during
navigation [105]. To evaluate robots that exhibit proac-
tive cooperation, the scenario must be flexible enough
to allow proactive cooperativeness interactions to occur.
Early drafts of scenarios should be piloted to confirm
that desired behaviors can be detected and elicited and
that success metrics measure what is intended.

3) Communicate the Definition: Once a scenario has been
evaluated, it should be communicated clearly and consis-
tently. A scenario definition should be specific enough to
replicate, so other researchers can identify occurrences of
the scenario in their data, recreate it in the laboratory, and
determine whether instances of a scenario correspond to
the intended outcome for the human or robot.

To facilitate communicating scenarios, we propose a Social

Navigation Scenario Card, presented next.

B. Social Navigation Scenario Cards

Ideally, a social navigation scenario consists of a well-
defined social interaction including robots performing tasks,
people performing behaviors, and relevant features of their
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Scenario Name | Scenario Description Physical Geom. Scientific Robot Robot Human Ideal Related Cited
P Env. Layout Purpose Role Task Behavior Outcome Scenarios In
Hallway Scenarios
FRONTAL A pedestrian and robot Generic Passable Pedestrian An Navigate Navigate Robot / PED. [6, 10,
APPROACH approach head-on. Space Interaction Y AtoB Bto A humans pass OBSTRUCT 30]
PEDESTRIAN A pedestrian overtakes Generic Passable Pedestrian An Navigate Navigate Human passes DowN [45]
OVERTAKING a moving robot. Space Interaction Y AtoB AtoB robot PATH )
RoBoT A robot overtakes a Generic Passable Pedestrian An Navigate Navigate Robot passes 6, 10]
OVERTAKING moving pedestrian. Space Interaction Y AtoB AtoB human ’
INTERSECTION A robot and a human Intersec- Pedestrian Navigate Cross Both pass no (6, 10,
. . Indoor . B Any . L 89,
(NO GESTURE) cross at an intersection. tion Interaction AtoB Navigate collision 106]
INTERSECTION A robot is told to wait Indoor Intersec- Pedestrian Servant Navigate Cross Human goes GESTURE [30]
(GEST. WAIT) | at an intersection. tion Interaction AtoB Navigate then robot PROCEED :
A robot and human Pedestrian Navigate Navigate No collision / [30,
BLIND CORNER meet at a blind corner. Indoor Corner Interaction Any AtoB Bto A obstruction 31]
Doorway Scenarios
NARROW A robot and human Indoor Room & Pedestrian An Navigate Navigate No collision / NARROW [30]
DOORWAY | pass a narrow doorway. Door Interaction Y AtoB Bto A obstruction ARCH ]
ENTERING A robot enters a room Room & Pedestrian Navigate Navigate Robot allows ENTERING
. Indoor . Any . . . R@G
Room occupied by a human Door Interaction out to in in to out human exit ELEVATOR
EXITING ROOM A r'obot exits a room Indoor Room & Pedesm’an Any Nawgate Nav1ga'te Robot exits EXITING R@G
while a person enters. Door Interaction in to out out to in first ELEVATOR
Interpersonal Scenarios
JOINING A A robot joins a group Generic Open Group ) Any Navigate Commu.e Robot joins LEAVING A 6. 89]
GROUP of robots or people. Space Interaction to group conversing group GROUP
FOLLOWING A robot follows a Generic Walking 101th ) Servant Follow Lead robot Robot follows Accom- (6]
person. Space Navigation human person PANY PEER
LEADING A robot leads a person. Generic Walking JomF . Leader Lead Follow Robot leads TOur [6]
Space Navigation human robot person GUIDE
Crowd Scenarios
CROWD | A robot navigates . Passable Crowd Navigate . No collision / RoBOT Vari-
Generic L Any Mill about .
NAVIGATION through a crowd. Space Navigation thru obstruction CROWDING ous
PARALLEL Crowd moves parallel Generic Passable Crowd An Navigate Mill from No collision / CIRCULAR [10]
TRAFFIC to the robot. Space Navigation Y AtoB AtoB obstruction CROSSING
PERPENDICULAR Crowd moves Generic Intersec- Crowd An Cross Mill from No collision / PLAZA [10]
TRAFFIC perpendicular to robot. tion Navigation Y Navigate AtoB obstruction CROSSING
Specialized Scenarios
OBJECT A robot hands an Generic Passable Interactive Servant Deliver Receive Human takes ROBOT (89]
HANDOVER object to a human. Space Navigation object object object COURIER
Robot delivering a Passable Interactive Deliver Receive Delivery of Foop This
CRASH CART X Indoor L Leader . . .
medical product. Space Navigation object object medicine DELIVERY paper

TABLE III: Example social navigation scenarios. For illustrations of the geometric layout, see Figure 7. Closely related scenarios are listed
in the second-to-last column. Citations refer to either papers or challenges defining the scenario, or R@G for scenarios from an unpublished
Robotics at Google[91] deployment, developed according to the protocol in [30] .

environment. This definition should be specific enough that an
encounter can be labeled as an instantiation of the scenario,
but loose enough that it captures a wide variety of behaviors.
For ease of reusability, scenarios should ideally be realistic
in that they represent real-world scenarios, scalable in that
they can be set up at low cost, and repeatable in that the
same scenario could be conducted many times under similar
conditions. However, scenarios may encompass a wide variety
of situations, from a simple FRONTAL APPROACH of a robot
and human passing each other up to the complexity of a robot
navigating a crowd exiting a stadium, and Scenario Cards
should remain flexible enough to capture these use cases.

To define a scenario, we propose a “Scenario Card” ap-
proach which labels the scenario with a set of features that
unambiguously define it, having the following three major ele-
ments: (a) Scenario Metadata that define the name, description,
and scientific purpose of the scenario; (b) Scenario Definition
which clearly describes the environment, intended human
behavior, and intended robot task; and (c) a Scenario Usage
Guide, which provides additional information for specialized
usages such as evaluation metrics, success and failure criteria.

1) Scenario Metadata: The Scenario Metadata identifies
a scenario in an unambiguous way for other researchers,
including the type of the scenario (doorway, hallway, etc.), its

name, its description, and its scientific purpose (crowd navi-
gation, low-density pedestrian, interactive, etc.). For exampke,
the common head-on pedestrian approach scenario might be
labeled FRONTAL APPROACH, which we will use as a running
example.

¢ Scenario Type: Scenarios can be grouped into broad
classes such as head-on approaches versus intersections,
doorways and elevators, crowd versus group, interactive
and accompanying, and so on. Identifying the group a
scenario belongs to can help researchers decide whether
to include a scenario for coverage or exclude it as
redundant.

o Name: The scenario should be given a unique name
which does not conflict with existing scenarios used
within the community.

« Description: The scenario should have a brief description
that communicates what is intended to happen in the
scenario.

« Research Context: Scenarios often are targeted at spe-
cific scientific purposes along various dimensions of
research interest - for example, indoor low-density pedes-
trian scenarios or outdoor high-density crowd scenarios.
Key elements which are often distinguished include:

— Location: Indoor, Outdoor or General Indoor and




outdoor navigation have different constraints and are
often studied separately; however, some scenarios, like
FRONTAL APPROACH, can occur in many contexts.

— Density: Pedestrian or Crowd Low-density pedes-
trian studies (where robots encounter only a few in-
dividuals at a time) are often studied separately than
high-density crowd scenarios (in which people exhibit
qualitatively different behavior).

— High-Level Task: Navigation, Delivery or Interac-
tion Many scenarios focus on pure navigation tasks, but
others involve object delivery, interacting with humans,
leaving and joining groups, and so on.

2) Scenario Definition: The Scenario Definition defines
roughly what is meant by the scenario, in a precise but broad
way that allows scenarios to be identified but not so restrictive
as to prevent recording important behaviors. For example,
FRONTAL APPROACH sceanario definition should enable us
to recognize that a robot and human are approaching head-on,
but at the same time capture an interaction where the human
changes their direction or stops to answer their phone.

o Geometric Layout: Scenarios often occur in specific
physical environments, such as corridors, doorways, at
blind corners, or near elevators. The important features
of the environment should be noted; features that can
vary should also be noted.

« Intended Robot Task: The number of robots and their
desired behaviors should be recorded. A robot simply
navigating around a pedestrian has different behaviors
than one which is specifically attempting to navigate to
a given target. Typical robot tasks are a robot heading
to a pre-defined position, a robot guiding a person to a
destination, or a robot delivering an item.

o Intended Human Behavior: The expected human be-
havior should be specified. In the scenario definition,
behaviors should be specified clearly enough to recognize
the behavior in data or to enable a human to attempt
to perform it, but not too specific that diverse behaviors
could not be collected.

