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Construction of minimizing travelling waves for the
Gross-Pitaevskii equation on R × T

André de Laire1, Philippe Gravejat2 and Didier Smets3

Abstract

As a sequel to our previous analysis in [9] on the Gross-Pitaevskii equation on the product
space R × T, we construct a branch of finite energy travelling waves as minimizers of the
Ginzburg-Landau energy at fixed momentum. We deduce that minimizers are precisely
the planar dark solitons when the length of the transverse direction is less than a critical
value, and that they are genuinely two-dimensional solutions otherwise. The proof of the
existence of minimizers is based on the compactness of minimizing sequences, relying on a
new symmetrization argument that is well-suited to the periodic setting.

Keywords: Defocusing Schrödinger equation, Gross-Pitaevskii equation, travelling waves, planar
dark solitons, nonzero conditions at infinity, concentration-compactness.
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1 Introduction

In this paper, we continue the study started in [9], concerning the travelling wave solutions to
the Gross-Pitaevskii equation

i∂tΨ + ∆Ψ + Ψ
(
1 − |Ψ|2

)
= 0 (1)

on the product space R × Tℓ, where Tℓ := R/ℓZ is the torus with fixed positive length ℓ. In
physics, this defocusing Schrödinger equation is a classical model for Bose-Einstein condensates,
superfluidity, and nonlinear optical fibers [12, 13].
Let us recall that, in one space dimension, the Gross-Pitaevskii equation possesses a family of
finite energy travelling waves, called dark solitons. They are given by the explicit formula

uc(x) =

√
2 − c2

2 tanh
(√

2 − c2

2 x

)
+ i

c√
2
, (2)

for any speed |c| <
√

2. These solitons extend trivially to the product space R × Tℓ, where
they are referred to as planar (or line) dark solitons. However, it is well-known in the physics
literature that these planar solitons can be unstable due to the tendency to develop distortions
in their transverse profile. We refer to [12, 15, 10] for details, and to [17] for some rigorous
results. In addition, experimental observations have shown that the dynamics of planar dark
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solitons are stable when they are sufficiently confined in the transverse direction, but unstable
otherwise. In the latter case, the creation of vortices can occur (see [14, 11] and the references
therein).
In the sequel, we present a rigorous framework for studying this kind of phenomenon. Precisely,
our goal is to prove the existence of non constant finite energy travelling wave solutions to (1),
obtained as minimizers of the energy at fixed momentum. Taking into account the results in [9],
we will deduce that these minimizers are exactly the planar dark solitons when ℓ is less than a
critical value, and that they are genuinely two-dimensional solutions otherwise. In particular,
planar solitons do not minimize the energy in the presence of a large transverse direction.
To introduce our framework, we recall that it was proved in [3, 5] that the dark solitons (2) are
solutions to the constrained minimization problem

I1d(p) := inf
{
E(ψ), ψ ∈ H1

loc(R) s.t. [P ](ψ) = p
}
, (3)

for fixed p ∈ R/πZ. Here the Ginzburg-Landau energy E is defined as

E(ψ) :=
∫
R
e(ψ) :=

∫
R

(1
2 |∇ψ|2 + 1

4
(
1 − |ψ|2

)2
)
,

and [P ] is the (untwisted) momentum given by

[P ](ψ) := 1
2 lim

R→+∞

( ∫ R

−R
⟨i∂xψ,ψ⟩C + arg

(
ψ(R)

)
− arg

(
ψ(−R)

))
modulo π.

The speed c = cp of the dark soliton uc is the Lagrange multiplier of this problem. It is uniquely
determined by the identity [P ](ucp) = p. The momentum [P ] is well-defined on the energy space

X(R) :=
{
ψ ∈ H1

loc(R) : ∇ψ ∈ L2(R) and 1 − |ψ|2 ∈ L2(R)
}
. (4)

This claim was proved in [5], together with the fact that the definition of [P ] only makes sense
modulo π.
We now turn our attention to the corresponding minimization problem on the product space
R × Tℓ. We normalize the Ginzburg-Landau energy as

E(ψ) := 1
ℓ

∫
R

∫
Tℓ

e(ψ), (5)

so that functions, which only depend on the horizontal variable, have the same energy values in
one space and in two space dimensions. Given a number p ∈ R/πZ, we set

I2d(p) := inf
{
E(ψ) : ψ ∈ X(R × Tℓ) with [P ](ψ) = p

}
. (6)

Here the natural energy space is defined as above by

X(R × Tℓ) =
{
ψ ∈ H1

loc(R × Tℓ) : ∇ψ ∈ L2(R × Tℓ) and 1 − |ψ|2 ∈ L2(R × Tℓ)
}
.

