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Maximal multiplicity of Laplacian eigenvalues in negatively

curved surfaces

Cyril Letrouit∗ and Simon Machado†

July 12, 2023

Abstract

We obtain a general sublinear upper bound on the multiplicity of Laplacian eigenvalues
for negatively curved surfaces. In particular, this yields progress on a longstanding conjecture
by Colin de Verdière [Col86]. Our proof relies on a trace argument for the heat kernel, and
on the idea of leveraging an r-net in the surface to control this trace. This last idea was
introduced in [JTYZZ21, Theorem 2.2] for similar spectral purposes in the context of graphs
of bounded degree. Our method is robust enough to also yield an upper bound on the
“approximate multiplicity” of eigenvalues, i.e., the number of eigenvalues in windows of size
1/ logκ(g), κ > 0.

1 Introduction

1.1 Main results

Let M be a closed, connected Riemannian manifold, and let ∆ denote the Laplace-Beltrami
operator onM , which is self-adjoint and non-positive. The operator −∆ has a discrete spectrum

0 = λ1(M) < λ2(M) ≤ . . .→ +∞, (1)

where the λi(M) are repeated according to their multiplicity.
In the present paper we consider the case where M is a closed negatively curved surface. We

denote by T the set of triples

T = {(a, b, ρ) ∈ R3 | b ≤ a < 0, ρ > 0}.

For any (a, b, ρ) ∈ T , let M(a,b,ρ)
g be the set of closed connected surfaces of genus g, with

injectivity radius ≥ ρ, and with Gaussian curvature bounded below by b and above by a. An

important example is obtained by taking (a, b, ρ) = (−1,−1, ρ), in which case M(a,b,ρ)
g is the set

of hyperbolic surfaces (i.e., with constant curvature −1) of injectivity radius ≥ ρ.
In this paper, we obtain general sublinear upper bounds on the maximal multiplicity of

λ2(M) for negatively curved surfaces. Our first main result is the following:

Theorem 1.1 (Maximal multiplicity of λ2). For any (a, b, ρ) ∈ T , there exists C0 > 0 such that

for any g ≥ 2 and any M ∈ M(a,b,ρ)
g , the multiplicity of λ2(M) is at most C0

g
log(log(g)) .

For any (a, b, ρ) ∈ T and δ > 0, there exist C0, α > 0 such that for any g ≥ 2 and any

M ∈ M(a,b,ρ)
g with spectral gap λ2(M) ≥ δ, the multiplicity of λ2(M) is at most C0

g
log(g)α .
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Our strategy of proof partly relies on a geometric idea which takes its source in [JTYZZ21].
This last work proves the same sublinear bound as ours, for the adjacency matrix of combina-
torial graphs with a uniform bound on the degree.

Our next statement is stronger than Theorem 1.1, in the sense that it accommodates for
“approximate multiplicity” in a window of size O(1/ logκ(g)), κ > 0 (see Remark 4.2 for com-
ments on the size of this window). This result parallels a similar statement [HSZZ22, Theorem
1.6] for graphs with a uniform bound on the degree of each vertex.

Theorem 1.2. For any j ∈ N≥2, any (a, b, ρ) ∈ T , and any κ,K > 0, there exists C0 > 0
such that the number of eigenvalues in [λj(M), (1 + K

logκ(g))λj(M)] is at most C0
g

log(log(g)) for

any g ≥ 2 and any M ∈ M(a,b,ρ)
g .

Following an analogous result on regular graphs [MRS21, Proposition 5.3], we also provide
a construction of closed hyperbolic surfaces with high approximate multiplicity. This result
shows that only little improvement is possible over Theorem 1.2 for bounds on approximate
multiplicity, at least if the injectivity radius is allowed to tend to 0 (indeed, we warn the reader
that the family of closed hyperbolic surfaces constructed in Proposition 1.3 has injectivity radius
tending to 0 as g → +∞ at a rate which we do not control).

Proposition 1.3. There exist C0,K > 0 and a family of connected closed hyperbolic surfaces
M of genus g → +∞, with at least C0

g

log3/2(g)
eigenvalues in [λ2(M), (1 +K log(log(g))

log(g) )λ2(M)].

1.2 Bibliographical comments

The maximal multiplicity of Laplacian eigenvalues has been studied at least since the 1970’s and
a seminal paper of Cheng [Che76]. We review the literature, focusing on the case of surfaces
since on any closed manifold M of dimension n ≥ 3, it is possible to construct a sequence of
metrics whose first (non-trivial) eigenvalue multiplicity tends to +∞ (see [Col86]). For M a
closed surface of genus g, let mi(M) denote the maximal multiplicity of the i-th eigenvalue of a
Riemannian Laplacian on M (with the convention (1) on indexing of eigenvalues).

Linear bounds. Cheng proved in [Che76] that mi(M) ≤ 1
2(2g+ i)(2g+ i+1). This result has

been improved by Besson in [Bes80] who sharpened the bound down to 4g+2i−1. Both papers
proceed by bounding the order of vanishing of eigenfunctions and obtaining a contradiction if
an eigenspace is too large (see also [SY94, Section III.6]). Then, Sévennec [Sev02] proved that
in negative Euler characteristic, m2(M) ≤ 5 − χ(M); in particular, if M is orientable of genus
g ≥ 2, then m2(M) ≤ 2g + 3. This bound has been improved to 2g − 1 for closed hyperbolic
surfaces of sufficiently high genus in [FP23, Theorem 9.5].

Colin de Verdière’s conjecture. Colin de Verdière conjectures in [Col86, Section V] a much
stronger bound of order

√
g for the maximal multiplicity. More precisely, he conjectures that

m2(M) = chr(M)− 1 (2)

where chr(M) is the chromatic number of M , defined as the largest n such that the complete
graph on n vertices embeds in M . By a result of Ringel and Youngs [RY68],

chr(M) =
⌊1
2

(
7 +

√
49− 24χ(M)

)⌋
,

and since χ(M) = 2 − 2g for closed orientable surfaces, m2(g) would be of order
√
12g. The

conjecture (2) has been verified for the sphere [Che76], the torus [Bes80], the projective plane
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[Bes80], the Klein bottle [Col87], [Nad87]. The work [FP21] shows that the Klein quartic
maximizes the multiplicity of λ2 among all closed hyperbolic surfaces of genus 3, with multiplicity
equal to 8, which also matches the conjecture (2). It is also proved in [Col87, Théorème 1.5]
that m2(M) ≥ chr(M) − 1 if m2(M) denotes the maximal multiplicity of λ2 of a Schrödinger
operator on M for which λ1 = 0.

Colbois and Colin de Verdière constructed in [CC88] for any g ≥ 3 a closed hyperbolic surface

of genus g such that the multiplicity of λ2 is
⌊
1+

√
8g+1
2

⌋
, which has the same order of growth as

the conjectured upper bound (2).

Sublinear bounds. Despite the difficulty to prove Colin de Verdière’s conjecture in full gen-
erality, sublinear bounds have been obtained on the multiplicity of eigenvalues on surfaces.
However these bounds work only for hyperbolic surfaces and assume some control over the num-
ber of closed geodesics of length ≤ L for any large L independent of g, or for L = c log(g)
where c > 0 is a small constant. This control is related to the notion of Benjamini-Schramm
convergence (see [ABBGNRS17]).

A quantitative control over the number of short closed geodesics, and thus over the asymp-
totics of multiplicities, holds with high probability for sequences of hyperbolic surfaces drawn
with respect to Weil–Petersson probability measures. Monk [Mon22] constructs a set Ag of
closed hyperbolic surfaces M of high probability for which she obtains though Selberg’s trace
formula a Weyl-type estimate and a sublinear upper bound of size O(g/

√
log g) on the multiplic-

ity of any eigenvalue. The set Ag contains surfaces which converge in the sense of Benjamini-
Schramm to the hyperbolic plane H2. Another probabilistic sublinear upper bound has been
proved in [GLST21, Corollary 1.7], under assumptions which are different but related to the
ones of [Mon22]. We also mention [FP23, Proposition 9.3] which proves a sublinear bound when
λ2(M)− 1

4 is of order 1/ log(g)2.
The above works are based either on the Selberg transform or on the Selberg trace formula

which relates, in closed hyperbolic surfaces, the spectrum of the Laplacian to the set of lengths
of closed geodesics. Our method, which works for general negatively curved surfaces and does
not assume a control over the number of closed geodesics of length ≤ L for large L, is totally
different. It relies mainly on heat kernel estimates, which correspond geometrically to random
walks and not to closed geodesics. Heat kernel estimates by themselves are not sufficient; we need
for our proof another ingredient inspired from the work [JTYZZ21] pertaining to multiplicities
in graphs (see Section 1.3).

The work [ABBGNRS17] shows sublinear bounds for the related problem of limit multiplic-
ities under Benjamini–Schramm convergence. Namely, under Benjamini–Schramm convergence
of a sequence of surfaces (Mn)n≥0 to H2 with injectivity radius bounded below, and for a fixed

eigenvalue λ < 1
4 , there holds m(Mn,λ)

vol(Mn)
→ m(H2, λ) = 0. Under more restrictive arithmetic

assumptions, precise rates of convergence - with power saving - can be established, see [DW78],
[SX91], [Gam02].

We mention the fact that our results yield a sublinear bound on multiplicity when restricting
to the set of Riemannian covers of a fixed negatively curved manifold. Also, when a = b = −1
and ρ is small, we see that the set of hyperbolic surfaces considered in Theorem 1.1 covers
most of the moduli space of closed hyperbolic surfaces of genus g ≥ 2 since the event of having
injectivity radius ≥ ρ has probability roughly 1− ρ2 for the Weil-Petersson probability measure
(see [MP19, Theorem 4.1]).

Literature on graphs. As already mentioned in Section 1.1, our inspiration comes from the
following result proved in [JTYZZ21, Theorem 2.2]:
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Theorem 1.4 ([JTYZZ21]). For every j and every d, there is a constant C = C(d, j) so that
the adjacency matrix of every connected n-vertex graph with maximum degree at most d has j-th
eigenvalue multiplicity at most Cn/ log logn.

The main motivation of the authors of [JTYZZ21] is the equiangular problem, namely the
computation of the maximal number of lines in Rd which are pairwise separated by the same
angle. This problem shows up for instance through tight frames in coding theory. In [JTYZZ21,
Theorem 1.2], the equiangular problem for a fixed angle α between the lines is solved by showing
that it may be reduced to Theorem 1.4.