3) Scenario Usage Guide: The Scenario Usage Guide
specifies how the scenario is used in practice, and contains
additional information that goes beyond the definition, such
as idealized outcomes or instructions for human confederates
for experimental setups. This is the place where a FRONTAL
APPROACH scenario would express that the ideal outcome is
that the robot and human pass each other without incident and
exit on the opposite sides of the scenario area.

o Labeling Criteria: A clear set of criteria should be
provided so that scenarios can be labeled in logs data
or rejected in the event of a structured run. For example,
for an intersection scenario, one could demand that the
robot passes within two meters of the human and that
their paths at least potentially cross.

o Success and Quality Measures: To evaluate how well
the robot performed in the scenario, we may also want
to specify “Success Measures” and “Quality Measures”
specific to a scenario such as the ability of the robot
to ensure legibility of its behavior, to limit and control
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disturbance, to facilitate human action and situation un-
derstanding, etc.

¢ Ideal Outcome and Failure Modes: To enable re-
searchers to evaluate robot performances in episodes for
imitation learning or data analysis, the ideal outcome
should be outlined, for example, that a robot should
not collide with a human at a blind corner. Also, to
help debug scenarios and guard the safety of human
participants, failure modes such as colliding with walls,
or stopping dead after a near-collision, should be out-
lined. We include failure modes in ideal outcomes in
the scenario usage guide and not the definition because
researchers interested in data collection do not want to
artificially exclude arbitrary outcomes that can occur in
the wild; however, this is critical information for imitation
learning researchers trying to craft behavior.

« Human Behavior Playbook: If a scenario is designed to
be created in a repeatable way as part of an experiment,
a specific script or rubric should be provided so that
the participants can perform their roles appropriately. For
example, intended human behavior might be travelers in
a crowded railway station, or workers going alone or
with colleagues in an office context. These could include
variations in the behaviors: for instance, some travelers
might be in a hurry while others have more time. Also,
there could be several categories of users in a given
context that might act and react differently.

« Contextual Information: Principle P7 notes that a
robot’s behavior should depend on context: tor instance,
a robot should behave differently if the place is very
calm and needs silence or if it is a busy place, so ideally
robots should recognize in which contextual situation a
scenario is happening. Success metrics, ideal outcomes,
failure modes, human behavior and more can be altered
by the context, so it can be useful to outline any important
contextual variants of the scenario and how they affect
intended robot or human behavior.

C. Example Social Navigation Scenarios

To effectively evaluate social navigation policies, they
should be exercised in a set of scenarios which address the
common use cases that come up in their intended context.
For example, policies for interacting with pedestrians in low-
traffic areas should be tested in common hallway and doorway
scenarios, policies designed to navigate through crowds should
handle common scenarios like traveling parallel to or perpen-
dicular to the flow of traffic, and policies for interaction should
handle scenarios like leaving and joining groups.

Ideally, policies should be evaluated using standard bench-
marks as discussed in Section VIII; however, for a new
research purpose a suitable benchmark may not yet exist.
Nevertheless, researchers should try to find scenarios are
already in use in the field and apply them as comprehensively
as possible so that the evaluation of policies is meaningful and
cam be reasonably compared to other work in the literature.

To facilitate this process, we summarize common social
navigation scenarios in Table III. Dozens of social navigation
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Fig. 7: Geometric layout and intended human and robot behavior for example social navigation scenarios from Table III. The blue circles,
arrows, dotted lines, and dotted circles represent the robot, its direction of motion, its intended path and its intended destination, respectively;
red figures represent the corresponding items for humans. Grey backgrounds represent obstructions, while green figures represent signals or
gestures emitted by an agent such as a gesture to stop or go ahead. Note sample paths and gestures are provided as examples to make the
graphics clear; the actual scenario card definition should be flexible enough to capture a range of behaviors.

scenarios have been proposed in the literature, and we cannot
list them comprehensively; however, we provide references
above to relevant prior work using these scenarios where
available. Also note that scenarios can be grouped into a broad
variety of scientific purposes, including pedestrian navigation,
crowd navigation, and interaction scenarios, which can help
guide researchers in their selections.

1) Pedestrian Navigation Low-density pedestrian naviga-
tion scenarios study how pedestrians interact with robots
a few at a time, and include common hallway and door
interaction scenarios. Common pedestrian scenarios often

2)

include FRONTAL APPROACH where a human pedestrian
approaches a moving robot head-on, ROBOT OVERTAK-
ING where a robot overtakes a slower-moving human,
INTERSECTION where a robot passes a human at a right
angle, BLIND CORNER where a robot and a human pass
each other at an angle with poor visibility, NARROW
DOORWAY where which a robot and a human attempt
to exit a doorway in opposite directions, and so on.

Crowd Navigation High-density crowd navigation sce-
narios study how robots can navigate dense human
crowds, which many researchers argue exhibit qualita-



tively different behavior than pedestrians []. Common
scenarios for crowd navigation include PARALLEL TRAF-
FIC where a robot is going with or against the flow of
moving pedestrians, PERPENDICULAR TRAFFIC where
the robot must cross a flow of pedestrians, CIRCULAR
CROSSING and RANDOM CROSSINGS where pedestrians
are crossing a plaza or room, and even ROBOT CROWD-
ING where a robot is surrounded by stationary pedestrians
and must extricate themselves.

3) Interaction Interaction scenarios involve a task that
places constraints on robot navigation, such as group
navigation skills like JOINING GROUPS of pedestrians
in conversations, LEAVING GROUPS of pedestrians, or
interactive skills such as OBJECT HANDOVER where
robots deliver or receive an item, QUESTION ANSWER-
ING where robots answer or ask questions, and CONTIN-
UOUS MONITORING where a robot observes individuals
exercising or performing another activity.

The columns of Table III capture many of the features
of the Social Navigation Scenario card, though we cannot
list all of them for space. Referring back to our running
example, II shows an example of how the Social Navigation
Scenario Card could be retroactively applied to one of the most
common social navigation scenarios, FRONTAL APPROACH,
which appears in [6, 10, 30] among others.

D. Scenario Guidelines

Scenario guidelines can be broken into three groups fol-
lowing the methodology outlined above: guidelines for new
scenario development, and guidelines for evaluating scenarios
for research purposes, and guidelines for communication. For
new scenarios, we propose the following guidelines:

Guideline N1: Specify Research Context. New social
navigation scenarios should clearly define the research context
under which they are expected to apply.

Guideline N2: Define Intended Robot Task. New social
navigation scenarios should clearly define the task the robot
is expected to accomplish and not just start / end targets for
navigation alone.

Guideline N3: Define Intended Human Behavior. Sce-
narios should specify what human participants are intended to
do in the scenario.

Guideline N4: Define Success Metrics. Scenarios should
include metrics to gauge the success or failure of the task.

To evaluate the usefulness of scenarios, we recommend:

Guideline N5: Cover Common Scenarios. To adequately
evaluate social navigation algorithms, researchers to try to
include good coverage of scenarios which are used commonly
in the field, such as those listed in Table III.

Guideline N6: Ensure Scenario Flexibility. Scenarios
should be broadly specified enough to capture the full range
of behaviors that can occur.

Guideline N7: Evaluate Fitness for Purpose. Scenarios
should identify or elicit the desired behaviors and enable the
desirable properties of robot behavior to be evaluated.

Finally, we recommend the use of scenario cards as a
standard communication format:
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Guideline N8: Use Scenario Cards. When communicating
scenarios - either new scenarios, or specializations of scenarios
used for specific research purposes - use the scenario card
format to clearly communicate scenario content.

VIII. SoCIAL NAVIGATION BENCHMARKS

Social navigation benchmarks improve upon individual lab-
oratory experiments or well-defined scenarios by collecting a
set of scenarios into a benchmark suite with well-specified
metrics, enabling the comparison of a variety of different
methods against each other. However, existing benchmarks
focus on different aspects of the social navigation problem
outlined in Section III, using different permutations of the
factors we outlined in Section V. Hence, the results of these
benchmarks may be more or less useful for researchers inves-
tigating different aspects of the social navigation problem. In
this section, we advocate a set of criteria to make benchmarks
useful across the social navigation community, and review
existing benchmarks in use with regards to these criteria.

First, we analyze benchmarks in use in the social naviga-
tion community, grouping them into benchmarking protocols,
benchmarking environments, and benchmark challenges. Then,
we analyze the strengths and weaknesses of these benchmarks,
abstracting out criteria for good social navigation benchmarks,
including evaluating social behavior using quantitative metrics
and well-validated questionnaires grounded in human data. Fi-
nally, we make recommendations on how to improve the state
of social navigation benchmarking, and discuss how social
benchmarking could be integrated with standard navigation
benchmarks as regression tests of navigation behavior, which
ensure that previously successful behaviors do not degrade as
changes are made [107, 108].