The (untwisted) momentum [P ] requires some proper definition. For that purpose, we decompose
a function ψ ∈ X(R × Tℓ) as

ψ(x, y) = ψ̂(x) + w(x, y), (7)

where
ψ̂(x) := 1

ℓ

∫
Tℓ

ψ(x, y) dy.
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We recall from [9] that ψ̂ ∈ X(R), and w ∈ H1(R × Tℓ), so that we may define

[P ](ψ) := [P ](ψ̂) + 1
2ℓ

∫
R

∫
Tℓ

⟨i∂xw,w⟩C modulo π. (8)

Note that here also, if ψ only depends on the horizontal variable, the versions of [P ] in one and
two space dimensions coincide, which justifies our slight abuse of notation.
In [9], we established that the problem I2d(p) is achieved by one-dimensional minimizers, the
planar dark solitons, when ℓ is sufficiently small, but that no minimizer can be one dimensional
if ℓ is sufficiently large. In the present paper, we prove that minimizers do exist for all possible
values of ℓ and p.
Theorem 1. Let ℓ > 0 and p ∈ R/πZ. The minimization problem I2d(p) is achieved by some
function Up,ℓ ∈ X(R × Tℓ). Moreover, Up,ℓ is smooth on R × Tℓ, and there exists a number
cp,ℓ ∈ R such that

icp,ℓ∂xUp,ℓ + ∆Up,ℓ + Up,ℓ

(
1 − |Up,ℓ|2

)
= 0. (9)

Combining with [9, Theorem 1], we conclude that, for a given p ∈ R/πZ, there is a critical
length ℓp > 0, such that, if ℓ ∈ (0, ℓp), then Up,ℓ is a planar soliton, up to a translation and a
phase shift. On the other hand, if ℓ ∈ (ℓp,∞), then Up,ℓ cannot solely depend only on the x
variable, and therefore cannot be a planar soliton.
Existence of travelling waves for the Gross-Pitaevskii equation has attracted a lot of efforts in
the case of the whole plane R2. In [6], the existence of non-constant finite energy travelling waves
with arbitrary small speeds c was proved using some mountain pass argument. The associated
momentum behaves like p ≃ log(1/c) in the limit c → 0. In [4], the previous result was extended
to the case of travelling waves with an arbitrary value for the momentum p. These solutions
are also minimizers of the energy at fixed momentum, but they were obtained as local limits of
minimizers on expanding tori. Existence and compactness for minimizing sequences directly on
R2 was proved in [7], together with the stability of the minimizing set. In these last two works,
little information is given regarding the speed of the travelling waves, beyond the fact that they
are subsonic, i.e. |c| <

√
2. The same limitation holds in Theorem 1 above. In [2], existence of

travelling waves in R2 for almost every value of |c| <
√

2 was proved, using a mountain pass
approach combined with a monotonicity argument. The question of existence for the full range
of speeds |c| <

√
2 remains open, both in the case of R2 and of R × Tℓ. In contrast, for the

torus Tℓ ×Tℓ it is known from [18] that travelling waves exist with arbitrary speeds. Only these
with speed |c| <

√
2 could possibly converge to finite energy travelling waves in R2 by a limiting

procedure.
In the papers quoted so far, as well as in Theorem 1, the uniqueness of minimizers (up to the
geometric invariances) is not tackled. In the case of R2, this was recently proved in [8] when the
speed c is small enough, using a delicate perturbative argument.
We finally mention that stationary solutions of the Gross-Pitaevskii equation in the strip R ×
[−ℓ, ℓ] have recently been constructed in [1]. It is tempting to relate them to the ones obtained
in Theorem 1 for the special case p = π

2 modulo π. For small values of ℓ, these are the one-
dimensional black soliton, which is stationary, while for large values of ℓ, they are truly two-
dimensional.
In Section 2, we present the main ideas for the proof of Theorem 1 as well as the statements of
the intermediate results. The proofs for the latter are then given in the remaining sections.
Notations: In many places, we shall write p ∈ R/πZ as p = [p] for some representative value
p ∈ R. Whenever a function f is defined on R/πZ, we often identify it with a π-periodic function
on R, and write f(p) in place of f([p]). We also use the notation |p| to refer to the distance
between p and [0] in R/πZ.
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2 Sketch of the proof of Theorem 1

Our goal is to establish some form of compactness for minimizing sequences of the problem
I2d(p). For that purpose, we rely on a concentration-compactness type argument in the locally
compact case. In Subsection 2.1, we analyze the function p 7→ I2d(p) and in particular prove its
strict sub-additivity. For that purpose, we introduce a slicing and mirroring argument, which we
believe is original and well-adapted to the periodic setting. In Subsection 2.2, we finally obtain
compactness by excluding first vanishing and then dichotomy for minimizing sequences.

2.1 Properties of the minimizing energy

The first step is to analyze precisely the properties of the minimizing energy I2d(p), in partic-
ular its possible strict sub-additivity with respect to p. In [9, Lemma 2], we already derived
some preliminary properties of this minimizing energy, which we now recall for the sake of
completeness.

Lemma 1. Let ℓ > 0. The function I2d is an even and Lipschitz continuous function on R/πZ,
with Lipschitz constant at most

√
2, and it is bounded by

I2d(p) ≤ I1d(p) <
√

2 |p|, (10)

for any p ∈ R/πZ (with p ̸= [0] in the last inequality).

The main properties of the minimizing energy I2d can be summarized as follows.

Proposition 2. Let ℓ > 0. The map p 7→ I2d(p) is concave on [0, π]. Moreover, the function
I2d is strictly sub-additive on R/πZ, in the sense that

I2d(p1 + p2) < I2d(p1) + I2d(p2), (11)

for any (p1, p2) ∈ (R/πZ)2 such that p1 ̸= [0] and p2 ̸= [0].