We also mention the work [MRS21], in which an improvement of [JTYZZ21, Theorem 2.2]
is proven for regular graphs. This improvement does not seem easy to transfer to (negatively
curved) surfaces. The work [MRS21] also gives an explicit construction of regular graphs with
low degree for which the first non-trivial eigenvalue has large approximate multiplicity. We use
this construction to prove Proposition 1.3. Examples with even higher approximate multiplicity
have been constructed in [HSZZ22], but for the adjacency matrix of irregular graphs and not
for the Laplacian on graphs.

1.3 Strategy of proof

1.3.1 Warm-up: proof in the graph case

Our strategy to prove Theorems 1.1 and 1.2 is partly inspired by the proof of Theorem 1.4
worked out in [JTYZZ21]. We provide here a summary of this proof.

Let d > 0 and let G be a graph with degree ≤ d, whose adjacency matrix is denoted by AG.
The authors of [JTYZZ21] introduce a subgraph H ⊂ G whose complement G \H is an r1-net:
it means that any vertex of G is at distance at most r1 from G \H. The parameter r1 is chosen
as r1 = ⌊c log log(n)⌋, where n is the number of vertices of G and c > 0 is a small constant.

The first step is to find an upper bound for the trace of A2r1
H , where AH is the adjacency

matrix of H. For this, the authors of [JTYZZ21] leverage the usual technique of expressing a
trace as a number of closed paths. The trace Tr(A2r1

H ) is bounded above by the number of paths
of length 2r1 in G, which start from a given vertex x ∈ H and do not belong to the r1-net G\H
at time r1. It follows from the definition of an r1-net that this number is smaller by at least 1
than the total number of paths of length 2r1 in G which start from x and end at x: we call this
the “gain of 1”.

This gain of 1 is transformed into a larger gain by considering the trace of A2r2
H with r2 =

⌊c log(n)⌋ ≫ r1, instead of the trace of A2r1
H . The argument to get this larger gain relies on the

Perron-Frobenius theorem and the min-max principle applied locally in balls of radius r2. The
large gain which is obtained provides a strong bound on Tr(A2r2

H ), and thus on the number of
eigenvalues of AH close to the largest non-trivial one λ2(AH) < 1 (largest after λ1(AH) = 1).

Finally, the Cauchy interlacing theorem (Theorem A.1) converts this bound into a similar
bound on the eigenvalues of AG. The bounds depend on d.

1.3.2 Main steps

The main steps of our proof of Theorem 1.1 mimic the above proof, with many additional
difficulties and several new ideas. The proof of Theorem 1.2 is an extension of the arguments
provided below.

1. We consider, instead of directly λ2 = λ2(M), the maximal multiplicity of e−tλ2(M) as an
eigenvalue of et∆, thus reinterpreting the problem in terms of heat kernels (and random
walks).
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2. In analogy with the graph case, we set r1 = c log log(g) where g is the genus of M and
c > 0 is a small constant. We choose an r1-net {x1, . . . , xℓ} ⊂ M : this means that any
point in M is at distance at most r1 from one of the xk’s. Then we fix around each xk
a small open set Vk of measure ∼ 1. We define the operator P : L2(M,ν) → L2(M,ν)
as the orthogonal projection to the space of functions which are L2-orthogonal to the
(normalized) characteristic functions of the Vk’s.

3. We use a Cauchy interlacing theorem in Hilbert spaces (see Theorem A.1): we compare
the multiplicity m of e−r1λ2 as an eigenvalue of er1∆ with the multiplicity m′ of e−r1λ2 as
an eigenvalue of Per1∆P .

The Cauchy interlacing theorem implies that

m ≤ m′ + rank(Id− P ). (3)

Our choice of P guarantees that rank(Id−P ) = O(g/ log(log(g))), or even rank(Id−P ) =
O(g/ logα(g)) when we work under the assumption λ2(M) ≥ δ in the second part of
Theorem 1.1. The next steps prove an upper bound on m′.

4. We choose r2 = c log(g) and n ≈ ⌊r2/r1⌋ and we compute the trace of (Per1∆P )2n to
bound above m′:

m′e−2nr1λ2 ≤ Tr((Per1∆P )2n). (4)

The trace in the right-hand side may in turn be written as an integral of the form

Tr((Per1∆P )2n) =

∫
M

∥(Per1∆P )nδx∥2dν(x). (5)

5. We leverage the averaging properties of the heat kernel to prove an inequality which
roughly looks like1

∥(Per1∆P )⌊r2/r1⌋δx∥ ≤
(
(1− ε(g))e−r1λ2

)⌊r2/r1⌋
(6)

for “most points” x ∈M . The assumption on the injectivity radius in Theorem 1.1 comes
from the proof of (6), but also from the construction of the r1-net in Step 2.
Combining (4), (5), (6) with the Gauss-Bonnet formula we obtain for some C0 > 0

m′ ≤ C0g(1− ε(g))2⌊r2/r1⌋ ≤ C0g exp (−2ε(g)⌊r2/r1⌋) (7)

The quantity ε(g) > 0, which depends on the genus g, is the “gain”, and we prove it to be
sufficiently large, so that Theorem 1.1 follows from (3), (7) and our choices of r1, r2, P .

The proof of Step 5 is the heart of our contribution, and a more detailed summary of this
step is provided at the beginning of Section 3.3, before its actual proof. Whereas the “gain” is
straightforward to obtain for graphs (see Section 1.3.1), we have to face in the case of surfaces
several difficulties.

A first difficulty comes from the infinite speed of propagation of the heat kernel2. This
property a priori prevents us from using any local argument in the manifold; however, as men-
tioned in Section 1.3.1, we need to apply the min-max principle locally in balls of radius ≈ r2

1Here we warn the reader that the sequence of inequalities we prove is actually much more subtle than (6).
2Although there exists a “random walk at speed 1” on manifolds (see for instance [LM10]), whose kernel is the

most obvious analogue of the adjacency matrix AG of Section 1.3.1, we use in this paper the heat kernel because
it seems more natural to understand the Laplacian on manifolds, and because the bounds available on the kernel
of the “random walk at speed 1” are not as good as the ones available on the heat kernel.
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to obtain the quantitative gain ε(g). To overcome this difficulty we introduce some cut-offs
χx (approximately the characteristic function of a ball of center x and radius C ′r2 for some
large C ′) commuting with P , and consider the compact operators Bx = Pχxe

r1∆χxP instead of
Per1∆P in (6). The remainder terms which unavoidably appear when replacing Per1∆P by Bx
are handled through classical heat kernel estimates in the universal cover of M .

Another difficulty arises from the fact that the operator Bx, which somehow plays locally
around x the role of Ar1H in Section 1.3.1, has one main difference with Ar1H : its matrix elements
are not necessarily non-negative (the condition f, g ≥ 0 does not imply that (Bxf, g) ≥ 0),
and the Perron-Frobenius theorem therefore does not apply to Bx; however, as mentioned in
Section 1.3.1, we do need to apply a Perron-Frobenius-type argument in local balls. We overcome
this difficulty by analyzing the interplay between the positive and the negative part of the top
eigenvector φx of Bx. This allows us to recover a gain ε(g) despite the lack of positivity (in the
sense of matrix elements) of Bx.

Organization of the paper. The paper is organized as follows. We introduce useful notation
in Section 2.1, and we prove elementary results regarding r-nets in Section 2.2. In Section 2.3
we state estimates on the heat kernel in M and its universal cover M̃ . Section 3 gathers the
key lemmas used in the proof of Theorems 1.1 and 1.2: in Section 3.1 we compare the trace
Tr((Per1∆P )n) to an integral of local Rayleigh quotients and we estimate the error terms;
in Section 3.2 we draw several consequences from the min-max principle used to bound the
previously mentioned Rayleigh quotients; in Section 3.3, we prove the gain described in Step 5
above. In Section 4.1, we proceed with the proof of Theorem 1.1, and in Section 4.2 we explain
how to modify this proof to obtain Theorem 1.2. In Section 4.3 we prove Proposition 1.3, relying
on constructions in [CC88] and [MRS21]. In Appendix A.1, we gather several elementary results
such as the Cauchy interlacing theorem in infinite dimensional Hilbert spaces and an upper
bound for the first eigenvalues of closed negatively curved surfaces. Finally in Section A.2 we
prove the heat kernel estimates stated in Section 2.3.

Acknowledgment. The authors are thankful to Laura Monk and Yufei Zhao for answering
questions related to this work. Part of this work was done while C.L. was supported by the
Simons Foundation Grant 601948, DJ. S.M. was supported by the National Science Foundation
under Grant No. DMS-1926686.

2 Preliminaries

This section gathers notation and elementary results concerning Voronoi cells in closed negatively
curved surfaces, r-nets and the heat kernel.

2.1 Notation

We fix (a, b, ρ) ∈ T andM ∈ M(a,b,ρ)
g for some g ≥ 3. The Riemannian distance inM is denoted

by d(·, ·) and the open ball of center x ∈M and radius r > 0 is Bd(x, r).
We denote by ν the Riemannian volume on M , by ⟨·, ·⟩ the scalar product with respect to

ν, and by ∥ · ∥ the associated norm. We introduce

r1 = c log(log(g)), r2 = c log(g) (8)

where c > 0 is a small constant which will be fixed in Section 4.1. Both r1 and r2 are positive
since we assumed g ≥ 3.
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Let (M̃, d
M̃
) be the universal cover of M endowed with the lifted Riemannian metric. By

definition, M̃ is a Cartan-Hadamard manifold. Let Vol
M̃

be the Riemannian volume on M̃ .

We recall that the volume of any ball of radius r in M̃ satisfies

Vol
M̃
(B(x, r)) ≤ 4π

|b|
sinh2

(√
|b|
2

r

)
(9)

according to the Bishop-Gromov inequality.

Heat kernels. We denote by kt : M̃ × M̃ → R the heat kernel in M̃ , so that for any f ∈
L2(M̃, dVol

M̃
), the solution u : R+×M̃ → R of ∂tu = ∆u with initial datum u(0, ·) = f is given

by

u(t, x) =

∫
M̃
kt(x, y)f(y)dVolM̃ (y).

By a slight abuse, we use the same notation kt (with only one argument) for the function

kt : R+ → R defined by kt(dM̃ (x, y)) = kt(x, y) for any x, y ∈ M̃ . This definition makes sense
since kt(x, y) only depends on d

M̃
(x, y).

The linear operator e∆ is compact, self-adjoint in L2(M,ν), with norm 1. We denote by
Kt(x, y) the heat kernel on M , i.e., it satisfies for any t ≥ 0

et∆f(x) =

∫
M
Kt(x, y)f(y)ν(dy).

