Construction of minimizing travelling waves for the Gross-Pitaevskii equation on $\mathbb{R} \times \mathbb{T}$ - Archive ouverte HAL
Article Dans Une Revue Tunisian Journal of Mathematics Année : 2024

Construction of minimizing travelling waves for the Gross-Pitaevskii equation on $\mathbb{R} \times \mathbb{T}$

Philippe Gravejat
  • Fonction : Auteur
  • PersonId : 1269711
Didier Smets

Résumé

As a sequel to our previous analysis in [9] on the Gross-Pitaevskii equation on the product space $\mathbb{R} \times \mathbb{T}$, we construct a branch of finite energy travelling waves as minimizers of the Ginzburg-Landau energy at fixed momentum. We deduce that minimizers are precisely the planar dark solitons when the length of the transverse direction is less than a critical value, and that they are genuinely two-dimensional solutions otherwise. The proof of the existence of minimizers is based on the compactness of minimizing sequences, relying on a new symmetrization argument that is well-suited to the periodic setting.
Fichier principal
Vignette du fichier
dLGS2-Product-GP-Final.pdf (570.78 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-04160067 , version 1 (12-07-2023)

Identifiants

Citer

André de Laire, Philippe Gravejat, Didier Smets. Construction of minimizing travelling waves for the Gross-Pitaevskii equation on $\mathbb{R} \times \mathbb{T}$. Tunisian Journal of Mathematics, In press, 6 (1), pp.157-188. ⟨10.2140/tunis.2024.6.157⟩. ⟨hal-04160067⟩
46 Consultations
29 Téléchargements

Altmetric

Partager

More