A. Expanding the Factors for Benchmark Analysis

In addition to the factors listed in Section V-A, additional
aspects must be considered for benchmarks:

a) Simulation Platform: Benchmarks must specify how
to set up an evaluation, but are more useful if that evaluation is
already set up on a commonly available simulation platform.

b) Associated Dataset: Some benchmarks specify one or
more datasets of reference behaviors used for comparisons.

c) Provided Baselines: Some benchmarks specify a set
of baseline policies which can be used for comparisons.

d) Challenge Leaderboard: Benchmark challenges may
also provide a leaderboard to enable policies among different
teams to be compared publicly.

e) Downloadability: 1deally, a benchmark should include
a downloadable software suite to enable replication of results.

f) Most Recent Update: Because software platforms
evolve, benchmarks should be updated recently to ensure they
are usable with current hardware and software.

g) Robot Hardware Platform: To make benchmarks most
useful, they should support a wide variety of robot morpholo-
gies or custom robot morphologies so researchers have the best
chance of generating comparisons for their target platform.



h) Human Behavior Authoring Methods: Benchmarks
must include agents other than the robot, whether human or
other robots. Support for realistic human behavior or replayed
datasets can improve a benchmark’s fidelity and usefulness.

B. Existing Social Navigation Benchmarks

In the social navigation literature, the term “benchmark” is
sometimes applied to labeled datasets of reference behavior,
which we discuss in Section IX. In this section, we focus
specifically on social navigation benchmarks which combine
at least three components: (a) a social navigation system (such
as a simulator) which can run algorithms and pedestrians (b)
in well-defined scenarios (c) with metrics for evaluation; these
benchmarks may optionally specify datasets of human or robot
behavior for comparisons. Full benchmarks can be broken into
three classes: 1) benchmarking protocols which enable the
construction of experiments along well-specified principles,
like the SOCIAL NAVIGATION PrRoTocCOL [30], 2) bench-
marking environments which enable comparison of algorithms
against baselines in environments, including DYNABARN [23],
GYM-COLLISION-AVOIDANCE [24], HUNAVSIM [25], and
SOCNAVBENCH [28], and 3) benchmark challenges which
also provide a platform or forum to share results, including
CROWDBOT [22], IGIBSON [26, 27], and SEANAVBENCH".
In the following, we describe these benchmarks; see Table IV
for a side-by-side comparison based on the previously de-
scribed factors and Figure IV for a visual description of some
of the more commonly used benchmarks.

1) Benchmarking Protocols: The SOCIAL NAVIGATION
ProTtocoL [30] is an industry benchmark proposed by
Robotics at Google [91] and used in [30], [31], and [32]
to evaluate the performance of a series of learning-based
model predictive control policies for social robot navigation
(though the protocol was intended to be applicable to the
evaluation of any policy, learning or not). This protocol
involves selecting social navigation scenarios of interest, such
as Frontal Approach, Blind Corner, Corridor Intersection, and
so on. Each scenario’s human-robot interaction is defined by
the start and end of the robot trajectory and a short description
of what is expected to happen for the human. This serves two
purposes: enabling the collection of expert human trajectories
for training social navigation policies, and evaluating policies
on the same scenarios with low variability. Over the course of
[30], [31], and [32], the protocol was iteratively improved. For
example, the questionnaire proposed in [30] was analyzed in
[31] to identify reliable factors according to Cronbach’s alpha,
which were used to update the questionnaire for [32], which
enabled more extensive analysis. While the SOCIAL NAVIGA-
TION PROTOCOL can be applied to a wide variety of setups, it
does not provide a downloadable, simulated environment, and
must be manually set up for each experiment.

2) Social Navigation Benchmarks: ARENABENCH [21]
is a downloadable, simulated social navigation benchmark
designed to test how navigation algorithms perform un-
der different tasks. Building on the 2D Flatland® and 3D

“https://seanavbench.interactive-machines.com/
Shttps://flatland- simulator.readthedocs.io/en/latest/
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Gazebo [109] simulators and the Pedsim [110] implementation
of the Social Forces Model (SFM) [111], ARENABENCH
provides the ability to evaluate both classical and learning-
based approaches in the ROS [112] framework. In addition to
providing tools for automatically and manually creating sce-
narios, ARENABENCH supplies both the non-learned baselines
MPC [113], DWA [114], TEB [115] and the learned baselines
NAVREP [116], Gring [117] as well as ARENABENCH’S
own trained ROSNAV approach. Supported robots include the
Robois Turtlebot3, ClearPath Jackal, and Festo Robotino 4.
ArenaBench provides a variety of navigation metrics including
success rate, collision, time to goal, path length, velocity,
acceleration, jerk, curvature, angle over length, roughness, and
clearing distance. However, ARENABENCH does not at this
time support human evaluation of robot behavior.

DYNABARN [23] is a downloadable, simulated social
navigation benchmark designed to test how algorithms re-
spond to a variety of different pedestrian models. Building
on the BARN navigation benchmark [118], DYNABARN pro-
vides 60 environments in the Gazebo simulator. DYNABARN
evaluates algorithms against social behavior through crowds
of cylindrical pedestrians controlled by motion trajectories
specified by polynomials of different orders and different
numbers of pedestrians. It is customizable to different robot
platforms, with a Jackal provided. Only success rate (collision-
free navigation reaching the goal) is provided as a metric,
though the platform is extensible. DYNABARN provides sev-
eral baselines including DWA [114], TEB [115], a behavior
cloned (BC) [119] policy, and a TD3 [120] RL policy. While
DYNABARN does not support human evaluation of robot
behavior, it includes a demonstration pipeline to collect human
teleoperation baselines of navigation in dynamic environments.

GYM-COLLISION-AVOIDANCE [24] is a downloadable, sim-
ulated benchmark used to evaluate multi-agent collision avoid-
ance. Created to evaluate the GA3C-CADRL algorithm [24,
121] against the baselines ORCA [122], SA-CADRL [45], and
DRLMACA [123], this benchmark provides a variety of multi-
agent scenarios involving cylinders in simplified synthetic
environments and measures Success Rate, Collisions, Stuck
and Time-to-Goal metrics. However, it focuses on policy-
controlled agents interacting with each other and does not
support human evaluation of robot behavior.

HUNAVSIM [25] is a downloadable, simulated benchmark
focused on improving the development of social navigation
systems around a variety of human behaviors. HUNAVSIM
combines Behavior Trees (BT) [124] and the Social Forces
Model (SFM) [111] to provide a variety of human behaviors
ranging from indifferent, surprised, curious, fearful and ag-
gressive. HUNAVSIM is implemented as a framework that can
work with various simulators, and provides a plugin to work
with ROS2 and Gazebo. HUNAVSIM provides a variety of
metrics comparable those used in the SEAN simulator [89]
and other benchmarks, but does not provide baseline policies
or a way to evaluate robot behavior with human ratings.

SOCNAVBENCH [28] is a downloadable, simulated bench-
mark used to evaluate social navigation algorithms against pre-
recorded episodes of human pedestrian behavior drawn from
the UCY [125] and ETH [126] datasets. SOCNAVBENCH pro-