The proof of Proposition 2 is reminiscent from the description of a similar minimizing energy
in [4, Section 3]. This description is heavily based on symmetrization arguments. Due to our
periodic setting in the transverse direction y, we cannot invoke directly the arguments in [4],
and we have to refine them properly in order to establish Proposition 2.
Concerning the concavity of the map I2d on the interval [0, π], we rely on the following charac-
terization of concave functions.

Lemma 3. Let f : [a, b] → R be a continuous function. Given any number x ∈ (a, b), assume
the existence of a number δx > 0 such that

1
2

(
f(x+ δ) + f(x− δ)

)
≤ f(x), (12)

for any number 0 ≤ δ ≤ δx. Then, the function f is concave on [a, b].

It is well-known that a continuous function f satisfying the inequalities

1
2

(
f(x1) + f(x2)

)
≤ f

(x1 + x2
2

)
,

for any numbers a ≤ x1 ≤ x2 ≤ b is concave. Lemma 3 extends this classical characterization of
concavity. For the sake of completeness, we detail the proof of Lemma 3 in Appendix B below.
We are able to check that the function I2d satisfies the condition in (12) on the interval [0, π].
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Lemma 4. Let 0 < p < π. There exists a number δp > 0 such that

1
2

(
I2d(p+ δ) + I2d(p− δ)

)
≤ I2d(p), (13)

for any number 0 ≤ δ ≤ δp.

For the proof of Lemma 4, we distinguish two situations.

Case 1. I2d(p) = I1d(p).

In this situation, the condition in (13) is a direct consequence of the concavity of the function
I1d on [0, π] (see Lemma 16). We can indeed use this property to exhibit a number δp > 0 such
that

1
2

(
I1d(p+ δ) + I1d(p− δ)

)
≤ I1d(p),

for any 0 ≤ δ ≤ δp. Invoking (10), we obtain

1
2

(
I2d(p+ δ) + I2d(p− δ)

)
≤ I1d(p) = I2d(p).

This is exactly (13).

Case 2. I2d(p) < I1d(p).

Given a minimizing sequence for I2d(p) and a number δ > 0, we shall construct and evaluate
modified minimizing sequences for I2d(p±δ) using a slicing and mirroring argument with respect
to a dyadic decomposition in the variable y. For that purpose, we first invoke the Fubini theorem
to write

E(ψ) = 1
ℓ

∫
Tℓ

E
(
ψ(·, y)

)
dy ≥ 1

ℓ

∫
Tℓ

I1d
(
[P ](ψ(·, y))

)
dy,

for any function ψ ∈ X(R × Tℓ). Since I1d is
√

2-Lipschitz on R/πZ (see Lemma 16), it follows
that

E(ψ) − I1d
(
[P ](ψ)

)
≥ −

√
2
ℓ

∫
Tℓ

∣∣[P ](ψ(·, y)) − [P ](ψ)
∣∣ dy.

We have hence proved

Lemma 5. Let ψ ∈ X(R × Tℓ) such that [P ](ψ) = [p] ∈ R/πZ. We have

1
ℓ

∫
Tℓ

∣∣[P ](ψ(·, y)) − [p]
∣∣ dy ≥ 1√

2
(
I1d(p) − E(ψ)

)
. (14)

Consider now a minimizing sequence (ψn)n≥0 for I2d(p). Provided that n is sufficiently large, it
satisfies

1
ℓ

∫
Tℓ

∣∣[P ](ψn(·, y) − [p]
∣∣ dy ≥ 1

2
(
I1d(p) − I2d(p)

)
> 0, (15)

so that the numbers [P ](ψn(·, y)) cannot be uniformly close to [p] in the limit n → ∞. For j ≥ 0,
we then define the quantities

δ(j) := lim sup
n→∞

sup
Ij

∣∣∣∣ 1
|Ij |

∫
Ij

[P ]
(
ψn(·, y)

)
dy − [p]

∣∣∣∣, (16)

where Ij refers to an arbitrary interval of size 2−j ℓ in Tℓ. Although [P ](ψn(·, y)) only makes
sense as a number in R/πZ, note that it is equal to

[P ]
(
ψn(·, y)

)
= [P ]

(
ψ̂n

)
+ 1

2

∫
R

⟨i∂xwn(x, y), wn(x, y)⟩C dx, (17)
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and therefore of the form of a fixed value in R/πZ added to an integrable real-valued function
of y. This provides the correct meaning to the integral term in (16).
Using oscillation estimates in the variable y, we next derive from (14) that

Lemma 6. There exist numbers n0 ∈ N, δ0 > 0 and j0 ∈ N such that, for any n ≥ n0, any
0 ≤ |δ| ≤ δ0, and any j ≥ j0, there exists an interval In of size 2−jℓ in Tℓ such that the sequence
(ψn)n≥0 satisfies

1
|In|

∫
In

[P ]
(
ψn(·, y)

)
dy = [p+ δ].

We are now in position to finish the proof of Lemma 4 in Case 2, using a symmetrization
argument.
First, it follows from Lemma 6 that δ(j) > 0 for any j ≥ j0. We next define

j∗ := min
{
j ≥ 0, s.t. δ(j) > 0

}
.