We have et∆δx = Kt(x, ·) ∈ L2(M,ν) for any t > 0 and x ∈ M . Writing M = Γ\M̃ , we have
the formula

Kt(x, y) =
∑
γ∈Γ

kt(x̄, γȳ) (10)

where x̄, ȳ are lifts of x, y in a fixed fundamental domain of M in M̃ .
By rescaling the Riemannian metric on H2, we create a space M̃K of constant Gaussian

curvature K < 0, which is a simply connected space form. The universal cover of a closed
surface with constant Gaussian curvature K is isometric to M̃K .

The following result is proved in [DGM76, Théorème 1].

Lemma 2.1 (Comparison for the heat kernel). Let M̃ be a complete and simply connected
Riemannian manifold with associated distance d

M̃
and heat kernel kt(·, ·). Assume that its

sectional curvature is bounded above by a and below by b. Then for any x, x0 ∈ M̃ and any
t > 0,

k
(b)
t (d

M̃
(x0, x)) ≤ kt(x0, x) ≤ k

(a)
t (d

M̃
(x0, x))

where k
(K)
t (·) denotes the heat kernel (with radial variable) on M̃K .

Constants. Throughout the paper we use the following conventions to denote constants:

• we keep the same notation for constants which may change from line to line.

• Constants with an integer subscript, namely C0, C1, . . ., depend on a, b and ρ only.

• C > 0 and C ′ > 0 denote two sufficiently large constants whose values are fixed in the
proof of Theorem 1.1, in (45)-(47). C and C ′ are introduced respectively in Lemma 2.4
and at the beginning of Section 3.1.

• The constant c > 0 introduced in (8) is fixed in (48) (chosen sufficiently small).
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2.2 r-nets and Voronoi cells

As explained in Section 1.3, we need for our proof to consider a subset V of relatively small
measure such that any point of M is at distance ≤ r of V . In the context of graphs, e.g., in
[JTYZZ21], such sets, called r-nets, are subsets of the sets of vertices. In the case of a closed
negatively curved surface M , we cut M into Voronoi cells and select a (not too large) subset of
cells well distributed over M . This section gathers the necessary definitions and results.

In the sequel, an r-separated set is a set of points x1, . . . , xm ∈ M such that d(xi, xj) ≥ r
for any distinct i, j ∈ {1, . . . ,m}. An r-net is a set of points x1, . . . , xm ∈ M such that for any
y ∈M there exists i ∈ N such that d(y, xi) ≤ r.

The following two lemmas prove the existence of r-nets whose size is not too large.

Lemma 2.2. For any (a, b, ρ) ∈ T , there exists C0 > 0 such that for any g ≥ 2, any M ∈
M(a,b,ρ)

g and any r ≥ 1, there exists an r-net in M of cardinal at most max(1, C0g/r).

Proof. Let (a, b, ρ) ∈ T . If diam(M) ≤ r, then there is an r-net of size 1. So suppose that
diam(M) > r. Let x1, . . . , xℓ ∈ M be an r-separated set of maximal cardinality in M . Then
X := {x1, . . . , xℓ} is an r-net of M and Bd(xi, r/2) ∩Bd(xj , r/2) = ∅ for all i ̸= j. So

ℓ min
i∈{1;...;ℓ}

vol(Bd(xi, r/2)) ≤
ℓ∑
i=1

vol(Bd(xi, r/2)) ≤ vol(M) ≤ C0g (11)

where the last inequality comes from the Gauss-Bonnet formula. It thus suffices to show that
for any x ∈ M , Bd(x, r/2) has volume at least C1r for some constant C1 > 0 (depending on
(a, b, ρ) ∈ T only). Fix x ∈ M . Take any y ∈ M such that d(x, y) ≥ r/2 - there must be
at least one such y since diam(M) > r - and let γ : [0; r/2] → M be a continuous path of
minimal length from x to y. Then the balls Bd(γ(n), 1/2) for n ∈ {0, . . . , ⌊(r − 1)/2⌋} are
pairwise disjoint and contained in Bd(x, r/2). There is in addition a constant C2 > 0 such
that vol(Bd(z, 1/2)) ≥ C2 for all z ∈ M (due to [Cro80, Proposition 14]), and we use this for
z = γ(n), n ∈ {0, . . . , ⌊(r − 1)/2⌋}. So

vol(Bd(x, r/2)) ≥
(⌊r − 1

2

⌋
+ 1

)
C2. (12)

This concludes the proof of the lemma.

Lemma 2.3. For any (a, b, ρ) ∈ T and δ > 0 there exist C0, δ
′ > 0 such that for any g ≥ 2,

any M ∈ M(a,b,ρ)
g with spectral gap λ2(M) ≥ δ, and any r such that 1 ≤ r ≤ 1√

|b|
log(g/4), there

exists an r-net in M of cardinal at most max(1, C0g/e
δ′r).

Proof. By the Buser inequality [Bus82], the Cheeger constant h(M) verifies δ ≤ λ2(M) ≤
2h(M)

√
|b| + 10h(M)2, hence h(M) ≥ δ′ where δ′ depends only on b and δ. Besides, for any

x ∈M and any r as in the statement, we have

vol(Bd(x, r)) ≤ Vol
M̃
(B

M̃
(r)) ≤ 4π

|b|
sinh

(√
|b|r

2

)2
≤ π

|b|
g ≤ vol(M)/2

where the second inequality comes from (9), the third one from our assumption on r, and the
last one from the Gauss-Bonnet formula. Hence by definition of the Cheeger constant,

dvol(Bd(x, r))

dr
= lim

ε→0

vol(Bd(x, r + ε))− vol(Bd(x, r))

ε
= |∂Bd(x, r)| ≥ δ′vol(Bd(x, r))

which implies that vol(Bd(x, r)) ≥ C1e
δ′r (where C1 depends on ρ). Replacing in (11) and (12)

we find the result.
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We fix a 1-separated set V = {v1, . . . , vm} of maximal cardinality m in M , and we consider
the Voronoi cells

Vk = {q ∈M | ∀i ∈ {1, . . . ,m}, d(q, vk) ≤ d(q, vi)}, k = 1, . . . ,m.

By our choice of V, there holds Bd(vk, 1/2) ⊂ Vk ⊂ Bd(vk, 1) for any k ∈ {1, . . . ,m}. We notice

that if ṽk denotes a lift of vk to a fundamental domain of M in M̃ ,

C1 ≥ Vol
M̃
(B

M̃
(ṽk, 1))) ≥ vol(Vk) ≥ C0 (13)

for some C0, C1 > 0 which depend only on (a, b, ρ) ∈ T , where the leftmost inequality comes
from (9), and the rightmost inequality from [Cro80, Proposition 14].

We fix a subset N ⊂ {1, . . . ,m} with the following properties:

• #N ≤ C0g/r (or #N ≤ C0g/e
δ′r if λ2(M) ≥ δ is assumed).

• For any k ∈ N there exists xk ∈ Vk such that the points (xk)k∈N form an r1-net.

The set N is constructed by first considering an r1-net {x1, . . . , xℓ}, and then for each j ∈ [ℓ],
putting in N the index of (one of) the Voronoi cell(s) to which xj belongs.

For any k ∈ N , we denote by ψk the normalized characteristic function of the interior V̊k of
Vk, i.e., ψk(x) =

1√
vol(Vk)

1x∈V̊k . It follows from (13) that ∥ψk∥L∞(M) ≤ C2.

We denote by P the orthogonal projection3 on the orthogonal of the ψk with respect to ν:

∀f ∈ L2(M,ν), Pf = f −
∑
k∈N

⟨f, ψk⟩ψk.

If δx denotes the Dirac mass on a manifold (defined as δx(f) = f(x)) then Pδx is a distribution,
defined as

Pδx = δx −
∑
k∈N

ψk(x)ψk. (14)

2.3 Heat kernel estimates

The following lemmas on the heat kernels in M̃ and M (see definitions in Section 2.1) will be
instrumental in the proofs of Theorems 1.1 and 1.2. The proofs of these lemmas are postponed
to Appendix A.2.

Estimate (15) reflects the fact that the mass of kt is concentrated in a ball of radius ≲ t;
thus its mass is small outside a ball of radius Ct for C sufficiently large. Then, the estimate (16)
shows that when restricting to the interior of a ball of radius Ct, the heat kernel varies not too
wildly over scales ≤ 4t (any other constant than 4 would also work, but 4 is the right constant
for Lemma 3.8).

Lemma 2.4 (Estimates on the heat kernel in M̃). The following estimates hold:

• (L1 norm outside a ball of radius Ct). There exists C0 > 0 such that for any C ≥
4|a|

√
|b|+ 2, t ≥ 1 and x ∈ M̃ ,

∥kt(x, ·)∥L1(M̃\B
M̃

(x,Ct))
≤ C0 exp

(
|ab|t− C2t

16|a|

)
. (15)

3The idea of considering these projections is inspired by the paper [Bus77], which shows that in a closed
hyperbolic surface M of genus g, the number of eigenvalues below 1/4 is bounded above by 4g−2. The proof goes
by considering a triangulation of M into 4g−2 geodesic triangles, and showing that in each of these triangles, the
smallest positive eigenvalue of the Neumann problem is at least 1/4. The functions which are considered in the
Rayleigh quotient minimization problem are orthogonal to the characteristic functions of the geodesic triangles.
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• (Variations over larger scales inside a ball of radius Ct). There exists C0 > 0 such that for

any t ≥ 1, C > 0, x, y, z ∈ M̃ with d(x, y) ≤ Ct and |d(x, y)−d(x, z)| ≤ 4t+4, there holds

kt(x, z)

kt(x, y)
≥ C0 exp

(
−
(
1 + |b|+ C +

C + 1

|b|

)
4t

)
. (16)

The following lemma on the L∞ norm of the heat kernel inM is not sharp, but it is sufficient
for our purpose.

Lemma 2.5 (L∞ norm of the heat kernel in M). There exists C1 > 0 such that for any t ≥ 1
there holds

∥Kt(·, ·)∥L∞(M×M) ≤ C1 exp(4|ab|t).

3 Key lemmas

This section is devoted to the proof of several lemmas which are key ingredients of the proof of
Theorem 1.1 provided in Section 4.1.

3.1 Error term estimates

As explained in Section 1.3, our proof relies on finding an upper bound on the trace of the
trace-class operator (Per1∆P )n, and the first step is to write this trace as an integral

Tr((Per1∆P )2n) =

∫
M

∥(Per1∆P )nδx∥2dν(x) (17)

(see Lemma A.3). We actually choose n = ⌊r2/r1⌋+ 1.
It turns out that to leverage the gain of ε(g) obtained in Section 3.3 (and described in Step

5 of Section 1.3), we compare the integrand in the right-hand side of (17) to a local Rayleigh
quotient (or spectral radius) at each point x ∈ M , see (19) below. We work this out in the
present section, and we provide estimates for the error terms which unavoidably appear along
the way.