https://seanavbench.interactive-machines.com/
https://flatland-simulator.readthedocs.io/en/latest/
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gym- Soc- Sea- Social
Benchmark ArenaBench CrowdBot DynaBarn collision- HuNavSim iGibson Navigation
. NavBench NavBench
avoidance Protocol
Factors for Analysis
Benchmark
. . Benchmark Challenge Benchmark Benchmark Benchmark Challenge Benchmark Challenge Protocol
Classification
Benchmark Context Dynamic Crowd Dynamic Collision Human Social Social Social Human-
and Scope Obstacle Simulation Obstacle Avoidance Simulation Navigation Navigation Navigation Robot Expt.
P Benchmark Benchmark Benchmark Benchmark Benchmark Benchmark Benchmark Benchmark Design
Physical . . Indoor Indoor Principally
Environment Indoor Indoor Synthetic Synthetic Indoor Indoor & Outdoor & Outdoor Indoor
Intended Human Synthetic Synthetic I\-]Iz:lrr:;::n Synthetic Varied Resp Synthetic Synthetic Synthetic Human
User Type Pedestrian Pedestrian Motion Pedestrian to Robot Pedestrian Pedestrian Pedestrian Coworkers
Supported Navigation Navigation Navigation Navigation Navigation Navigation Navigation Navigation Navigation
Robot Tasks g 8 & & & & g & 8
Social Scenarios 3 Worlds, Basic 60 Crowd Multi-agent House, 15 House 5 Cl'lraled 6 Social
Crowd . . Cafe, Environ- TBD Nav
Evaluated 5/10 Peds . Scenarios Scenarios Scenes .
Scenarios Warehouse ments Scenarios
Coverage of | Diversity, Not Tested Diversity, Not Tested Not Tested Not Tested Not Tested TBD Not .
Corner Cases Random Random Specified
Simulation Flatland, . [ Soc-
Platform Gazebo Unity Gazebo Custom Gazebo iGibson NavBench SEAN 2.0 None
Benchmarking UCY & UCY &
Dataset None CrowdBot None None None None ETH ETH None
Human Behavior . Multiple Baseline Soc. Force, Replay, Replay, .
Authoring Pedsim UMANS Algorithms Policies Behav. Tree ORCA Planned Soc Force Seripted
Human Simulation | Walking Walking Moving Moving Walking Moving Walking Walking Real
Fidelity Humans Humans Cylinders Cylinders Humans Humans Humans Humans Humans
. Pepper, Custom . Fetch, o
Supported Robot Jackal, Wheelchair, Robots, . ROS 8 real, Slmqlated Jackal, Human
. Burger, Cylinders Gazebo- ; Mobile Scale
Embodiments . CuyBot, ClearPath . 2 Mujoco Turtlebot,
Robotino Compatible Robot Robots
Qolo Jackal Warthog
Commumca.t ton None None None None None None None None Human
Modalities Gestures
Challenge None None None None None 2021 None 2022 None
Leaderboard
Benchmark Last | -5 2021 2023 2022 2023 2021 2022 2022 2022
Updated
Guidelines for Benchmarks
B1: Evaluate SOC.I al Yes Yes Yes Yes Yes Yes Yes Yes Yes
Behavior
B2: Quantitative Succ. Rate, Succ. Rate,
Metrics Provided Many Many Suce. Rate Time2Goal Many PSC Many Many No
B3: Baseline SOA Nav, SOA Nav, SOA Social, SOA Social, SOA Social,
Policies Provided RL Policies No RL Policies Worst-Case No SOA RL Worst-Case Worst-Case No
B4: Scalable, Simulated, Simulated, Simulated, Simulated, Simulated, Simulated, Simulated, Simulated, Setup Req.,
Repeatable | Download Download Download Download Download Download Download Download Phys. Eval
B5: .Eval Grounded No No Dem(_). No No No No SEAN'-EP Yes
in Human Data pipeline extension
B6: Use Validated No No No No No No No No Yalldatlon
Instruments in Process

TABLE IV: Characteristics of existing social navigation benchmarks

vides visually realistic pedestrians and environments, as well
as baselines based on the Social Forces Model (SFM) [111],
ORCA [122], and SA-CADRL [45] as well as a pedestrian-
unaware policy. SOCNAVBENCH provides a wide variety of
metrics in areas such as path quality, motion quality, robot-
pedestrian interaction, and episode statistics. However, SOC-
NAVBENCH’s purpose is to automatically generate scores, so it
makes the design decision to focus on automatically generated
metrics which approximate human ratings instead.

3) Social Navigation Challenges: The CROWDBOT [22]
Challenge is an effort to develop a benchmarking platform for
social robot navigation in dense crowds. CROWDBOT supports
four different robot morphologies interacting with simulated
crowds of walking humans controlled by a flexible framework
called UMANS [127], with several crowd setups provided
in the initial benchmark. CROWDBOT is a downloadable,
simulated challenge®; initial phases were held in 2020 and
2021 but a full public challenge has not yet been held.

Shttps://gitlab.inria.fr/CrowdBot/CrowdBotUnity/-/tree/master

The 1GIBSON Challenge at the CVPR 2021 Embodied Al
Workshop’ is a social navigation benchmark based on the
eponymous IGIBSON [26, 27] simulation environment for
navigation and manipulation tasks in household scenes. In this
benchmark challenge, robots must navigate to targets without
collision among pedestrians [128], which are simulated via the
ORCA model [127] in fifteen interactive indoor household
scenes. Evaluation metrics include STL (Success weighted
by Time Length) for reaching the goal quickly, and PSC
(Personal Space Compliance) for maintaining a comfortable
distance from all pedestrians. This benchmark enabled quan-
titative comparison of approaches from over a dozen teams,
including methods based on techniques like DD-PPO [129],
PPO [130], SAC [131], and so on, providing a clear picture
of which algorithms were superior for the task. IGIBSON is
a downloadable, simulated challenge, but it does not include
human ratings, and in 2021 did not include on-robot tests.

The SEANAVBENCH Challenge is a social navigation

7https://svl.stanford.edu/igibson/challenge2021.html
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Fig. 8: Commonly used social benchmarks. Benchmarks range from abstract tests of dynamic obstacle avoidance to simulated interactions
with moving humans of varying degrees of fidelity to protocols for setting up physical experiments in well-specified scenarios.

benchmark created for the SEANavBench workshop® held at
ICRA’22. SEANavBench combines SocNavBench [28] within
the SEAN 2.0 [89] simulator which enables social navigation
algorithms to run on simulated robots via ROS in environ-
ments rendered in the Unity game engine. Social navigation
algorithms can be evaluated in simulated environments across
a variety of environment sizes, crowd densities, and pedestrian
behavior, including simulated pedestrians and replay of pedes-
trian datasets. This enables the analysis of how algorithms
can succeed or fail as environmental conditions change and
the measurement of performance using a variety of metrics.
SEANAVBENCH is a simulated benchmark to which users
can upload their code and compare performance against other
submissions and baselines. While the public version of the
challenge did not use human ratings, SEANAVBENCH uses
SEAN-EP [132] to run the SEAN 2.0 simulation environment
on the web, which could be used to collect human feedback.

8https://seanavbench.interactive-machines.com/

C. Strengths and Limitations of Existing Benchmarks

As we can see from Table IV, social navigation benchmarks
support a variety of scopes, from dynamic obstacle avoidance
to human-robot interactions to navigation through crowds. All
attempt to address features of social behavior, and many of
them are downloadable, simulated benchmarks that can be
efficiently deployed and which provide metrics for evaluation
and sometimes baselines for comparison.

Broadly speaking, however, different types of benchmarks
have characteristic limitations: (a) scalable benchmarks tend
not to ground their evaluations in human data (b) benchmarks
that use human data tend to need manual setup or additional
components, (c) protocols for designing experiments focus
only on human evaluations, and (d) few benchmarks have
meaningful coverage of edge cases of navigation behavior.

We believe these limitations are resolvable, and next present
our recommendations for how good benchmarks should be
designed and outline steps the community could take to
improve existing benchmarks.
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D. Properties of a Good Social Navigation Benchmark

Existing social navigation benchmarks have many purposes,
from testing in large crowds, smaller social scenarios, al-
gorithm improvements and even tests of benchmark fidelity
themselves. However, for results of one benchmark to be
useful to the rest of the community, it is important to have
a common language for benchmarking, and to have a shared
understanding of what it is that a benchmark tests.

To ensure that social navigation benchmarks evaluate ap-
proaches for social navigation in a way that communicates
their results broadly in the social navigation community, we
argue that benchmarks themselves should be evaluated against
a set of commonly agreed-upon criteria.

Based on how benchmarks are used in the field and what
results they need to communicate, we recommend that bench-
marks (1) evaluate social behavior, (2) include quantitative
metrics, (3) provide baselines for comparison, (4) be efficient,
repeatable and scalable, (5) ground human evaluations in
human data, and (6) use well-validated evaluation instruments.
Next, we unpack these criteria and explain how they should
guide the development and usage of benchmarks.

1) Guideline B1: Evaluate Social Behavior: A good
benchmark should evaluate the properties of algorithms
in social scenarios which involve humans and robots
interacting. Therefore, a social benchmark should have
metrics related to social behavior and not just contain
pure navigation metrics such as Success weighted by Path
Length [15] or pure task metrics such as success rates.

2) Guideline B2: Include Quantitative Metrics: The
benchmark should provide quantitative metrics on a va-
riety of dimensions of interest, enabling researchers with
different goals to use the benchmark to evaluate their
algorithms with respect to their task and context and to
compare to other approaches in the literature. See Sec-
tion VI for example metrics that can be used for various
social navigation scenarios. Quantitative metrics are ideal
to enable comparisons between approaches; these include
both metrics which can be measured objectively (e.g.,
Personal Space Compliance [71]) or which have validated
measurement instruments (such as Likert scale evaluation
with validated questions). Ideally, these should include
metrics important to the social navigation community
and include both traditional navigation metrics along with
socially relevant metrics, such as task success, speed of
performance, safety, and proximity to humans.