Set h∗ := 2−j∗ ℓ and δ∗ = δ(j∗)/2. By definition of j∗, there exists a subsequence (still denoted
ψn) for which, for each n, there exists an interval In of size h∗ such that

1
|In|

∫
In

[P ]
(
ψn(·, y)

)
dy = [p+ ϵδ∗],

with ϵ = ±1. Since the function t 7→ 1
h∗

∫ t+h∗
t [P ]

(
ψn(·, y)

)
dy is continuous and of mean value

[p], for any δ in between 0 and ϵδ∗, and for any n, there exist numbers yn such that

1
h∗

∫ yn+h∗

yn

[P ]
(
ψn(·, y)

)
dy = [p+ δ].

Without loss of generality, we can use translation invariance in order to assume that yn = 0. We
next consider the 2j∗ subintervals Jk = [k h∗, (k + 1)h∗] of [0, ℓ]. By construction, we already
have

1
|J0|

∫
J0

[P ]
(
ψn(·, y)

)
dy = [p+ δ].

By definition of the integer j∗, and in particular by the fact that δ(j∗−1) = 0, we deduce that

lim
n→∞

1
2|Jk|

∫
Jk∪J

k+(−1)k+1
[P ]

(
ψn(·, y)

)
dy = [p],

and therefore
lim

n→∞
1

|Jk|

∫
Jk

[P ]
(
ψn(·, y)

)
dy = [p+ (−1)kδ].

For each 0 ≤ k ≤ 2j∗ − 1, we define the symmetrized function ψn,k by the properties :

1. ψn,k is equal to ψn on the strip R × Jk,

2. ψn,k is mirror symmetric between the two consecutive strips R × Jk and R × Jk+1,

3. ψn,k is invariant by translation of 2h∗ in the variable y.

Note that by construction the resulting functions ψn,k still belong to X(R × Tℓ). Their energy
is given by

E
(
ψn,k

)
= 1
h∗

∫
Jk

∫
R
e(ψn)(x, y) dx dy,

6



and we also have

[P ]
(
ψn,k

)
= 1
h∗

∫
Jk

[P ]
(
ψn(x, y)

)
dx dy →

[
p+ (−1)kδ

]
, (18)

as n → ∞. As a consequence of the definition of the minimization problem in (6), these energies
satisfy

2j∗E
(
ψn

)
=

2j∗ −1∑
k=0

E
(
ψn,k

)
≥

2j∗ −1∑
k=0

I2d
(
[P ](ψn,k)

)
. (19)

Combining (19) with (18), and the continuity of the minimizing energy I2d given by Lemma 1,
we are led to the inequality

I2d(p) ≥ 1
2

(
I2d(p+ δ) + I2d(p− δ)

)
,

in the limit n → ∞. This is exactly the inequality in (13), and this inequality thus holds for
|δ| ≤ δp := δ∗. This completes the proof of Lemma 4 in Case 2.
In order to complete the proof of Proposition 2, it remains to derive the strict sub-additivity of
the minimizing energy I2d. This property results from the concavity of this function by invoking
the following lemma.

Lemma 7. Given a number R > 0, consider a non-negative and concave function f on [0, R]
such that f(0) = 0. Either the function f is strictly sub-additive on [0, R], or there exist two
numbers 0 < x∗ ≤ R and µ ≥ 0 such that

f(x) = µx, (20)

for 0 ≤ x ≤ x∗.

When the function f is concave on [0, R], with f(0) = 0, we indeed know that

f(y) ≥ y

x
f(x) +

(
1 − y

x

)
f(0) ≥ y

x
f(x),

for any 0 < y ≤ x ≤ R. Summing these inequalities for 0 < y1, y2 ≤ R such that 0 < y1+y2 ≤ R,
gives

f(y1) + f(y2) ≥ y1
y1 + y2

f(y1 + y2) + y2
y1 + y2

f(y1 + y2) = f(y1 + y2),

that is the sub-additivity of the function f . The alternative in Lemma 7 follows from analyzing
the possible case of equality in this inequality. We refer to Appendix B below for more details.
The function I2d cannot be linear in a right neighborhood of zero, since on the one hand by
inequality (10), we have I2d(p) <

√
2 p, and on the other hand, we have

Lemma 8. The function I2d satisfies I2d(p) ∼
√

2 p as p → 0+.

Therefore the minimizing energy I2d is strictly sub-additive on [0, π]. The strict sub-additivity
on R/πZ follows from parity and periodicity arguments. We refer to Section 3 for the details,
and mention that the proof of Lemma 8 relies on arguments similar to the ones that we are
now going to describe in the next subsection and which are related to the possible vanishing of
minimizing sequences for (6).

7



2.2 The concentration-compactness argument

We fix a number p = [p] ∈ R/πZ, with [p] ̸= [0]. In case [p] = [0], the minimization problem
I2d(0) is indeed achieved by the constant functions ψ of modulus one for which [P ](ψ) = [0],
and I2d(0) = E(ψ) = 0. We consider a minimizing sequence of functions (ψn)n≥0 for (6),
which we write as ψn = ψ̂n + wn according to (7). We wish to show some compactness for the
sequence (ψn)n≥0, up to possible translations and constant phase shifts. The main obstacle is
the unboundedness of the domain in the x-direction. We deal with it using the classical scheme
of concentration-compactness, by establishing a non-vanishing and a non-splitting property.