We denote by χx the indicator function of the subset

Bd(x,C
′r2) ∪

⋃
Vk∩Bd(x,C′r2 )̸=∅

Vk, (18)

where C ′ will be fixed in Section 4.1. We have [χx, P ] = 0 for any x ∈M .
Throughout Section 3, we assume that g is sufficiently large, so that r1 ≥ 1. The main result

of this section is the following one.

Lemma 3.1. There exists C0 > 0 such that if C ′ ≥ max(10|ab|
1
2 , 6), then for any x ∈M ,

∥(Per1∆P )⌊r2/r1⌋+1δx∥ ≤ C0

(
sup

∥φ∥=1
∥(Pχxer1∆χxP )⌊r2/r1⌋φ∥+ exp

(
−C

′2r2
32

))
. (19)

The proof of Lemma 3.1 relies on the following intermediate result.

Lemma 3.2. There exists C0 > 0 such that if C ′ ≥ max(10|ab|
1
2 , 6), then for any x ∈M ,

∥
(
Per1∆P

)⌊r2/r1⌋+1
δx −

(
Pχxe

r1∆χxP
)⌊r2/r1⌋+1

δx∥ ≤ C0 exp

(
−C

′2r2
32

)
.
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Remark 3.3. The cut-offs χx are introduced to overcome the difficulty caused by the infinite
speed of propagation of the heat kernel. We expect that most of the mass of (Per1∆P )⌊r2/r1⌋+1δx
is contained in a ball of radius C ′r2. Lemma 3.2 proves that the remainder term coming from
the complement of supp(χx) is small.

Proof of Lemma 3.2. Write n := ⌊r2/r1⌋+1. We first notice that the difference
(
Per1∆P

)n
δx−(

Pχxe
r1∆χxP

)n
δx is equal to the telescopic sum

n−1∑
l=0

(
Pχxe

r1∆
)n−l−1

P (1− χx)
(
er1∆P

)l+1
δx (20)

(to show this, write P (1−χx) = P −Pχx, recall that [P, χx] = 0, and after removing telescoping
terms, use χxδx = δx).

Next, we estimate the norm of each term of (20) individually. For n−1 ≥ l ≥ 0, the quantity

||
(
Pχxe

r1∆
)n−l−1

P (1− χx)
(
er1∆P

)l+1
δx||

is bounded above by

|| (1− χx)
(
er1∆P

)l+1
δx|| (21)

because e∆, χx and P have operator norm 1. We start by estimating this last quantity when
l = 0. We remark first of all that

||(1− χx)e
r1∆Pδx|| ≤ ||(1− χx)e

(r1−1)∆
∣∣e∆Pδx∣∣ || (22)

according to the triangle inequality. In order to make sense of the right-hand side, notice that
e∆Pδx is equal to the element ϕ of L2(M,ν) defined by

ϕ : y 7−→ K1(y, x)− ψkx(x)

∫
M
K1(y, z)ψkx(z)dν(z)

where kx denotes the unique k ∈ N such that ψk(x) ̸= 0 if it exists, and kx = 0 otherwise. The
notation |e∆Pδx| then corresponds to the absolute value of ϕ.

We provide now an estimate of the right-hand side of (22). As a general fact, we have for
any t > 0,

||(1− χx)e
t∆
∣∣e∆Pδx∣∣ || = || (1− χx) e

t∆ϕ|| ≤ || (1− χx) e
t∆K1(·, x)||+ C0|| (1− χx) e

t∆(e∆ψkx)||

where we have used that |ψkx(x)| ≤ C0 for any x (see Section 2.2). We have moreover according
to (18)

|| (1− χx) e
t∆K1(·, x)|| ≤ ||Kt+1(·, x)||L2(M\Bd(x,C′r2)). (23)

Now, since the ψk’s are bounded above by C0 and supported on subsets of diameter bounded
above by 1, using (10) and Lemma 2.1 we obtain that there is a constant C1 such that K1(y, x) ≥
k1(d(x, y)) ≥ k

(b)
1 (d(x, y)) ≥ C1ψkx(y). Hence,

|| (1− χx) e
t∆(e∆ψkx)|| ≤ C1|| (1− χx) e

(t+1)∆K1(·, x)|| ≤ C1||Kt+2(·, x)||L2(M\Bd(x,C′r2))

According to Lemma 2.5,

||Kt+2(·, x)||L2(M\Bd(x,C′r2)) ≤ C2 exp(2|ab|t)||Kt+2(·, x)||1/2L1(M\Bd(x,C′r2))

≤ C2 exp(2|ab|t)||kt+2(·, x)||1/2L1(H2\B2
H(x,C

′r2))
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where in the last line we used (10). The same argument applied to the right-hand side of (23)
yields the same bound, at time t+1. From now on, we assume t ∈ [0, 2r2]. Using the heat kernel
estimate (15) applied with C = C ′r2/(t+2) ≥ 2 (here we use C ′ ≥ 6) and C = C ′r2/(t+1) ≥ 2
we thus have

||(1− χx)e
t∆
∣∣e∆Pδx∣∣ || ≤ C3 exp

(
5

2
|ab|t− C ′2r22

8(t+ 2)

)
. (24)

Applying to t = r1 − 1 and combining with (22) we get an upper bound for (21) for l = 0.
We turn now to the case l ≥ 1. For any f ∈ L2(M,ν), t ≥ 0 and y ∈M we have

|Pet∆f(y)| ≤ et∆|f |(y) +
∑
k∈N

ψk(y)

∫
M
ψk(w)Kt(w, z)|f(z)|dν(w)dν(z).

The ψk’s are bounded by C0 and supported on pairwise disjoint subsets of diameter bounded
above by 2. Therefore, there is a constant C4 > 0 such that for any y, w ∈M ,∑

k∈N
ψk(y)ψk(w) ≤ C4k

(b)
1 (d(y, w)) ≤ C4k1(d(y, w)) ≤ C4K1(y, w)

(where we used Lemma 2.1 and (10)). This yields∑
k∈N

ψk(y)

∫
M
ψk(w)Kt(w, z)|f(z)|dν(w)dν(z) ≤ C4e

(t+1)∆|f |(y).

Hence,
|Pet∆f(y)| ≤ (et∆ + C4e

(t+1)∆)|f |(y). (25)

A simple induction then shows that,

|P
(
et∆P

)l−1
f(y)| ≤ (et∆ + C4e

(t+1)∆)l−1|Pf |(y).

Applying the above with t = r1 and f = er1∆Pδx yields

|| (1− χx)
(
er1∆P

)l+1
δx|| ≤ ||(1− χx)e

r1∆(er1∆ + C4e
(r1+1)∆)l−1|Per1∆Pδx|||.

Applying (25) with t = r1 − 1 and f = e∆Pδx we find

|Per1∆Pδx|(y) ≤ (e(r1−1)∆ + C4e
r1∆)|e∆Pδx|(y)

for all y ∈M . So the triangle inequality yields

|| (1− χx)
(
er1∆P

)l+1
δx|| ≤

l∑
j=0

(
l

j

)
Cj4 ||(1− χx)e

((l+1)r1+j−1)∆
∣∣e∆Pδx∣∣ ||. (26)

All in all, we have, using successively (26) and (24) (since (l+1)r1+j+1 ≤ (l+1)(r1+1) ≤ 2r2)

||
(
Pχxe

r1∆
)n−l−1

P (1− χx)
(
er1∆P

)l+1
δx||

≤
l∑

j=0

(
l

j

)
Cj4 ||(1− χx)e

((l+1)r1+j−1)∆
∣∣e∆Pδx∣∣ ||

≤
l∑

j=0

(
l

j

)
Cj4C3 exp

(
5

2
|ab|r2 −

C ′2r22
8 (l + 1) (r1 + 1)

)

= (1 + C4)
lC3 exp

(
5

2
|ab|r2 −

C ′2r22
8 (l + 1) (r1 + 1)

)
. (27)
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Finally, combining (20) with the estimate (27) and the estimate on the l = 0 term, we find

||
((
Per1∆P

)n − (Pχxer1∆χxP )n) δx||
≤ C3 exp

(
5

2
|ab|r2 −

C ′2r22
8(r1 + 1)

)
+
n−1∑
l=1

(1 + C4)
lC3 exp

(
5

2
|ab|r2 −

C ′2r22
8 (l + 1) (r1 + 1)

)
≤ C3 exp

(
5

2
|ab|r2 −

C ′2r22
8(r1 + 1)

)
+ C3n(1 + C4)

n exp

(
5

2
|ab|r2 −

C ′2r22
8n (r1 + 1)

)
≤ C5 exp

(
−C

′2r2
32

)
where we have estimated all terms of the sum by the maximal one in going from the second line
to the third one, and we used that n(r1+1) ≤ 2r2 and that n(1+C4)

n is negligible compared to

exp(|ab|r2/2) to go from the third to the last line (together with the fact that C ′ ≥ 10|ab|
1
2 ).

The end of this section is devoted to the proof of Lemma 3.1.

Proof of Lemma 3.1. Notice that the operator Pχxe
r1∆χxP is compact, as a composition of

bounded (linear) operators with a compact operator e∆. Now we notice that

∥(Per1∆P )⌊r2/r1⌋+1δx∥ ≤ ∥(Pχxer1∆χxP )⌊r2/r1⌋+1δx∥+ C0 exp

(
−C

′2r2
32

)
for some C0 > 0 due to Lemma 3.2. Then we set Bx = Pχxe

r1∆χxP . We prove below that
∥Bxδx∥ ≤ C1 for some C1 > 0 (as always, depending only on (a, b, ρ) ∈ T ). Therefore,

∥(Per1∆P )⌊r2/r1⌋+1δx∥ ≤ ∥B⌊r2/r1⌋
x Bxδx∥+ C0 exp

(
−C

′2r2
32

)
≤ C1 sup

∥φ∥=1
∥B⌊r2/r1⌋

x φ∥+ C0 exp

(
−C

′2r2
32

)
,

which is exactly (19). There remains to justify that ∥Bxδx∥ ≤ C1. We first have

∥Bxδx∥ ≤ ∥e∆χxPδx∥ (28)

since the operator norms of P , χx and e(r1−1)∆ are all equal to 1. If we denote by kx the only
k ∈ N such that x ∈ Vkx when it exists (and ψkx = 0 otherwise), then by definition of P we
have

∥e∆χxPδx∥ = ∥e∆Pχxδx∥ ≤ ∥e∆δx∥+ C0∥e∆ψkx∥ ≤ ∥e∆δx∥+ C0 (29)

where we used that ∥ψk∥ = 1 and that the operator norm of e∆ : L2(M,ν) → L2(M,ν) is equal
to 1. Using (10), we get