3) Guideline B3: Provide Baselines for Comparison: At
a minimum, it is recommended to have baseline policies
that show worst case performance (e.g., a straight line
planner that stops at obstacles) to serve as a lower bound
for the benchmark. An upper bound oracle performance
(e.g., demonstrations from a human, or an appropriate
state-of-the-art algorithm) can also be provided if feasi-
ble. Ideally, if a state of the art approach exists, it should
be compared, but it is not always feasible to include these
in a given benchmark due to availability or cost.

4) Guideline B4: Be efficient, repeatable and scalable: To
democratize benchmarks and promote productive com-
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petition and collaboration amongst different scientists,
efficient, repeatable, and scalable benchmarks are prefer-
able. For example, the cost to run the benchmark should
not be prohibitively expensive. While some benchmarks
explicitly seek to reveal unique in-the-wild variations, the
benchmark should nevertheless be repeatable such that it
can be repeated multiple times with comparable results
when scaled to a large number of trials. A good rule of
thumb is at least 30 samples for real robot trials, but this
number can be determined in a more principled statistical
way from data if means and variances are available.

5) Guideline B5: Ground Human Evaluations in Human
Data: At this point, many researchers agree that we do
not have a good enough model of how humans react to
robots to predict how they will react from other observ-
ables. Therefore, many researchers propose benchmarks
should measure socialness based on human evaluations.
An alternative approach is to use a learned model to
predict human perception of socialness of robot behaviors
using a dataset of labeled examples; some researchers
argue this provides a more validated metric than an ad-
hoc social score; other researchers argue the context
that makes these learned metrics can be lost if used
in other scenarios. Nonetheless, learned metrics could
offer repeatable and scalable approximations of human
responses, which could be evaluated via user studies.

6) Guideline B6: Use well-validated evaluation instru-
ments: Ideally, human questionnaires should be standard-
ized or empirically validated and should be ecologically
valid for the task at hand; validating metrics is an iterative
process which involves proposing metrics, conducting
studies, statistically analyzing responses, and exposing
metrics to peer review in the community. Objective
metrics should also be empirically validated to ensure
they measure what they purport to measure.

To address the shortcomings of existing benchmarks against
these criteria, we recommend the following:

1) Promote more human evaluation: Many benchmarks
use proxies of human ratings; while this is reasonable
to enable fast evaluations, the community should encour-
age benchmark developers to collect human ratings, and
should push for broader adoption of rating pipelines such
as SEAN-EP [132] to facilitate this collection.

2) Standardize social questionnaires: While it is useful to
have well defined scenarios as in the SOCIAL NAVIGA-
TION PROTOCOL, the improvements to the questionnaires
made by subsequent work in this area should be standard-
ized and made available to inform labeling pipelines.

3) Standardize quantitative metrics: While some existing
benchmarks and protocols specify minimum quantita-
tive metrics, SOCNAVBENCH, SEANAVBENCH and HU-
NAVSIM are converging on metrics similar to CROWD-
BOT’s metrics; the community should encourage adopting
a minimum set of these metrics.

4) Test corner cases on standard benchmarks: While
social metrics are important, ensuring safe, reliable navi-
gation performance is also important. Navigation bench-



marks such as BARN [118] or BENCH-MR [133] should
be used to validate traditional navigation behaviors.

Finally, it is worth noting that there are additional multiagent
benchmarks focused on gridworlds such as ASPRILO’ for
logistics and MAPF'? for multiagent pathfinding which we did
not discuss as they do not focus on aspects of social behavior;
however, as social navigation approaches become integrated
into multiagent or logistically complex domains, features from
these benchmarks may also be useful for testing corner cases.

IX. SOCIAL NAVIGATION DATASETS

In this section, we provide a deeper look at datasets with
regards to the factors listed in Sec. V. First we review
desired dataset characteristics, noting that analyzing datasets
require drilling in deeper on the existing factors, such as robot
hardware, sensors, and behavior authoring methods, as well as
additional factors for analysis such as data collected, dataset
coverage, sampling distribution, annotations, and privacy and
fairness handling. Then we use these factors to analyze
several existing datasets, including JRDB [134], THOR [135],
TRAINET++ [136], uCy [125], ETH [126], EPID [137], SDD
[138], EFL [139], WILDTRACK [140], SCAND [141, 142],
MUSOHU [143], CROWDBOT [144], DYNABARN [23], SocC-
NAV1 [74], SOCNAV2 [75], and SACSON [145], reviewing
them with respect to the criteria (Fig. 9).

A. Expanding the Factors for Dataset Analysis

In addition to the factors listed in Section V-A, additional
aspects must be considered for datasets:

a) Robot Hardware Platform: As different robot mor-
phologies might elicit different human responses, it might be
of importance to consider a larger set of robots to collect data
with. Further, it might be useful to utilize props, e.g. engaging
face, human like head and eye appearance and movement, to
elicit stronger engagement with humans.

b) Sensors: In addition to robot sensors, a good practice
is to record teleoperation commands, e.g. joystick controls,
together with the data.

c) Robot Behavior Authoring Methods: The core of
a Social Navigation Dataset are demonstrations of desired
socially-aware robot behaviors. How are these demonstrations
defined (see Sec. VII for a deeper discussion of this topic).
Should the robot behave as a human or as a different social
agent (see Sec. III-A for a deeper discussion on this topic). In
the case of a dataset, some of the options are:

1) Pedestrians/humans: If the definition of a social robot is
to behave as a human, recordings of moving humans/-
pedestrians might suffice.

2) Teleoperators: If a behavior is desired that might be dif-
ferent from human behaviors, then data can be collected
via robot teleoperation. Hence, an important principle in
creating a dataset is to have explicit and clear instructions
to teleoperators of how to control the robot. These
instructions should cover following topics:

%https://asprilo.github.io/
10https://movingai.com/benchmarks/mapf.htm]
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« Is the teleoperator visible to humans?

o Where is the teleoperator positioned w.r.t. the robot?

« Instructions should ideally guarantee that the teleoper-
ator does not affect the human-robot interaction.

« Utilize multiple teleoperators, especially for the same
scenarios, to encourage diversity in the data.

d) Data Collected: When it comes to dataset creation
one of the major questions is for what social scenarios does
one collect data for. Therefore, the guidelines in Sec. VII
apply here. Note that for datasets in the wild there is limited
ability to control the scenarios. On one side, one can opt for
a completely unconstrained collection in a given environment,
e.g. building, city, area. On the other side, one can target
specific events / activities, e.g. busy areas around campus,
campus cafeteria, boardwalk crowds, etc.

An important guideline is to define the scope of the dataset
such that the available dataset resources (hours of collection)
are sufficient to collect data that thoroughly explores this
scope. The scope should be broad enough to present inter-
esting challenges for the community to study. Therefore, it is
desirable to make the dataset scope as broad as possible.

At the same time, one needs sufficient data for the dataset to
be useful. More concretely, each scenario within the dataset
scope should be well sampled in the dataset. This can help
ensure that methods developed on the dataset can be deployed
in the real world within the scope of the dataset, as they are
less likely to encounter out-of-distribution scenarios.

e) Annotations: A question specific to a dataset are the
annotations generated after the data has been collected. When
it comes to social navigation, there aren’t existing taxonomies
of human-robot or human-human interactions. Existing com-
puter vision datasets and benchmarks for activity recognition
can provide a good starting point, e.g. ActivityNet [146].

Another consideration is the granularity of annotation.
When it comes to activities, one can annotate whole navigation
episodes with global labels, or segments within these episodes.
Similarly, for human tracks, one can annotate tracks only,
tracks with bounding boxes, skeletal tracking and gaze, etc.

f) Privacy and Fairness: As social navigation datasets
contain humans, privacy is a big concern. Decisions must be
made whether to anonymize humans and how to comply with
privacy protection regulations.

B. Existing Social Navigation Datasets

In this section we review some of the existing dataset in
the context of our social navigation characteristics. These are
presented in Table V. We review the following datasets.

JRDB [134] is a multi-modal dataset containing stereo
360 RGB video, 3D lidar scans, audio, and wheel encoder
measurements from both indoor and outdoor environments. It
provides annotations for human tracking and detection along
with a benchmark and metrics to compare different algorithms.

THOR [135] is a public dataset providing motion trajectories
of robots and humans in a range of curated scenarios of
humans visiting and inspecting areas or carrying objects.

SCAND [141, 142] is a public dataset providing socially
compliant navigation demonstrations recorded via teleoperat-
ing two different mobile robots in a socially compliant manner
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Fig. 9: Illustration of various social navigation datasets. See the text and Table V for details.

by human demonstrators. The objective behind the SCAND
dataset is to study the social navigation behavior of robots
in the presence of human crowds. Similar to SCAND, MU-
SOHU [143] includes 3D lidar scans, RGBD camera images,
360° camera images, IMU data, and ambient sound collected
from a sensor suite mounted on a helmet worn by humans
walking around public spaces (instead of on a teleoperated
robot), from which social robot navigation can be learned. The
portable sensor suite allows social human navigation data to be
collected in the wild with a low setup cost, making MUSOHU
easily extendable.