Definition. We say that a sequence (ψn)n≥0 in X(R × Tℓ) is vanishing if for some r > 0,

lim inf
n→∞

sup
a∈R

1
ℓ

∫
B(a,r)

∫
Tℓ

e(ψn) = 0. (21)

We first prove

Lemma 9. Let (ψn)n≥0 in X(R × Tℓ) be a vanishing sequence. Then writing ψn = ψ̂n +wn as
in (7), we have

lim inf
n→∞

sup
x∈R

∣∣1 − |ψ̂n(x)|
∣∣ = 0.

In the sequel, we make use of the following decomposition based on the splitting in (7)

E(ψn) = E(ψ̂n)+ 1
2ℓ

∫
R

∫
Tℓ

(
|∇wn|2+2⟨wn, ψ̂n⟩2

C−|wn|2
(
1−|ψ̂n|2

)
+2⟨wn, ψ̂n⟩C |wn|2+ 1

2 |wn|4
)
.

(22)
For a vanishing sequence, it is expected that the super-quadratic terms in the right-hand side
of (22) tend to 0 in the limit n → ∞. Invoking Lemma 9 we can similarly simplify the expression
for the momenta [P ](ψn) in (8). More precisely, we prove

Lemma 10. Let (ψn)n≥0 in X(R×Tℓ) be a vanishing sequence such that supn≥0E(ψn) < +∞.
Up to a subsequence, we have

E(ψn) = E(ψ̂n) + 1
2ℓ

∫
R

∫
Tℓ

(
|∇wn|2 + 2⟨wn, ψ̂n⟩2

C

)
+ o(1), (23)

and in (8),

1
2ℓ

∫
R

∫
Tℓ

⟨i∂xwn, wn⟩C = 1
ℓ

∫
R

∫
Tℓ

1
|ψ̂n|2

⟨wn, ψ̂n⟩C ⟨i∂xwn, ψ̂n⟩C + o(1), (24)

as n → ∞.

Inspection of the last integral term in (24) shows that it can be controlled by the last one in (23)
provided that the modulus |ψ̂n| is controlled from below. A similar property holds for the term
[P ](ψ̂n) in (8), which can be bounded by the energy E(ψ̂n), under a similar control on the
modulus |ψ̂n|. Combined, these lead to

Lemma 11. Let (ψn)n≥0 in X(R×Tℓ) be a vanishing sequence such that supn≥0E(ψn) < +∞.
Up to a subsequence we have

δn := inf
x∈R

|ψ̂n(x)| > 0,

and ∣∣[P ](ψn)
∣∣ ≤ E(ψn)√

2 δn

+ o(1), (25)

as n → ∞.
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We are now in position to state and prove

Proposition 12. A minimizing sequence (ψn)n≥0 for I2d(p) cannot be vanishing.

Indeed, assume by contradiction that it is vanishing, and set E = lim infn→∞E(ψn) (which is
finite since ψn is assumed to be minimizing). From Lemma 9 we derive that

δn := inf
x∈R

|ψ̂n(x)| → 1,

as n → ∞. Moreover, we can assume, up to a subsequence, that the energies E(ψn) tend to E ,
so that they are uniformly bounded. Therefore, we deduce from the fact that [P ](ψn) = [p], (10)
and (25) that

I2d(p) <
√

2
∣∣[p]∣∣ ≤ E .

This is in contradiction with the fact that (ψn)n≥0 is minimizing, and therefore completes the
proof of Proposition 12.
The non-vanishing property allows us to extract a limiting profile ψ∞ after a suitable translation
(we will eventually prove it is non-constant). By Proposition 12, and the invariance of the energy
and the momentum under translation, we may assume that there exists δ∞ > 0 such that up to
a subsequence

1
ℓ

∫
B(0,1)

∫
Tℓ

e(ψn) ≥ δ∞ > 0, (26)

for any n ≥ 0. By boundedness of the energies E(ψn), we can extract a further subsequence and
a limiting profile ψ∞ ∈ X(R × Tℓ) such that

∇ψn ⇀ ∇ψ∞, and 1 − |ψn|2 ⇀ 1 − |ψ∞|2 in L2(R × Tℓ), (27)

and
ψn → ψ∞ in Lp

loc(R × Tℓ), (28)

for any 1 ≤ p < +∞. We decompose once more the functions ψn and ψ∞ as

ψn = ψ̂n + wn, and ψ∞ = ψ̂∞ + w∞.

By the Sobolev embedding theorem, we know that ψ̂n → ψ̂∞ locally uniformly on R. In
a concentration-compactness framework, it would then be classical to consider the difference
ψ̃n := ψn − ψ∞ and to try to prove that

E(ψn) ≥ E(ψ∞) + E(ψ̃n) + o(1),

and
[P ](ψn) = [P ](ψ∞) + [P ](ψ̃n) + o(1),

as n → ∞. We cannot argue exactly this way because our functional space is not a vector
space and the quantities E(ψ̃n) and [P ](ψ̃n) simply do not make any sense. For m ≥ 1, we
shall instead construct functions ψ̃n in the energy space, which will correspond to ψn without
its localized bump.
In the sequel, given a number R > 0 and a function ψ = ψ̂ + w ∈ X(R × Tℓ), we shall use the
notations

ER

(
ψ

)
= 1
ℓ

∫ R

−R

∫
Tℓ

e(ψ)(x, y) dx dy, (29)

and, provided that ψ̂(±R) ̸= 0,

[PR]
(
ψ

)
= [PR]

(
ψ̂

)
+ 1

2ℓ

∫ R

−R

∫
Tℓ

〈
i∂xw(x, y), w(x, y)

〉
C dx dy, (30)

9



where
[PR]

(
ψ̂

)
:= 1

2

∫ R

−R

〈
i∂xψ̂, ψ̂

〉
C + 1

2arg
(
ψ̂(R)

)
− 1

2arg
(
ψ̂(−R)

)
modulo π.