∥e∆δx∥2 = ∥K1(x, ·)∥2 ≤ ∥K1(x, ·)∥L∞∥K1(x, ·)∥L1 = ∥K1(x, ·)∥L∞ ≤ C2 (30)

where the last inequality is a consequence of Lemma 2.5. Combining (28), (29), (30), we get
∥Bxδx∥ ≤ C1, which concludes the proof.
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3.2 Applications of the min-max

Our proofs of Theorems 1.1 and 1.2 rely fundamentally on the Courant–Fischer min-max lemma
(see e.g. [RS78, Theorem XIII.1]) through the two lemmas proved in this section. As in Section
3.1, the main quantity of interest in this section is, for any fixed x ∈M ,

sup
∥φ∥=1

∥Pχxer1∆χxPφ∥. (31)

Lemma 3.4. There holds

sup
∥φ∥=1

∥(Pχxer1∆χxP )⌊r2/r1⌋φ∥ = sup
∥φ∥=1

∥(Pχxer1∆χxP )φ∥⌊r2/r1⌋ (32)

Proof. The operator Pχxe
r1∆χxP : L2(M,ν) → L2(M,ν) is selfadjoint and compact (because

e∆ is compact). Hence by the min-max theorem, the left-hand side of (32) is equal to the top
eigenvalue of (Pχxe

r1∆χxP )
2⌊r2/r1⌋, which is also equal to the top eigenvalue of (Pχxe

r1∆χxP )
2,

raised to the power ⌊r2/r1⌋. Using again the min-max theorem we obtain (32).

In all the sequel,
µ2 = e−λ2(M)

denotes the largest eigenvalue of e∆ strictly smaller than 1.
We denote by φx ∈ L2(M,ν) a function which attains the supremum (31), i.e.,

∥Pχxer1∆χxPφx∥ = sup
∥φ∥=1

∥Pχxer1∆χxPφ∥, ∥φx∥ = 1. (33)

By the min-max principle φx is an eigenfunction of the compact, self-adjoint and non-negative
operator Pχxe

r1∆χxP . Since [χx, P ] = 0, ∥P∥op = 1 and ∥χx∥op = 1, the eigenfunction φx
verifies

Pφx = φx and χxφx = φx. (34)

The following result serves as a replacement for the bound on the set U in the proof of
[JTYZZ21, Theorem 2.2].

Lemma 3.5. There exists C0 > 0 and a subset S ⊂M of area ν(S) ≤ C0 exp(2C
′r2
√
|b|) such

that for any x /∈ S,
∥er1∆|φx|∥ ≤ µr12 . (35)

Proof. Assume by contradiction that it is possible to find x1, x2 ∈ M at distance > 2C ′r2 + 4
such that (35) does not hold. Then ∥er1∆|φx1 |∥ > µr12 and ∥er1∆|φx2 |∥ > µr12 . Then |φx1 | and
|φx2 | have disjoint supports since χxjφxj = φxj for j = 1, 2 (recall (18) and the fact that the Vk
have diameter at most 2). Thus they are orthogonal, and they contradict the min-max principle
for e2r1∆ in L2(M,ν). This proves (35) and shows that S has diameter ≤ 2C ′r2 + 4. Finally,
take x ∈ S (if not empty) and notice that

ν(S) ≤ ν(Bd(x, 2C
′r2 + 4)) ≤ 4π

|b|
exp((2C ′r2 + 4)

√
|b|)

by (9), which concludes the proof.
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3.3 Estimate of the gain ε(g)

The heart of our proof, the “gain of ε(g)”, corresponding to Step 5 in the strategy of proof in
Section 1.3, is carried out in this section.

At the beginning of the proof of Theorem 1.1 in Section 4.1, we will prove using Section 3.2
that m′ is controlled by the integral in x of the quantity ∥Pχxer1∆χxPφx∥ where φx has been
introduced in (33).

In the present section we show that, in turn, the quantity ∥Pχxer1∆χxPφx∥ = ∥Pχxer1∆φx∥
(see (34)) is bounded above by (1 − ε(g))∥er1∆|φx|∥ up to remainders, where ε(g) is “not too
small”. This gain of a quantitative ε(g), combined with an upper bound on ∥er1∆|φx|∥ obtained
through Lemma 3.5, is sufficient to conclude the proof of Theorem 1.1 in Section 4.1.

The gain of ε(g) is proved by writing the identity (full details are provided in the proof of
Lemma 3.9)

∥er1∆|φx|∥2 − ∥Pχxer1∆χxPφx∥2 = 4⟨er1∆φ+, e
r1∆φ−⟩︸ ︷︷ ︸

:=G1

+
∑
k∈Nx

(⟨er1∆φ+, ψk⟩ − ⟨er1∆φ−, ψk⟩)2︸ ︷︷ ︸
:=G2

+ ∥(1− χx)e
r1∆φx∥2

where φ± = max(±φx, 0) and Nx is introduced in (42). The key observation is that G1 and
G2 play opposite roles. While G1 quantifies the interaction (or lack thereof) between er1∆φ+

and er1∆φ−, G2 measures the discrepancy between the mass left by er1∆φ+ and er1∆φ− on the
Voronoi cells Vk. Since the variations of er1∆φ+ and er1∆φ− are very well controlled at scale
O(1) (see Lemma 3.6, which is a consequence of (16)), er1∆φ+ and er1∆φ− must interact on
the Voronoi cells Vk in order for G2 to be small. In turn, this prevents G1 from being small. In
other words, G1+G2 (hence ε(g)) cannot be small. This will be expressed in practice as a lower
bound for G1 +G2 in terms of the L2-norm of er1∆|φx|.

The following lemma illustrates the idea that the solutions of the heat equation at time r1
do not vary too much over scales of size ≲ r1. We set

w(r1) = C0 exp

(
−4

(
1 + |b|+ C +

C + 1

|b|

)
r1

)
. (36)

where C0 is given in (16).

Lemma 3.6 (Small scale invariance). There exists C0 > 0 such that for any C ≥ max(4|a|
√

|b|+
2, 16), any r1 ≥ 1, and any positive function f with ∥f∥ = 1 there exists R ∈ L2(M,ν) with

∥R∥ ≤ C0 exp

(
|ab|t− C2r1

64|a|

)
and the inequality

er1∆f(x) ≥ w(t)(er1∆f(x′)−R(x′))

holds for any x, x′ ∈M at distance at most 4r1 + 4.

Proof. Recall that er1∆f(x) =
∫
M Kr1(x, y)f(y)dy. For every x, y ∈M define

K≤C
r1 (x, y) :=

∑
γ∈Γ, d

M̃
(x̄,γȳ)≤Cr1

kr1(x̄, γȳ)

and
K>C
r1 (x, y) :=

∑
γ∈Γ, d

M̃
(x̄,γȳ)>Cr1

kr1(x̄, γȳ)
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for any choice of lifts x̄, ȳ of x, y to M̃ . We have Kr1 = K>C
r1 +K≤C

r1 according to (10).
For x ∈M we set

R>C(x) :=

∫
M
K>C
r1 (x, y)f(y)dν(y) (37)

Then it follows from the Cauchy-Schwarz inequality that

||R>C ||L2 ≤ sup
x∈M

||K>C
r1 (x, ·)||L1 ||f ||L2 . (38)

Take x ∈M and choose x̄ ∈ M̃ a lift of x. We have

||K>C
r1 (x, ·)||L1 =

∫
M̃\B

M̃
(x̄,Cr1)

kr1(x̄, ȳ)dȳ ≤ C0 exp

(
|ab|r1 −

C2r1
16|a|

)
(39)

according to (15). Besides, K≤C has controlled variations in terms of C: we prove that for all
x, x′, y ∈M with d(x, x′) ≤ 4r1 + 4 we have

K≤C
r1 (x, y) ≥ w(r1)K

≤C−1
r1 (x′, y). (40)

For this, we fix lifts x̄, x̄′ of x, x′ at distance ≤ 4r1 + 4. Using that if d
M̃
(x̄′, γȳ) ≤ (C − 8)r1,

then d
M̃
(x̄, γȳ) ≤ Cr1, together with (16) applied with t = r1 we get

K≤C
r1 (x, y) =

∑
γ∈Γ,d

M̃
(x̄,γȳ)≤Cr1

kr1(dM̃ (x̄, γȳ)) ≥ w(r1)
∑

γ∈Γ,d
M̃

(x̄,γȳ)≤Cr1

kr1(dM̃ (x̄′, γȳ))

≥ w(r1)
∑

γ∈Γ,d
M̃

(x̄′,γȳ)≤(C−8)r1

kr1(dM̃ (x̄′, γȳ)) = w(r1)K
≤C−8
r1 (x′, y).

We deduce from (40)
er1∆f(x) ≥ w(r1)(e

r1∆f(x′)−R>C−8(x
′)).

Combining (38), (39) and the fact that C−8 ≥ C/2 we obtain the lemma with R = R>C−8.

For f ∈ L2(M,ν) we set f± = max(±f, 0). The next lemma leverages Lemma 3.6 to establish
the fact that the interaction ⟨er1∆f+, er1∆f−⟩ between positive and negative parts can already
be detected coarsely on the Voronoi cells Vk.

Lemma 3.7. There exist C0, C1 > 0 such that for any C ≥ max(4|a|
√
|b|+ 2, 16), any r1 ≥ 1,

and any f ∈ L2(M,ν) with ∥f∥ = 1, there holds

⟨er1∆f+, er1∆f−⟩ ≥ C0w(r1)
2
∑
k∈N

m+
km

−
k − C1 exp

(
|ab|r1 −

C2r1
64|a|

)
where m±

k = ⟨f±, er1∆ψk⟩.

Proof. We denote by R± the remainder corresponding to f± in Lemma 3.6. We recall that
C0 ≤ vol(supp(ψk)) ≤ C1 (see (13)).

Let k ∈ N and x ∈ supp(ψk). Averaging over x′ in the support of ψk and using that
4r1 + 4 ≥ 4 ≥ diam(Vk) and ∥ψk∥L∞ ≤ C2 (see Section 2.2), we deduce from Lemma 3.6 that

er1∆f±(x) ≥
C−1
2 w(r1)

vol(supp(ψk))
(⟨er1∆f±, ψk⟩ − ⟨R±, ψk⟩)

≥ C3w(r1)⟨er1∆f±, ψk⟩ − C4∥R±∥L2(supp(ψk)) (41)
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where we used the Cauchy-Schwarz inequality for the second term. The remainder

R±(x) =

{
∥R±∥L2(supp(ψkx ))

if x ∈ supp(ψkx) for some kx ∈ N
0 otherwise

verifies ∥R±∥ ≤ C1∥R±∥L2(
⋃

k∈N supp(ψk)).