Also similar to SCAND, LCAS [147] is a public dataset
containing 3D lidar scans collected using a mobile robot tele-
operated in heavily crowded environments. However, unlike
SCAND, the robot is not necessarily teleoperated in a socially
compliant manner. The focus of the LCAS dataset is to solve
perception-related challenges in social navigation, such as
online human detection.

The UCY/ETH [125, 126] dataset consists of human trajecto-
ries recorded in public spaces from a bird’s eye view vantage
point using an RGB camera. The trajectories are extracted
by tracking humans from the bird’s eye view images. The
motivation behind the UCY dataset is to provide real-world
trajectories of humans navigating among other humans in the
scene so one can replicate-by-copying such trajectories in a
simulator. Trajectories from the UCY dataset can be used to
simulate a diverse set of realistic social scenarios. Pellegrini et
al.[4] propose conditioning the predicted future trajectory also
on scene knowledge and social interactions among agents.

The TRAINET++ [136] dataset is composed of several exist-
ing datasets such as ETH/UCY [125, 126], CFF crowd dataset
[148] with other synthetic data generated with ORCA[122].
Kothari et al. [136] have shared a benchmark and challenge
focusing on agent-agent scenarios. They provide proper sam-
pling of trajectories and a unified extensive evaluation system

to test the gathered methods for a fair comparison.

EPID [137] is again similar to ETH and UCY, while providing
a much higher number of humans captured in the dataset, the
camera is fixed overhead roughly about 23 meters from the
floor. Humans are detected by processing this bird’s eye view
image from the scene and tracking them in the scene.

Stanford Drone Dataset (SDD) [138] is similar to UCY and
ETH since it also provides a bird’s eye view frame, recorded
using a drone (unlike UCY and ETH that use a statically
mounted camera). Compared to UCY and ETH, the unique
selling point of this dataset is large-scale images and videos
of diverse scenarios including bicyclists, skateboarders, cars,
buses, and golf carts navigating in the real world.

Egocentric Future Localization (EFL) [139] provides RGBD
sequences of frames from the perspective of a human, walking
in different scenes. This dataset includes various indoor and
outdoor scenes such as Parks, Malls, and a Campus, with vari-
ous activities such as walking, shopping, and social interaction.
The main focus of this work seems to be on human trajectory
prediction in novel scenes. Note that the website hosting this
dataset is no longer accessible.

WILDTRACK [140] is similar to UCY and ETH. A GoPro
camera is mounted in an outdoor environment scene consisting
of crowds of people walking around. This dataset focuses on
person detection in the presence of severe obstacles such as
other humans and static obstacles in the scene.

The CROWDBOT [144] consists of egocentric RGBD and
point-cloud data from a Qolo robot [149],[150] captured in
autonomous and teleoperated modes in outdoor scenes.

Several datasets present synthetic trajectories for benchmark
comparison. SOCNAV1 [74] and SOCNAV2 [75] are datasets
of human-labeled simulated human-robot interactions used for
both benchmarking algorithms and as training datasets for
learning algorithms. DYNABARN [23] includes 300 synthetic
environments with agents with different motion profiles.
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TABLE V: Characteristics of existing social navigation datasets

The SACSON [145] dataset is a collection of egocentric
RGB, RGBD, LIDAR, odometry and bumper data from a
policy-controlled iRobot Roomba navigating autonomously
under policy control in indoor human environments. The
dataset was created by a scalable system wrapping the pol-
icy control with a help-and-rescue module enabling long-
term data collection, resulting in 75 hours of data and 58
kilometers of interaction with over 4000 individual human-
robot interactions. The dataset supported a continual-learning
architecture which showed the ability to learn from collected
data. Interestingly, the experimenters collected an “interaction-
rich” subset of data in which the robot was encouraged to drive
closer from humans - then negated this objective and used this
data to train a socially-compliant policy.

C. Guidelines for Datasets

Guideline D1: Make datasets as broad as possible. This
will ensure the dataset is useful to the community and will
ensure investment in the data collection is well spent.

Guideline D2: Scope datasets based on resources. Ensure
the available dataset resources are sufficient to collect data that
thoroughly explores the dataset scope.

Guideline D3: Ensure each scenario is well-sampled. This
ensures that methods trained on the dataset do not encounter
out-of-distribution scenarios and the dataset is representative.

Guideline D4: Use robots if robot behavior is desired.
While datasets of pedestrians are useful, if robots are expected
to behave differently than people, recording actual robot
behavior rather than just pedestrians is desirable.

Guideline D5: Use diverse robot platforms: Different



robot morphologies may elicit different human responses, so if
feasible datasets should use more than one robot morphology.

Guideline D6: Record behavior generation commands.
In addition to normal robot sensors, teleoperation commands
should be recorded if robots are human-driven, or policy
actions should be recorded if the behavior is authored.

Guideline D7: Collect annotations systematically. While
standards for social navigation annotation are still being
developed, formalizing data collection and modeling it on
existing benchmarks in other fields can help. Data should be
well labeled: methods used for generating human and robot
behavior and collecting labels should be specified.

Guideline D8: Consider privacy issues early. The collec-
tion of data involving humans involves privacy, policy, legal
and moral issues. Considering these issues early can ensure
that the dataset does not face legal challenges.

X. SIMULATION-BASED EVALUATION

The fundamental requirement for a social navigation sim-
ulator is the ability to simulate two agents at one time in a
social encounter - without that, it’s just traditional navigation.
Beyond this core requirement, social navigation simulators
span the gamut from supporting crowds of simplified agents
to test dynamic navigation algorithms to simulators that
recreate human appearances, footsteps, behavioral diversity,
and environmental interactivity. Most benchmarks discussed
in Section VIII rely on a simulator to make benchmarking
efficient, repeatable and scalable.

In this section, we expand the social navigation fac-
tors particular to simulators, review existing simulators
including CROWDBOT, CROWDNAV, DYNABARN, GYM-
COLLISION-AVOIDANCE, HUNAVSIM, IGIBSON, INHUS,
IMHUS, MENGEROS, PEDSIMROS, SEAN 2.0, SOCIAL-
GYM 2.0, and SOCNAVBENCH, analyze the properties of
these simulators and how they may be improved. We then
we attempt to find a common ground between simulators and
benchmarks for social navigation by proposing a unified API
in order to compute metrics along a single code path, including
discussions of its high level requirements, implementation of
the high-level API, and implementation efforts in representa-
tive simulation environments. We conclude with guidelines for
simulator usage and development.

A. Expanding the Factors for Simulator Analysis

In addition to the factors listed in Section V-A, additional
aspects must be considered for simulators, including:

a) Abstraction Level: Some social simulations model
large-scale crowds and do not attempt to model humans or
robots in detail. For our purposes here and in Table VI, we
discuss only simulations that are at least capable of modeling
individual human-robot interactions.

b) Simulation Focus: Similar to the notion of context,
social simulations can be targeted at large-scale crowd simula-
tion, social navigation interaction between humans and robots,
or more narrowly on dynamic obstacle avoidance.

c) Simulation Platform: Some social simulations are
standalone codebases; others are built atop of existing sim-
ulators such as Gazebo or MORSE.
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d) Agent Representation: Some simulations represent
only one kind of interacting agent (generally, presumed to
be all humans or all robots); others represent robots and
pedestrians separately.

e) Scene Representation: Environmental assets for sim-
ulators include 2D geometry, modeled 3D geomoetry, and
scanned meshes of real scenes; these scenes can represent
abstract, indoor, or outdoor environments.

f) Scene Visual Fidelity: Some simulations are purely
2D; others use abstracted 3D representations; others attempt
to render realistic 3D scenes with rich shaders.

g) Physics Simulation Fidelity: Some simulations only
model the kinematics of moving agents in static environments;
others model forces and object mass or kinodynamic con-
straints; others incorporate full physics models.

h) Robot Simulation Fidelity: Some simulations model
robots as points or cylinders; others support detailed robot
morphologies or even full robot simulation.

i) Pedestrian Simulation Fidelity: Some simulations
model humans movement as point movement controlled by a
crowd algorithm; others model humans as three-dimensional
objects, and some model the human walking gait. Some add
variability based on the human’s personality or attitude.