We also define the complementary quantities

ERc(ψ) := E(ψ) − ER(ψ), and [PRc ](ψ) = [P ](ψ) − [PR](ψ).

Since ψ̂∞ is in X(R), we can find some number R0 > 0 such that |ψ̂∞(x)| ≥ 1/2 whenever
|x| ≥ R0. In particular, the quantity [PR](ψ∞) is well-defined for R ≥ R0. Given any integer
m ≥ 1, we choose a number Rm ≥ max{R0,m+ 2} such that

ERc
m

(ψ∞) ≤ 1
m
, and sup

R≥Rm

∣∣[PRc ](ψ∞)
∣∣ ≤ 1

m
. (31)

For fixed m ≥ 1, using the convergences in (27), (28) and the local uniform convergence of the
functions ψ̂n, we obtain that

lim inf
n→∞

ERm(ψn) ≥ ERm(ψ∞),

and
lim

n→∞
sup

Rm≤R≤2Rm

∣∣[PR](ψn) − [PR](ψ∞)
∣∣ = 0.

Using a diagonal argument, we may thus extract a subsequence (ψnm)m≥1 such that

ERm(ψnp) ≥ ERm(ψ∞) − 1
m
, and sup

Rm≤R≤2Rm

∣∣[PR](ψnp) − [PR](ψ∞)
∣∣ ≤ 1

m
, (32)

for any p ≥ m. Using a pigeonhole type argument, we next prove

Lemma 13. Given any integer m ≥ 1, there exists a number R̃m ∈ [Rm, 2Rm] and a function
ψ̃nm ∈ H1([−R̃m, R̃m] × Tℓ,C) such that

ψ̃nm

(
± R̃m, ·

)
= ψnm

(
± R̃m, ·

)
,

E
R̃m

(
ψ̃nm

)
≤ Cℓ

Rm
, and

∣∣∣[P
R̃m

]
(
ψ̃nm

)∣∣∣ ≤ Cℓ

R
1
2
m

,

for some number Cℓ > 0, depending only on ℓ.

We then extend the function ψ̃nm to R×Tℓ by being equal to ψnm outside [−R̃m, R̃m] ×Tℓ. We
claim

Proposition 14. In the limit n → ∞, we have

E
(
ψnm

)
≥ max

{
E

(
ψ∞

)
, δ∞

}
+ E

(
ψ̃nm

)
+ o(1), (33)

and
[P ]

(
ψnm

)
= [P ]

(
ψ∞

)
+ [P ]

(
ψ̃nm

)
+ o(1), (34)

where δ∞ > 0 is the number appearing in (26).

We are now in position to provide the
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Completion of the proof of Theorem 1. Let [p∞] := [P ](ψ∞). A first consequence of Proposi-
tion 14 is that [p∞] ̸= [0]. Indeed, it would otherwise follow from (34) and (33) that

[P ]
(
ψ̃nm

)
→ [p], and lim sup

m→∞
E

(
ψ̃nm

)
≤ I2d(p) − δ∞ < I2d(p).

This would contradict the definition of I2d(p) and the fact that it depends continuously on p.
Assume next by contradiction that [p∞] ̸= [p]. Taking limits in (34) and (33), we first obtain

[P ]
(
ψ̃nm

)
→ [p− p∞],

and then
I2d(p) ≥ I2d(p∞) + I2d(p− p∞).

This is not possible in view of the strict sub-additivity proved in Proposition 2.
As a consequence, we have [P ](ψ∞) = [p], and we infer from (33) that ψ∞ is a minimizer for
I2d(p). In other words, we can take Up,ℓ = ψ∞ in the statement of Theorem 1. Going back to (8),
and using [5, Lemma 4], we next observe that the untwisted momentum [P ] is differentiable with
respect to perturbations in H1(R × Tℓ). So is the energy E, and the equation for Up,ℓ in (9)
is then a direct consequence of the Euler-Lagrange multiplier theorem. The smoothness of Up,ℓ

finally follows from standard elliptic regularity (see e.g. [4, Lemma 2.1]).

3 The analysis of the minimizing energy

3.1 Proof of Lemma 1

Lemma 1 is exactly [9, Lemma 2] up to a suitable scaling. Observe that the minimization
problem under consideration in [9] is indeed defined as

Jλ([q]) := inf
{
Eλ(ψ) : ψ ∈ X(R × T1) s.t. [P1](ψ) = [q]

}
, (35)

for any number q ∈ R. The energy Eλ in this definition is given by

Eλ(ψ) := 1
2

∫
R×T1

(
|∂xψ|2 + λ2|∂yψ|2

)
+ 1

4

∫
R×T1

(
1 − |ψ|2

)2
,

for a number λ > 0. The untwisted momentum [P1] is exactly the untwisted momentum in (8)
for the specific choice ℓ = 1. In [9, Lemma 2], we established that the function q 7→ Jλ([q])
is well-defined as a π-periodic, even and Lipschitz continuous function on R, with Lipschitz
constant at most

√
2. Moreover, it is bounded by

Jλ(q) := Jλ([q]) ≤ I1d(q) <
√

2 q, (36)

for any 0 < q ≤ π/2.
In order to rephrase this statement in our current setting, we introduce the scaling ψℓ(x, y) =
ψ(x, ℓy). When the function ψ lies in X(R × Tℓ), the function ψℓ belongs to X(R × T1). For
λ = 1/ℓ, we check that

Eλ(ψℓ) = E(ψ), and [P1](ψℓ) = [P ](ψ).