We notice that m±
k ≤ ∥Ar1f±∥∥ψk∥ ≤ 1. Then using (41) and the fact that w(r1) ≤ 1 we

obtain

⟨er1∆f+, er1∆f−⟩ ≥
∑
k∈N

∫
supp(ψk)

er1∆f+(x)e
r1∆f−(x)dν(x)

≥
∑
k∈N

∫
supp(ψk)

(
C3w(r1)m

+
k − C4R+(x)

) (
C3w(r1)m

−
k − C4R−(x)

)
dν(x)

≥ C3w(r1)
2
∑
k∈N

m+
km

−
k − C4 exp

(
|ab|r1 −

C2r1
16|a|

)
which concludes the proof.

We provide now what will serve as the lower bound for G1 +G2 alluded to at the beginning
of this section.

Lemma 3.8. For any x ∈M set

Nx = {k ∈ N | supp(ψk) ∩Bd(x,C ′r2) ̸= ∅}. (42)

There exist constants C0, C1 > 0 such that for any C ≥ max(4|a|
√
|b|+ 2, 16), any r1 ≥ 1, any

f ∈ L2(M,ν) with ∥f∥ = 1, any x ∈M ,

∑
k∈Nx

⟨er1∆|f |, ψk⟩2 ≥ C0 exp(−2r1
√
|b|)w(r1)2∥χxer1∆|f |∥2 − C1 exp

(
|ab|r1 −

C2r1
64|a|

)
.

Proof. For any k ∈ N , we denote by yk a point where er1∆|f | attains its minimum on Vk =
supp(ψk). We first show that

supp(χx) ⊂
⋃
k∈Nx

Bd(yk, 2r1 + 2). (43)

Let z ∈ supp(χx). If z ∈ supp(χx) \ Bd(x,C ′r2), then z ∈ Vk for some k ∈ N , and d(z, yk) ≤
diam(Vk) ≤ 2r1 +2. Otherwise, z ∈ Bd(x,C

′r2), and therefore there exists z′ ∈ Bd(x,C
′r2 − r1)

at distance at most r1 from z. We have Bd(z
′, r1) ⊂ B(x,C ′r2), therefore there exists an element

of the r1-net xk ∈ B(x,C ′r2) with d(xk, z
′) ≤ r1. It follows that d(yk, z) ≤ d(yk, xk)+d(xk, z

′)+
d(z′, z) < 2r1 + 2.

Using Lemma 3.6 and noticing that 4r1 + 4 is the diameter of the ball Bd(yk, 2r1 + 2), we
have

⟨er1∆|f |, ψk⟩2 ≥ C0(e
r1∆|f |(yk))2

≥ C0 exp(−2r1
√

|b|)w(r1)2
∫
Bd(yk,2r1+2)

(er1∆|f |(x′)−R(x′))2ν(dx′)
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where we used that vol(Bd(yk, 2r1 + 2)) ≤ C1 exp(2r1
√
|b|) according to (9). Summing over

k ∈ Nx and using (43), we obtain∑
k∈Nx

⟨er1∆|f |, ψk⟩2 ≥ C0 exp(−2r1
√

|b|)w(r1)2
∫
M
χx(x

′)(er1∆|f |(x′)−R(x′))2ν(dx′)

≥ C0 exp(−2r1
√
|b|)w(r1)2∥χxer1∆|f |∥2 − C2∥R∥

where in the last line we developed the square in the right-hand side, we used the Cauchy-Schwarz
inequality in L2(M,ν) and the bound ∥er1∆|f |∥ ≤ 1.

In the next lemma, as in Section 3.2, φx denotes a function which attains the supremum in
(31).

Lemma 3.9. There exist C0, C1 > 0 such that for any C ≥ max(4|a|
√

|b| + 2, 16), any r1 ≥ 1
and any x ∈M ,

∥(Pχxer1∆χxP )φx∥2 ≤ (1− C0 exp(−2r1
√

|b|)w(r1)4)∥er1∆|φx|∥2 + C1 exp

(
|ab|r1 −

C2r1
64|a|

)
.

Proof. We fix x ∈ M . We compute ε = ∥er1∆χx|φx|∥2 − ∥Pχxer1∆χxPφx∥2 which can be
simplified to

ε = ∥er1∆|φx|∥2 − ∥Pχxer1∆φx∥2

due to (34). First we compute without the absolute value on φx, and we use from line 1 to line
2 that χx ∈ {0, 1}:

∥er1∆φx∥2 − ∥Pχxer1∆φx∥2 = ⟨(Id− χxPχx)e
r1∆φx, e

r1∆φx⟩
= ∥(1− χx)e

r1∆φx∥2 + ∥(Id− P )χxe
r1∆φx∥2

= ∥(1− χx)e
r1∆φx∥2 +

∑
k∈Nx

⟨er1∆φx, ψk⟩2

where Nx has been introduced in (42).
Then we notice the following identity:

∥er1∆|φx|∥2 − ∥er1∆φx∥2 = 4⟨er1∆φ+, e
r1∆φ−⟩

where φ± = max(±φx, 0). All in all,

ε = 4⟨er1∆φ+, e
r1∆φ−⟩+ ∥(1− χx)e

r1∆φx∥2 +
∑
k∈Nx

(⟨er1∆φ+, ψk⟩ − ⟨er1∆φ−, ψk⟩)2

(we write the last term as a difference on purpose). Using Lemma 3.7, its notation and the fact
that m+

k +m−
k = ⟨er1∆|φx|, ψk⟩ we have

ε ≥
∑
k∈Nx

(m+
k −m−

k )
2 + 2

(
C0w(r1)

2
∑
k∈N

m+
km

−
k − C1 exp

(
|ab|r1 −

C2r1
64|a|

))
+ 2⟨er1∆φ+, e

r1∆φ−⟩+ ∥(1− χx)e
r1∆φx∥2

≥ min

(
1,
C0w(r1)

2

2

) ∑
k∈Nx

⟨er1∆|φx|, ψk⟩2 − 2C1 exp

(
|ab|r1 −

C2r1
64|a|

)
+

∥(1− χx)e
r1∆|φx|∥2

2
.
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Using Lemma 3.8 and its notation we obtain that there exist C2, C3 > 0 such that

ε ≥ C2 exp(−2r1
√
|b|)w(r1)4∥χxer1∆|φx|∥2 +

∥(1− χx)e
r1∆|φx|∥2

2
− C3 exp

(
|ab|r1 −

C2r1
64|a|

)
≥ C2 exp(−2r1

√
|b|)w(r1)4∥er1∆|φx|∥2 − C3 exp

(
|ab|r1 −

C2r1
64|a|

)
,

which concludes the proof.

4 Proof of the main results

4.1 Proof of Theorem 1.1

Building upon the results of Section 3, we proceed with the proof of Theorem 1.1.
We recall that µ2 = e−λ2(M). We denote by m the multiplicity of λ2(M) as an eigenvalue

of −∆. Then, m is also the multiplicity of µr12 as an eigenvalue of er1∆. We denote by m′

the multiplicity of µr12 as an eigenvalue of Per1∆P , which is also compact, self-adjoint and
non-negative.

In the sequel, we provide an upper bound on m′ since such a bound is sufficient to bound m
(by (53)).

Since e∆ is a trace-class operator, (Per1∆P )2⌊r2/r1⌋+2 is also trace-class. We have

m′µ
2r1(⌊r2/r1⌋+1)
2 ≤ Tr((Per1∆P )2⌊r2/r1⌋+2)

=

∫
M

∥(Per1∆P )⌊r2/r1⌋+1δx∥2dν(x)

≤ C0

(
exp

(
−C

′2r2
32

)
g +

∫
M

sup
∥φx∥=1

∥(Pχxer1∆χxP )⌊r2/r1⌋φx∥2dν(x)

)

= C0

exp

(
−C

′2r2
32

)
g +

∫
M

(
sup

∥φx∥=1
∥(Pχxer1∆χxP )φx∥2

)⌊r2/r1⌋

dν(x)

 .

(44)

The justification of the above computation is as follows. From first to second line we use Lemma
A.3. From second to third line we use Lemma 3.1 and the Gauss-Bonnet theorem. From third
to fourth line we use Lemma 3.4.

To continue, we need to fix the parameters C, C ′ and the parameter c introduced in (8). We
denote by C2 ∈ (0, 1) a constant such that µ2 ≥ C2 for any M of curvature ≥ −b (thanks to
Lemma A.2). We choose successively (in this order) C ′, C and c > 0 such that

C ′2

32
≥ max(10|ab|

1
2 , 6,−4 logC2 + 1) (45)

C2

64|a|
≥ |ab|+ 16

(
1 +

√
|b|
8

+ |b|+ C +
C + 1

|b|

)
− 2 log(C2) (46)

and C ≥ max(4|a|
√

|b|+ 2, 16) (47)

1

4
≥

(
2C ′√|b| − 4 logC2 + 16

(
1 +

√
|b|
8

+ |b|+ C +
C + 1

|b|

))
c. (48)
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We also assume g large enough so that r1 ≥ 1. We separate the integral in (44) into an integral
over S and an integral over M \ S, where S is chosen as in Lemma 3.5. Due to Lemma 3.5,
the integral over S is bounded above by ν(S) ≤ C1 exp(2C

′r2
√
|b|) since the operator norms of

er1∆, χx and P are equal to 1. The integral over M \ S is bounded above by∫
M\S

(
(1− C4 exp(−hr1))2 ∥er1∆|φx|∥2 + C3 exp

(
|ab|r1 −

C2r1
64|a|

))⌊r2/r1⌋
dν(x) (49)

by Lemma 3.9 (which we can apply thanks to (47)), where

h = 16

(
1 +

√
|b|
8

+ |b|+ C +
C + 1

|b|

)
.

For any x ∈M \ S, we have by definition of S

(1− C4 exp(−hr1))2 ∥er1∆|φx|∥2 ≤ (1− C4 exp(−hr1))2µ2r12 . (50)

Thanks to (46), for sufficiently large g,

C2

64|a|
r1 ≥ |ab|r1 + hr1 − 2 log(C2)r1.

Therefore we get, again for g large enough,

C4

2
exp

(
|ab|r1 −

C2r1
64|a|

)
≤ C4

2
exp(−hr1)µ2r12

≤ µ2r12

(
1− C4

2
exp(−hr1)

)2

− µ2r12 (1− C4 exp(−hr1))2.