J) Pedestrian Visual Fidelity: Pedestrians can be repre-
sented by 2D points, discs or polygons, 3D cylinders, basic
human meshes which don’t change shape, animated meshes
with basic walking movements, or photorealistic agents. As
photorealistic is subjective, we lump all human meshes into
“detailed” for the purpose of Table VI.

k) Pedestrian Reactivity: Pedestrians can move on pre-
recorded trajectories without reacting to other agents, or
may react using a model such as the Social Forces Model
(SFM) [111] or ORCA [122]. Pedestrian behavior may be also
modulated with individual attitudes, behavioral styles or social
activities specified by higher-level modules.

1) Simulation Interoperability: Some simulators are stan-
dalone; others support the OpenAl Gym API [151] or have
interfaces to integrate with environments such as ROS [112].

B. Existing Social Navigation Simulators

A variety of social navigation simulators have been used
in the literature, from simple simulators designed to test
individual algorithms to complex standalone simulators used
in multiple contexts. These include:

The CROWDBOT [22] simulator supports four different
robot morphologies interacting with simulated crowds of
walking humans controlled by a flexible framework called
UMANS [127] built on the Gazebo simulator [109].

CROWDNAV [152] is a 2D simulator for multi-agent sce-
narios using ORCA [127, 153] to orchestrate pedestrian discs
around policy-controlled discs in simplified environments.

DYNABARN [23] is the simulator used in the DYNABARN
benchmark. DYNABARN models crowds of pedestrians con-
trolled by polynomial motion trajectories moving through
simulated environments. Humans are reprsented by cylinders
but robots are represented with full morphologies.
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TABLE VI: Characteristics of existing social navigation simulations. See Section X-A for details.

GYM-COLLISION-AVOIDANCE!! is a 2D simulator for
multi-agent scenarios using policy-controlled cylinders in sim-
plified environments. Humans and robots are not distinguished.

The HUNAVSIM [25] benchmark contains a simulator using
Behavior Trees (BT) [124] and the Social Forces Model
(SFM) [111] to provide a variety of human behaviors ranging
from indifferent, surprised, curious, fearful and aggressive.
HUNAVSIM can work with various simulators, and represents
both human gait and robot morphologies.

The IGIBSON [26, 27] simulation environment supports
navigation and manipulation tasks in household scenes. Pedes-
trians are represented with moving mannequins controlled
via ORCA [127, 153] but robots are represented with full
morphologies and objects in the environment can be moved.

INHUS [154] is a simulator for testing social navigation
algorithms against a variety of human behaviors called atti-
tudes. It provides a general interface to ROS simulators and is
currently integrated with the MORSE and Stage simulators.

The InHuS system is extended to simulate multiple human
agents with modulated behaviors. This new system, called
IMHuS [155], uses ORCA for motion planning of agents
and is built atop of Gazebo. The behaviors are modeled and
controlled using a supervisor module.

MENGEROS [156] is a 2D simulation designed to support
very large crowds. Robots are discs, but several pedestrian
reactivity models are supported including SFM and ORCA. A
ROS interface allows this to be used with a variety of systems.

PEDSIMROS '? is a ROS package for pedestrian simulation
based on SFM augmented with group behaviors and social
activities. PedSimROS simulates behaviors in 2D, but can in-
tegrate with 3D simulators like Gazebo to incorporate physics
models. Robot and pedestrian models are realistic enough for
point-cloud sensors but pedestrians are visually simplified.

The SEAN 2.0 [89, 157] simulator enables social navigation
algorithms to run on simulated robots via ROS in environments

https://github.com/mit-acl/gym-collision-avoidance
2https://github.com/srl-freiburg/pedsim_ros

rendered in the Unity game engine; pedestrians are represented
with full gaits and environments can be detailed.

SoCcIALGYM 2.0 [158, 159] is a simulation supporting
diverse robot types and human behaviors in a 2D simulation
that respects kinodynamic constraints, built atop the Petting-
Zoo [160] multi-agent reinforcement learning environment.

The SOCNAVBENCH [28] benchmark contains a simulator
to replay prerecorded episodes of human pedestrian behav-
ior drawn from the UCY [125] and ETH [126] datasets.
SOCNAVBENCH provides visually realistic pedestrians and
environments as well as robot morphologies.

C. Analysis of Simulation Platforms

1) Simulation Focus: Each simulation platform has been
designed with a focus on a particular problem area. Example
areas of focus include crowd simulation, how a robot should
deal with dynamic obstacles, or specific tasks such as social
navigation or collision avoidance. Algorithms developed in
different simulators may have a unique focus area as well,
which implies we should be mindful when comparing algo-
rithms across different simulators. For example, results from
an algorithm trained in a simulator that uses a cylindrical
representation of pedestrians may not be directly comparable
to an algorithm that incorporates pedestrian gait.

We acknowledge the need for specialized simulators fo-
cusing on different problem areas. At the same time, we
believe the community could benefit from a common social
navigation simulator or a common API for multiple simulators.
This common interface would provide access to a shared set
of features that span focus areas. A common simulator or
common API would enable training and evaluation across
different approaches and promote the reuse of features from
simulators that are focused on different areas.

2) Common Platforms: Many of the simulators listed in
Table VI have shared properties. For example, several simula-
tors use Unity, ROS, or Gazebo as an underlying technology;


https://github.com/mit-acl/gym-collision-avoidance
https://github.com/srl-freiburg/pedsim_ros
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Fig. 10: Visual description of select simulators. See Section X-A for details.

simulators that use the same type of scene representations
could share these representations; and methods of pedestrian
reactivity could also be shared across simulators.

3) Pedestrian Reactivity: How pedestrians react to other
nearby agents is an important factor to consider because the
actions of simulated pedestrians directly influence both the
training and evaluation of social navigation policies. Ideally,
each simulated pedestrian would act in a manner identical to
how a real-world pedestrian would act. Real-world pedestrian
behavior can be observed by recording real-world pedestrian
trajectories and playing them back in a simulator. However,
there are two downsides to this approach. First, some fidelity
of human motion is lost in the recording and playback process,
for example, it is typical to capture motion only along the
ground plane and not incorporate the body pose [125, 126].
Second, because the position of each pedestrian is deter-
mined by a pre-recorded trajectory, pedestrians cannot react
to changes in the simulation. As soon as some element of the
simulation deviates from the original data, such as the robot
changing course, pedestrian motion is no longer realistic.

Motion models for pedestrians such as the Social Forces
Model (SFM) [111] and Optimal Reciprocal Collision Avoid-
ance (ORCA) [122] enable them to move in reaction to
changes in the environment. While no model of human motion
is perfect, the modeling of reactive agents in simulation allows
researchers to explore how changes made to the environment
by different robot policies affect task performance.

Pedestrian motion and reactivity play a critical role in the

study of social navigation [152, 161]. The two imperfect
solutions we have discussed indicate an opportunity for col-
laboration with the community to develop better alternatives.

4) Multi-Agent Policies: In the previous section, we ex-
plored various approaches to model pedestrian motion, includ-
ing the use of SFM or ORCA, as well as playback of recorded
trajectory data. However, in many real-world scenarios, the
policies of agents are unknown and must be learned simul-
taneously. The field of robotics literature extensively covers
navigation among dynamic obstacles, and there has been
significant progress in multi-agent reinforcement learning [45],
which has enabled the development of socially aware behavior
in robots operating in constrained environments.

5) Environments: The scenario plays a crucial role in social
navigation. Social navigation is not commonly observed in
open environments; rather, it predominantly occurs in geomet-
rically constrained or highly dense scenarios. Indoor spaces
such as corridors, hallways, and dense areas like malls or
airports are typical examples of such environments. These
locations share similarities in terms of their physical charac-
teristics. Thus, the simulators discussed thus far incorporate
models that capture various aspects of such environments.

6) Metrics: Simulation can be a cost-effective alternative
to the real world when training and evaluating robot control
policies, which can in turn promotes scalability and repro-
ducibility. The ability to compute metrics in a fair and com-
parable way, across robot control algorithms and simulators,
is crucial to understanding the state of the field and making



progress. Running trials and computing metrics under the
same initial conditions in the real world is challenging. Sim-
ulation, however, allows the calculation of analytical metrics
using ground-truth data, which is provided by the simulator,
under common initial conditions when evaluating different
algorithms. Moreover, learned metrics can be easily computed
in a similar fashion and subjective metrics, which are based
on human feedback, can be collected as well [23, 74, 162].

D. Towards a Unified API for Social Navigation Simulation

As discussed in Section VIII, many benchmarks have been
created using a variety of simulators to evaluate different
aspects of social navigation. However, these benchmarks lack
a unified standard for collecting metrics, making comparisons
between benchmarks difficult and fragmenting the community.
While different benchmarks and simulators often have diver-
gent emphases, nevertheless, we argue many common factors
could be captured by a single high-level API, which would
reduce fragmentation by easing comparisons.