Combining the two previous formulae, we are led to the identity

I2d(p) = Jλ(p),

for any p ∈ R. The statements in Lemma 1 then result from the previous properties of the
function Jλ.
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3.2 Proof of Lemma 6

The proof combines two ingredients. The first one is an oscillation estimate. For the ease of
reference, we recall here the identity (17)

[P ]
(
ψn(·, y)

)
= [P ]

(
ψ̂n

)
+ 1

2

∫
R

〈
i∂xwn(x, y), wn(x, y)

〉
C dx,

and we denote by qn the real-valued function defined by

qn(y) = 1
2

∫
R

⟨i∂xwn(x, y), wn(x, y)⟩C dx,

for any y ∈ Tℓ. Since wn ∈ H1(R × Tℓ), the function qn belongs to W 1,1(Tℓ), with

q′
n(y) =

∫
R

〈
i∂xwn(x, y), ∂ywn(x, y)

〉
C dx. (37)

Moreover, we compute∫
Tℓ

|q′
n(y)| dy ≤ 1

2

∫
R×Tℓ

(
|∂xwn|2 + |∂ywn|2

)
≤ ℓE(ψn) ≤ C, (38)

where C is a positive number depending only on ℓ and p.
The second ingredient is Lemma 15 below, which we applied to the functions qn −

∫
Tℓ
qn/ℓ for

n large enough, and next combined with equality (17). Indeed, consider the integer N0 ≥ 1 and
the number δ0 > 0 given by Lemma 15 for σ = ℓ(I1d(p) − I2d(p))/2, and for the number C
in (38). In view of (15) and (38), the functions qn−

∫
Tℓ
qn/ℓ satisfy the assumptions of Lemma 15

for any integer n large enough. Whenever N = 2j ≥ N0 and |δ| < δ0, we can therefore find an
interval In of size ℓ/2j for which

1
|In|

∫
In

(
qn − 1

ℓ

∫
Tℓ

qn

)
= δ.

In view of (17), this can be rewritten as

1
|In|

∫
In

[P ]
(
ψn(·, y)

)
dy = [P ]

(
ψ̂n

)
+ 1
ℓ

∫
Tℓ

qn(y) dy + δ = [P ]
(
ψn

)
+ δ = [p+ δ],

and the proof of Lemma 6 is therefore completed once we have proved

Lemma 15. Let C, σ > 0 and let q ∈ W 1,1(Tℓ,R) be such that∫
Tℓ

q = 0,
∫
Tℓ

|q′| ≤ C, and
∫
Tℓ

|q| ≥ σ.

There exist an integer N0 and a number δ0 > 0, depending only on C, σ and ℓ, such that, given
any integer N ≥ N0 and any number 0 ≤ |δ| ≤ δ0, there exists at least one subinterval I of Tℓ

such that
|I| = ℓ

N
, and 1

|I|

∫
I
q = δ.

Proof. Decompose the function q as q = q+ − q−, where q+ is the non-negative part of q, and
q− the opposite of its non-positive part. Since |q| = q+ + q−, we deduce from the integral
assumptions in Lemma 15 that ∫

Tℓ

q+ =
∫
Tℓ

q− ≥ σ

2 .
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Consider next the intervals Ik = [kℓ/N, (k + 1)ℓ/N ] for 0 ≤ k ≤ N − 1, with length h = ℓ/N .
Fix a number δ > 0, and set

J± =
{

0 ≤ k ≤ N − 1 s.t. 1
h

∫
Ik

q± > 0
}
, and K± =

{
0 ≤ k ≤ N − 1 s.t. 1

h

∫
Ik

q± ≥ δ
}
.

When an integer k lies in J− ∩K+, we deduce from the continuity of the function q the existence
of a number ξ ∈ Ik such that q(ξ) = 0. As a consequence, we have

δ ≤ 1
h

∫
Ik

∣∣q+(x) − q+(ξ)
∣∣ dx ≤ 1

h

∫
Ik

∣∣∣∣ ∫ x

ξ
q′

+(y) dy
∣∣∣∣ ≤

∫
Ik

|q′
+| ≤

∫
Ik

|q′|,

and J− ∩ K+ is a subset of

L =
{

0 ≤ k ≤ N − 1 s.t.
∫

Ik

∣∣q′∣∣ ≥ δ
}
.

Similarly, we show that J+ ∩ K− is a subset of L. Note here that the cardinal of L is less than
C/δ due to the Tchebychev inequality, so that the same bound holds for both the sets J− ∩ K+
and J+ ∩ K−.
Since the integral

∫
Tℓ
q vanishes, there also exists a number y ∈ Tℓ such that q(y) = 0. As a

consequence, we have

q±(x) = q±(x) − q±(y) ≤
∫

Tℓ

|q′
±| ≤

∫
Tℓ

|q′| ≤ C,

for any x ∈ Tℓ, so that ∫
Ik

q± ≤ Ch,

for any 0 ≤ k ≤ N − 1. Since
∫
Tℓ
q+ ≥ σ/2, we deduce that

σ

2 ≤
∑

I∈K+

∫
I
q+ +

∑
I /∈K+

∫
I
q+ ≤ ChCard

(
K+

)
+ δhCard

(
Kc

+
)
.