Combining with (50), we obtain that (49) is bounded above by

C0µ
2r1⌊r2/r1⌋
2

∫
M\S

(
1− C4

2
exp(−hr1)

)2⌊r2/r1⌋
dν(x) ≤ C0g

(
µr12

(
1− C4

2
exp(−hr1)

))2⌊r2/r1⌋

due to Lemma 3.5 and the Gauss-Bonnet theorem. Summarizing, we have obtained

m′µ
2r1(⌊r2/r1⌋+1)
2 ≤ C0g

(
µr12

(
1− C4

2
exp(−hr1)

))2⌊r2/r1⌋
(51)

+ C0 exp(2C
′r2
√
|b|) + C0 exp

(
−C

′2r2
32

)
g

We divide by µ
2r1(⌊r2/r1⌋+1)
2 and use the inequality 1− x ≤ e−x to deduce that

m′ ≤ C0

(
g

µ2r12

exp (−C5 exp(−hr1)⌊r2/r1⌋) +
exp(2C ′r2

√
|b|) + exp(−C ′2r2/32)g

µ4r22

)

Thanks to our choice of parameters (45) and (48) we get that

exp(2C ′r2
√
|b|) + exp(−C ′2r2/32)g

µ4r22

≤ g
1
2 + g1−c.
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Thanks to (48) we have for g sufficiently large

g

µ2r12

exp (−C5 exp(−hr1)⌊r2/r1⌋) ≤ g exp
(
−C6 log

2/3 g
)
.

All in all, we find that for g sufficiently large,

m′ ≤ C0g exp
(
−C6 log

2/3 g
)
. (52)

By the Cauchy interlacing theorem (Theorem A.1) there holds

m ≤ m′ + rank(Id− P ). (53)

Under the assumptions of the first part of Theorem 1.1, we can choose the r1-net in a way that
rank(Id − P ) ≤ C0g/r1 according to Lemma 2.2, which together with (52) and (53) concludes
the proof in this first case.

Under the assumptions of the second part of Theorem 1.1, we can choose the r1-net in a
way that rank(Id− P ) ≤ C0g/e

δ′r1 according to Lemma 2.3, which together with (52) and (53)
concludes the proof in this second case.

4.2 Proof of Theorem 1.2

Theorem 1.2 follows from elementary modifications of Section 4.1. We need the following
straightforward adaptation of Lemma 3.5.

Lemma 4.1. For any j ∈ N≥1, there exists C ′
j > 0 and a subset S ⊂ M of area ν(S) ≤

C ′
j exp(2C

′r2
√

|b|) such that for any x /∈ S,

∥er1∆|φx|∥ ≤ µr1j

where φx has been introduced in Section 3.2.

Fix j ∈ N≥1 and κ,K > 0. We denote by m′ the number of eigenvalues of Per1∆P contained

in [µr1j (1 − δ), µr1j ] where δ = K log log(g)
logκ(g) . Compared to (45)-(48), the constants C ′ and C are

fixed using Cj (coming from Lemma A.2) instead of C2, and (48) is replaced by

κ

4
≥

(
2C ′√|b| − 4 logCj + 16

(
1 +

√
|b|
8

+ |b|+ C +
C + 1

|b|

))
c.

Instead of (51) we obtain using Lemma 4.1

m′µ
2r1(⌊r2/r1⌋+1)
j (1− δ)2⌊r2/r1⌋+2

≤ C0g

(
µr1j

(
1− C4

2
exp(−hr1)

))2⌊r2/r1⌋
+ C0 exp(2C

′r2
√

|b|) + C0 exp

(
−C

′2r2
32

)
g.

Dividing by µ
2r1(⌊r2/r1⌋+1)
j (1 − δ)2⌊r2/r1⌋+2 and proceeding as in Section 4.1, we obtain instead

of (52)

m′ ≤ C0g exp
(
− log1−

κ
2 g
)
(1− δ)−2⌊r2/r1⌋−2

and thanks to the definition of δ and the inequality (1−δ)n ≤ e−nδ, we finally get for sufficiently
large g

m′ ≤ C0g exp
(
(4K log1−κ g)− (log1−

κ
2 g)

)
≤ C0

g

log log(g)
.
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By the Cauchy interlacing theorem (Theorem A.1) we obtain that the number m of eigenvalues
of er1∆ in [µr1j (1 − δ), µr1j ] is bounded above by C0

g
log log(g) . It implies the same bound for the

number of eigenvalues of e∆ in [µj(1− K
2c logκ(g)), µj ], and Theorem 1.2 follows.

Remark 4.2. In the present paper, we rely on the trace method to bound eigenvalue multiplicity.
The natural time scale of the trace which we consider, namely (Per1∆P )⌊r2/r1⌋+1 ≈ e⌊r2/r1⌋r1∆,
is O(r1⌊r2/r1⌋) = O(c log(g)). With this time scale, it is impossible to distinguish eigenvalues
that differ by O(1/ log(g)). However, as covered in Proposition 1.3, there exist closed hyperbolic

surfaces such that there are g/ log
3
2 (g) eigenvalues in a range of (roughly) that size around the

second eigenvalue. Therefore, as in the graph case (see [MRS21, Section 6]), our approach does

not seem adequate to bound above the multiplicity of λ2(M) by a better bound than g/ log
3
2 (g)

(which would be slightly better than our results).
Analogously, the spectral bounds obtained in [Mon22, Theorems 4 and 5] do not give precise

information in spectral windows of size ≪ 1/
√

log(g).

4.3 Proof of Proposition 1.3

We recall that for every d ≥ 3, there exists an infinite sequence of d-regular bipartite Ramanujan
graphs, see [MSS15, Theorem 5.5]. The following result from [MRS21] shows that for these

graphs the number of eigenvalues close to the second largest is at least n/ log
3
2 (n).

Proposition 4.3 (Proposition 5.3 in [MRS21]). There exist K,C0 > 0 such that for every fixed
d, every bipartite d-regular Ramanujan graph G on n vertices satisfies

mAG

(
[(1−K

log log(n)

log(n)
)µ2, µ2]

)
≥ C0

n

log
3
2 (n)

where mAG
([a, b]) denotes the number of eigenvalues of the adjacency matrix AG of G between

a and b, and µ2 is the second largest eigenvalue of AG.

The above result is written in [MRS21] for the adjacency matrix AG of G, but translates
immediately to Laplacian eigenvalues, i.e., eigenvalues of ÃG = dId−AG (which is a non-negative
matrix corresponding to the positive Laplacian on G): if λ2 = d− µ2 > 0 denotes the smallest
eigenvalue > 0 of ÃG, we have

m
ÃG

(
[λ2, (1 +K ′ log log(n)

log(n)
)λ2]

)
≥ C0

n

log
3
2 (n)

(54)

where K ′ may be computed in terms of K and d only.
The following lemma implies Proposition 1.3.

Lemma 4.4 (Extracted from [CC88]). Let G = (V,E) be a non-oriented finite graph, whose
vertices have degrees di ≥ 3 for any i ∈ V , and whose edge lengths are denoted by (θi,j){i,j}∈E.
Then for any sufficiently small ε > 0 there exists a closed hyperbolic surface of genus |E|−|V |+1
whose first |V | eigenvalues of the positive Laplacian coincide (with corresponding multiplicities)
with the eigenvalues of εqθ where qθ is the Dirichlet form

qθ(x) =
1

π

∑
{i,j}∈E

θi,j |xi − xj |2, x ∈ RV (55)

on L2(V, µ) and µ = 2π
∑

i∈V (di − 2)δi with δi the Dirac mass on i ∈ V .
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Sketch of proof of Lemma 4.4 extracted from [CC88]. For any i ∈ V , we denote by Vi the set of
j ∈ V such that {i, j} ∈ E. The degree of i ∈ V is di = |Vi| ≥ 3.

The authors of [CC88] first construct a closed hyperbolic surface X as follows: to the vertex
i ∈ V is associated Xi, a compact hyperbolic surface with di free geodesics (γi,j)j∈Vi on its
boundary, by gluing di − 2 pants (see [CC88, Section VI] and its figures for the case of the
complete graph). We impose that ℓ(γi,j) = ℓ(γj,i) = θi,j . To construct the surface X we glue
the pieces Xi as indicated by the graph G: for {i, j} ∈ E, we glue Xi and Xj by identifying
without twist γi,j and γj,i.

In [CC88, Section II], the authors construct from X a family of closed hyperbolic surfaces Xε

(0 < ε ≤ 1) as follows. The geodesics in the pant decomposition of X which do not belong to the
boundary of one of the Xi, i ∈ V , remain of fixed length. For {i, j} ∈ E, the geodesic γi,j of X is
replaced in Xε by a geodesic γεi,j of length ℓ

ε
i,j = εθi,j . Note that vol(X

ε
i ) = vol(Xi) = 2π(di−2)

for any i ∈ V , by the Gauss-Bonnet formula.
Then, in [CC88, Section V], they consider the measure µ = 2π

∑
i∈V (di− 2)δi on G, and the

quadratic form qθ on L
2(V, µ) given by (55), which is the Dirichlet form on G endowed with edge

lengths θ = (θi,j){i,j}∈E . The key step in [CC88, Sections I and V] is to exhibit a quadratic form
qεθ on L2(V, µ) (depending continuously on the geometric parameter θ) whose spectrum is the
set of first |V | non-trivial eigenvalues of Xε and such that limε→0 ∥(qεθ/ε)−qθ∥ = 0, uniformly in
θ ∈ W for every compact W ⋐ (R>0)

E . In particular it implies that the eigenvalues (λi(ε))i∈V
of Xε verify λi(ε) ∼ ελi (ε→ 0) where the (λi)i∈V are the eigenvalues of qθ on L2(V, µ).

Finally, using a topological lemma in [CC88, Section VI] the authors conclude that for any
θ0 ∈ (R>0)

|E| and any ε > 0 sufficiently small, there exists a choice of θ close to θ0 such that
qεθ = εqθ0 . The spectrum of qεθ consists of the |V | first eigenvalues of Xε

θ , and the genus of Xε
θ

is equal to (p+ 2)/2 where p =
∑

i∈V (di − 2) = 2|E| − 2|V | is the number of pants used in the
decomposition. This concludes the proof of Lemma 4.4.

End of the proof of Proposition 1.3. We consider an infinite sequence (Gk)k∈N of 3-regular bi-
partite Ramanujan graphs (see [MSS15, Theorem 5.5]). We use Lemma 4.4 for each Gk =
(Vk, Ek) and with θi,j = 1 for every edge {i, j} ∈ Ek. In this case, the measure µk on Vk gives
the same mass to each vertex, and qθ given by (55) on L2(Vk, µk) has the same spectrum as
ÃGk

by definition. Applying Proposition 4.3 (in the form (54)) to each Gk = (Vk, Ek) for each
k ∈ N, we obtain a hyperbolic surface of genus gk = |Ek| − |Vk| + 1 = 1

2 |Vk| + 1 satisfying the
lower bound (54) with n = |Vk| (and thus also with gk replacing n, up to changing constants).
This concludes the proof of Proposition 1.3.

