Maximal multiplicity of Laplacian eigenvalues in negatively curved surfaces
Multiplicité maximale des valeurs propres du Laplacien pour les surfaces à courbure négative
Résumé
We obtain a general sublinear upper bound on the multiplicity of Laplacian eigenvalues for negatively curved surfaces. In particular, this yields progress on a longstanding conjecture by Colin de Verdière [Colin de Verdière, 1986]. Our proof relies on a trace argument for the heat kernel, and on the idea of leveraging an r-net in the surface to control this trace. This last idea was introduced in [Jiang-Tidor-Yao-Zhang-Zhao, 2021] for similar spectral purposes in the context of graphs of bounded degree. Our method is robust enough to also yield an upper bound on the "approximate multiplicity" of eigenvalues, i.e., the number of eigenvalues in windows of size 1 / log^{\kappa}(g), \kappa > 0.
Domaines
Théorie spectrale [math.SP]
Fichier principal
Multiplicité surfaces hyperboliques version soumise 12 juillet 2023.pdf (492.67 Ko)
Télécharger le fichier
Origine | Fichiers produits par l'(les) auteur(s) |
---|