Therefore, we propose a high-level API to calculate social
navigation metrics that could be shared between simulators,
enabling easier comparison of data collected from benchmarks
built from those simulators. For broad adoption, we argue this
simulation metrics API should be easy to use with a variety
of simulators, real robots, and datasets, either natively or with
easy-to-develop bridge code. To facilitate this interoperation,
the API will specify both the data that it needs to compute
metrics as well as implementations in the Robotic Operating
System (ROS) and the OpenAl Gym API. These implemen-
tations will compute the metrics in Table I in a consistent
way using common library code. While simulators often have
very different code structures and philosophies, the proposed
high-level API aims to help unify disparate efforts by defining
a common set of data required to compute typical social
navigation metrics, common library code, and a common data
output format. This will make data from all API-compatible
simulators and datasets available to use in shared analysis and
visualization tools, which can be implemented in the future.

Figure 11 illustrates the flow of data through the proposed
API. Next, we outline the API’s design and our preliminary
work on implementing it for common simulators.

1) Design of the high-level simulator metric API: To enable
the calculation of the metrics recommended in Table I from a
variety of real robots, simulators, and datasets, the simulation
metric API must specify its expected input data, including the
robots under test, human pedestrians and other agents, and
static and dynamic obstacles in the environment. The metrics
API will enable the development of common downstream
tools, but to make it broadly useful to the community it should
also clearly its output format, as well as provide mechanisms
for extensibility to support novel use cases as they develop.

« Input Specification To compute the desired metrics, the
API requires specific data from robots, simulators, or
datasets. Specifying this data requires both the format
needed for specific implementations, such as ROS mes-
sage or OpenAl Gym info structures, as well as the
content needed for metrics, including human pedestrians
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and other agents, the trajectories of robots under test, and
static and dynamic obstacles in the environment.

— Pedestrian data Simulators represent agents such as
pedestrians or other robots in different ways. Typical
data points include trajectories, teleoperation com-
mands, current goals, and collective data about multiple
agents, such as crowd flow. To compute many desired
metrics, the proposed API requires at a minimum a
pose for each agent over each timestep.

— Robot data For the robot (or other agent, such as
simulated pedstrian) under test the API needs not just
pose but what the robots observed, what actions they
performed, and what trajectories resulted - regardless
of whether robots are guided by recorded trajectories,
teleoperation by humans, or control policies.

— Obstacle Data The API needs information about the
geometry of the physical environment to calculate
certain metrics, such as collisions or the safety of an
agent’s behavior; obstacle data includes static (wall
geometry) and dynamic (doors, chairs) components.

+ Metric Computation The API will compute a variety
of metrics listed in Table I, including step-wise and
task/episode level metrics as discussed in Section VI
Ideally, this metric computation should be done by stan-
dardized libraries so metrics are computed according to
common definitions. This library for computing metrics
should be extensible by the community, as different
metrics are important to different researchers.

o Output specification The API should have a well-defined
output specification so downstream tools can parse data
from any system with a compatible format, facilitating
the integration of datasets like those in Section IX, even
if they cannot readily be replayed in simulators.

¢ Downstream Tools This common output data format
output will allow downstream tools to generate analyses
and visualizations in a consistent way, as well as enable
other data-driven applications to use data from API-
compatible robots, simulators, and datasets. This could
enable researchers to not only evaluate their systems in a
common way but also analyze, visualize, and train data-
driven systems on a variety of data from different sources
with minimal feature engineering effort.

2) Implementation of Social Navigation API: To enable the
broad usage of this API, we are developing an open-source im-
plementation at https://github.com/SocialNav/SocialNavAPI.
This reference implementation will include:

1) A JSON Schema specification for the data input format,
along with implementations that generate this data for
ROS and for GymCollisionAvoidance simulator.

2) Reference implementations of the metrics in C++ and
Python, packaged as libraries so different groups can
reuse the same implementation to get comparable results.

3) A JSON schema for the output format, with examples
generating output data for ROS and OpenAl Gym.

To use the proposed API, researchers must implement
bridge code that translates data from their robots, simulators,
or datasets into a format the API can consume. To make imple-
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Fig. 11: Proposed social navigation simulation metrics API. A wide diversity of simulators and robot platforms exist, many of them supporting
one or more platforms APIs such as OpenAPI Gym or ROS. We propose to define a unified API that specifies the inputs needed to generate our
recommended social navigation metrics, specified as either Gym observations or ROS messages. A unified metrics API with implementations
for Gym and ROS will output a single output representation, enabling post-processing tools to generate visualizations, analytics and logging
with uniform code. To take advantage of these tools, simulator and robot developers only need to contribute bridge code to output the
required Gym or ROS data; dataset developers only need output the single output representation.

menting bridge code easier, we will provide implementations
for GymCollisionAvoidance and ROS which can be adapted
for other systems, as shown in Figure 11. We are also working
with the developers of SEAN 2.0, SocialGym, and DynaBarn
to develop bridge code for these systems as well.

E. Guidelines for Simulators

Each simulator has its own purpose and scope, but, based
on our analysis, we feel that a number of guidelines can be
made for social navigation simulators which are intended to
have broad use. First among these are guidelines which make
it easier for simulators to interoperate:

Guideline S1: Use Standardized APIs. When possible,
simulators should use standard APIs that enable approaches
to be tested across different simulators.

Guideline S2: Support Standard Metrics. Simulators
should provide quantitative metrics on a variety of dimensions
of interest to enable different researchers to compare results -
ideally, leveraging standard APIs so that metrics are computed
in consistent ways, as suggested in Section X-D.

Guideline S3: Support Extensibility. Regardless of the
features a simulator supports, it is impossible to satisfy every
use case. Novel research may require specific features that can-
not be anticipated. Therefore, simulators should be designed
with extensibility in mind, specifically enabling expert users to
incorporate new functionality within the existing framework.

Next, we suggest guidelines to make simulators participate
in the lifecycle of social navigation research:

Guideline S4: Support Dataset Generation. Simulators
should make it easy to create datasets by systematically
recording data from large-scale simulated runs.

Guideline S5: Support Benchmark Creation. Simulators
should provide an API to create tasks and scenarios and to
combine them with metrics and baselines to create a social
navigation benchmark.

Guideline S6: Support Human Labeling. Simulators
should make it easy to collect human labels of the acceptability
or socialness of simulated episodes.

In addition, to support the increasing sophistication of social
navigation scenarios and policies, we suggest guidelines for
supporting increased visual and behavioral fidelity:

Guideline S7: Support Common Robot Morphologies.
Simulators should provide instantiations of common robot
morphologies to enable easy comparisons.

Guideline S8: Support Detailed Pedestrians. Where pos-
sible, simulators should support detailed pedestrian simula-
tions to enable visual policies to react to walking pedestrian
gaits. Ideally, this would extend to full visual realism of
backgrounds as well, as well as replay of realistic pedestrians.

Guideline S9: Provide Options for Behavior Authoring.
Simulators should provide ways to support behavior authoring,
including playback of pedestrian recording, standard simulated
models such as ORCA, and controls by custom policies.
Supporting behavioral diversity in the generated policies is
also important to capture the range of pedestrian behavior.

Finally, it is important to validate the simulation setup
against its intended usage. Simulators should be periodically
validated and refined to improve the realism and scope of the
social navigation behaviors that they support.

XI. CONCLUSIONS

Social robot navigation is critical to the success of mobile
robots in human environments, but challenging because it



combines all the problems of traditional robot navigation with
the twin challenges of understanding how a robot can and
should participate with moving humans and understanding
how humans react to this participation. In this paper, we have
outlined principles for social robot navigation and discussed
guidelines for how these principles can be properly evaluated
in scenarios, benchmarks, datasets, and simulators.

We defined a socially navigating robot as a robot that
acts and interacts with humans or other robots, achieving its
navigation goals while modifying its behavior to enable the
other agents to better achieve theirs, and identified the key
aspects needed to achieve this as safety, comfort, legibility,
politeness, social competency, understanding other agents,
proactivity, and responding appropriately to context.

Building on this foundation, we reviewed the methodology
of social navigation research and defined a taxonomy of factors
used to describe social navigation metrics, scenarios, bench-
marks, datasets, and simulators. Based on a review of existing
work, we proposed a list of criteria for good benchmarking,
including evaluate social behavior, include quantitative met-
rics, provide baselines for comparison, be efficient, repeatable
and scalable, round human evaluations in human data, and use
well-validated evaluation instruments.

Figure 1 summarizes these guidelines to help researchers
analyze their own research efforts and make good choices for
benchmarking social robot navigation. We hope this frame-
work for understanding social robot navigation will promote
clearer benchmarking and faster progress in this field, and
to promote this, we also proposed a common API for social
navigation metrics to improve the ease of comparison.
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