A Appendix

We gather in this appendix several statements and proofs of elementary facts that are used
throughout the proofs of Theorems 1.1 and 1.2.

A.1 Eigenvalues and trace

We start with the following infinite-dimensional version of the Cauchy interlacing theorem (see
also [DD87, Theorem 2]).

Theorem A.1 (Cauchy interlacing theorem). Let A be a compact self-adjoint operator on a
Hilbert space H. Let P = P⊤ be an orthogonal projection onto a subspace of H of codimension
k ∈ N. We denote by α1 ≥ . . . ≥ αm ≥ . . . the eigenvalues of A, and by β1 ≥ . . . ≥ βm ≥ . . .
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those of B = PAP . Then for any j ∈ N,

αj ≥ βj ≥ αj+k.

Proof of Theorem A.1. Since B is compact and self-adjoint, the spectral theorem provides a
basis (bj)j∈N of normalized eigenvectors of B, with Bbj = βjbj for any j ∈ N. We set Sj =
Span(b1, . . . , bj) and we notice that Sj ⊂ Im(P ). We compute

βj = min
x∈Sj , ∥x∥=1

(PAPx, x) = min
x∈Sj , ∥x∥=1

(Ax, x) ≤ max
V, dim(V )=j

min
x∈V, ∥x∥=1

(Ax, x) = αj .

Also, noticing that PS⊥
j−1 has codimension at most k + j − 1 we obtain

βj = max
x∈S⊥

j−1, ∥x∥=1
(PAPx, x) ≥ max

x∈PS⊥
j−1, ∥x∥=1

(PAPx, x) = max
x∈PS⊥

j−1, ∥x∥=1
(Ax, x)

≥ min
V, codim V≤k+j−1

max
x∈V, ∥x∥=1

(Ax, x) = αk+j

which concludes the proof.

We recall the following estimate:

Lemma A.2 (Upper bound on eigenvalues). For any b ∈ R and any j ∈ N≥2, there exists
Cj > 0 such that any closed surface M with curvature bounded below by b verifies λj(M) ≤ Cj.

Proof. The diameter d of a closed negatively curved surface M with curvature bounded below
by b is bounded below since for any x ∈ M̃ ,

4π

|b|
≤ vol(M) ≤ Vol

M̃
(B

M̃
(x, d)) ≤ 4π

|b|
sinh2

(
d

2

√
|b|
)

where the right-hand side comes from (9). Combining with [Che75, Corollary 2.3] we get the
result.

Lemma A.3 (Computation of the trace). For any n ∈ N≥1 and t ≥ 1, there holds

Tr((Pet∆P )2n) =

∫
M

∥(Pet∆P )nδx∥2dν(x).

Proof. We set Q = Pemt∆P . Let (uj)j∈N denote an orthonormal basis of eigenfunctions of the
compact and self-adjoint operator Qn, with associated eigenvalues λj . For any x ∈ M we set
ux =

∑
j∈N λjuj(x)uj . We know that Q2n is trace-class since e∆ is trace-class, and

Tr(Q2n) =
∑
j∈N

λ2j =

∫
M

∑
j∈N

λ2juj(x)
2

 ν(dx) =

∫
M

∥ux∥2ν(dx). (56)

In particular, ux ∈ L2(M,ν) for ν-almost every x ∈ M . For any such x and any f ∈ C∞(M),
written as f =

∑
j∈N ajuj , we have

⟨Qnδx, f⟩D′,D = ⟨Pδx, et∆PQn−1f⟩D′,D = et∆PQn−1f(x)−
∑
k∈N

⟨et∆PQn−1f, ψk⟩ψk(x)

= Qnf(x) =
∑
j∈N

ajλjuj(x) =

∫
M
ux(y)f(y)ν(dy)

where the first equality comes from the fact that the transpose (in the sense of distributions) of
the continuous linear map from smooth functions to smooth functions et∆PQn−1 is Qn−1Pet∆;
and the second equality follows from (14). We deduce from this computation that Qnδx coincides
with the distribution ⟨ux, ·⟩L2(M,ν), which is identified to ux ∈ L2(M,ν). Plugging into (56),
this concludes the proof.
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A.2 Heat kernel: comparison and estimates

We provide here the proofs of Lemma 2.4 and 2.5 on the heat kernel in M̃ and M .

Proof of Lemma 2.4. We recall from [Dav89, Theorem 5.7.2] that there exist constants c1, c2 > 0
such that for any η, t > 0,

c1g1(t, η) ≤ kH
2

t (η) ≤ c2g1(t, η)

where kH
2
denotes the heat kernel in the hyperbolic plane (equal to k(−1) with the notation of

Lemma 2.1) and

g1(t, η) =
1

t

1 + η

(1 + η + t)
1
2

exp

(
− t

4
− η

2
− η2

4t

)
.

For K < 0 we consider

g|K|(t, η) =
1

|K|t
1 + η

(1 + η + |K|t)
1
2

exp

(
−|K|t

4
− η

2
− η2

4|K|t

)
,

which is the analogue of g1 on the space form M̃K introduced in Section 2.1. Using Lemma 2.1
we obtain for the heat kernel kt(·, ·) in M̃ that

C1g|b|(t, dM̃ (x, y)) ≤ kt(x, y) ≤ C2g|a|(t, dM̃ (x, y)) (57)

for any x, y ∈ M̃ and any t > 0, where C1 and C2 depend on (a, b, ρ) ∈ T only.
For (15), we set for n ∈ N

An =
{
y ∈ M̃ | Ct+ n ≤ d

M̃
(x, y) < Ct+ n+ 1

}
⊂ M̃.

Then Vol
M̃
(An) ≤ Vol

M̃
(B(x,Ct+ n+ 1)) ≤ C0 exp((Ct+ n)

√
|b|) according to (9). We write

M̃ \B
M̃
(x,Ct) =

⋃∞
n=0An, and then using (57) and the fact that t ≥ 1, we obtain

∥kt(x, ·)∥L1(M̃\B
M̃

(x,Ct))
≤ C3

∞∑
n=0

(Ct+ n)

t
exp

(
−|a|t

4
− (Ct+ n)2

4|a|t

)
Vol

M̃
(An)

≤ C3

∫ ∞

Ct−1

η

t
exp

(
−|a|t

4
− η2

4|a|t

)
exp(η

√
|b|)dη

≤ C3 exp(|ab|t)
∫ ∞

Ct−1

η

t
exp

(
−
(η − 2|a|t

√
|b|)2

4|a|t

)
dη (58)

We make the change of variables η′ = η − 2|a|t
√

|b| and we use that C − 1
t − 2|a|

√
|b| ≥ C/2

and η + 2|a|t
√
|b| ≤ 2η for η ≥ Ct/2 to obtain that (58) is bounded above by

C3 exp(|ab|t)
∫ ∞

Ct/2

η

t
exp

(
− η2

4|a|t

)
dη.

Computing explicitly this last integral gives the result.
For (16), we set η = d

M̃
(x, y) and α = d

M̃
(x, z)− d

M̃
(x, y). We have

kt(x, z)

kt(x, y)
≥ C0

g|b|(t, η + α)

g|a|(t, η)
= C0

|a|
|b|

(
1 + η + |a|t

1 + η + α+ |b|t

) 1
2

h(α, η) (59)
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where

h(α, η) =
1 + η + α

1 + η
exp

(
−α
2
− |b|t

4
+

|a|t
4

− (η + α)2

4|b|t
+

η2

4|a|t

)
≥ C0(1 + Ct)−1 exp

(
−2t− |b|t

4
− 2C(t+ 1)

|b|
− 4t

|b|

)
≥ C0 exp

(
−
(
1 + |b|+ C +

C + 1

|b|

)
4t

)
(60)

where we used in the second line η ≤ Ct and |α| ≤ 4t + 4. We also notice that 1+η+|a|t
1+η+α+|b|t ≥

|a|
|a|+|b|+8 when |α| ≤ 4t+ 4. Combining (59) and (60) we get (16).

Proof of Lemma 2.5. We write M = Γ\M̃ . We prove that there exists C0 > 0 (depending only

on (a, b, ρ) ∈ T ) such that for any η ≥ 0 and any x̄ ∈ M̃ , the number of elements γ ∈ Γ such that

d
M̃
(x̄, γx̄) < η + 1 is at most C0e

η
√

|b|. By definition of the injectivity radius ρ, the open balls
Bγ of center γx̄ and radius ρ/2, for γ ∈ Γ, are disjoint. If γ ∈ Γ is such that d

M̃
(x̄, γx̄) < η+ 1,

then Bγ is included in the ball of center x̄ and radius η+1+ ρ/2. According to (9), the volume
of a ball of radius η + 1 + ρ/2 in M is at most 4π

|b| sinh
2(12(η + 1 + ρ/2)

√
|b|), and according to

[Cro80, Proposition 14], the volume of a ball of radius ρ/2 is at least C1 > 0. Therefore, the
number of γ ∈ Γ such that d

M̃
(x̄, γx̄) < η + 1 is smaller than

C0 sinh
2

(
1

2

(
η + 1 +

ρ

2

)√
|b|
)

which in turn is bounded above by C0e
η
√

|b|.
As a consequence, for any x̄, ȳ ∈ M̃ and η ≥ 0,

#{γ ∈ Γ | η ≤ d(x̄, γȳ) < η + 1} ≤ C0e
2η
√

|b|. (61)

Below, x̄, ȳ are lifts of given x, y ∈M to a fundamental domain of M in M̃ . For any y ∈M we
have, using (57) in the first line, (61) in the second line, and then a series-integral comparison
for the last inequality (cutting the sum at η = 4t|a|

√
|b|)

∑
γ∈Γ

kt(x̄, γȳ) ≤ C0

∞∑
η=0

(#{γ ∈ Γ | η ≤ d(x̄, γȳ) < η + 1}) exp
(
−|a|t

4
− η2

4|a|t

)

≤ C0 exp

(
−|a|t

4

) ∞∑
η=0

exp

(
2η
√

|b| − η2

4|a|t

)
≤ C0 exp (4|ab|t) .

Using (10) we get the result.
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[Sev02] Bruno Sévennec. Multiplicity of the second Schrödinger eigenvalue on closed surfaces.
Mathematische Annalen 324.1 (2002): 195-211.

28


	Introduction
	Preliminaries
	Key lemmas
	Proof of the main results
	Appendix