Observing that Card(Kc
+) = N − Card(K+), we are led to

Card(K+) ≥ N(σ − 2δℓ)
2(C − δ)ℓ ,

when δ < C, and the same estimate holds for the cardinal of K−.
In conclusion, we obtain

Card
(
K+ ∩ J c

−
)

≥ N(σ − 2δℓ)
2(C − δ)ℓ − C

δ
,

as well as the same estimate for the cardinal of K− ∩ J c
+. We finally fix δ = δ0 = min{σ/(4ℓ),

C/2}, so that we can find a number N0 > 0, depending only on C, σ and ℓ, such that

Card
(
K± ∩ J c

∓
)

≥ 1,

for any N ≥ N0. Choosing integers k± ∈ K± ∩ J c
∓, we are led to

1
h

∫
Ik+

q = 1
h

∫
Ik+

q+ ≥ δ0, and 1
h

∫
Ik−

q = − 1
h

∫
Ik−

q− ≤ −δ0.

We complete the proof by recalling that q is in L1(Tℓ), so that the map t 7→
∫ t+h

t q is continuous
on Tℓ. Given any number |δ| ≤ δ0, it is then sufficient to apply the intermediate value theorem
to find an interval Iδ, with length h = ℓ/N , such that

1
h

∫
Iδ

q = δ.

This completes the proof of Lemma 15.
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3.3 Proof of Lemma 8

For the proof of Lemma 8, we shall make use of the notion of vanishing sequence introduced in
Subsection 2.2 and the proofs of the related Lemmas 9, 10 and 11 (which could better be read
first). Set

τ = lim inf
p→0+

I2d(p)
p

.

In view of (10), we already know that

lim sup
p→0+

I2d(p)
p

≤
√

2,

so that τ ≤
√

2, and the convergence in Lemma 8 will follow from the inequality

τ ≥
√

2. (39)

In order to prove this inequality, we consider a sequence of positive numbers (pn)n≥0, such that
pn → 0 as n → ∞, and

I2d(pn)
pn

→ τ. (40)

By definition of the minimizing energy I2d(pn), given any number 0 < δ ≤ 2 −
√

2, there exist
functions ψn ∈ X(R × Tℓ), with [Pℓ](ψn) = pn modulo π, such that

I2d(pn) ≤ E(ψn) ≤ I2d(pn) + δpn ≤
(
τ + δ

)
pn ≤ 2pn, (41)

for any n ≥ 0. Since pn → 0 as n → ∞, it follows in particular that (ψn)n≥0 is vanishing, and
therefore also from Lemma 9 that

δn = inf
x∈R

∣∣ψ̂n(x)
∣∣ → 1, (42)

as n → ∞. By (41), the energies E(ψn) are also uniformly bounded and Lemma 11 provides a
subsequence, still denoted (ψn)n≥0 here, for which

pn ≤ E(ψn)√
2 δn

+ o(1),

as n → ∞. In view of (40), (41) and (42), proving (39) would follow from the fact that the o(1)
in this inequality is actually a o(pn). In order to derive this stronger estimate, we adapt slightly
the argument in the proof of Lemma 11.
Going first to the proof of Lemma 10, we decompose the energies E(ψn) as E(ψn) = En + Rn

according to (50). Arguing as in the proof of (53) (for instance with r = 1), we obtain∫
R

∫
Tℓ

|wn|4 ≤ CℓE(ψn)2, (43)

for any n ≥ 0. Here as in the sequel, the number Cℓ ≥ 0, possibly different from line to line,
only depends on ℓ. Inserting the previous inequality into (51), and applying (41), we obtain∣∣Rn

∣∣ ≤ CℓE(ψn)
(
En

1
2 + E(ψn)

)
≤ 2Cℓ pn

(
En

1
2 + 2pn

)
. (44)

Since En = E(ψn) − Rn, we deduce from (41) and (44) that

En ≤ Cℓpn, (45)
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and then from (44) that ∣∣E(ψn) − En

∣∣ ≤ Cℓp
3
2
n

(
1 + p

1
2
n

)
.

In view of (41), we conclude that

En ≤
(
τ + δ

)
pn + Cℓp

3
2
n

(
1 + p

1
2
n

)
. (46)

Going back to (42), we can assume, up to a subsequence, that δn ≥ 1/2 for any n ≥ 0. In this
case, the quantity Rn in (54) is well-defined, and we can bound it by∣∣Rn

∣∣ ≤ Cℓ

∥∥wn

∥∥2
L4(R×Tℓ

∥∥∂xψ̂n∥L2(R×Tℓ) ≤ CℓE(ψn) En ≤ Cℓ p
2
n, (47)

by combining (41), (43) and (45).
Arguing as in the proof of Lemma 11, we can also lift the function ψ̂n as ψ̂n = ρn e

iφn , and find
an integer kn ∈ Z such that

pn + knπ = 1
2

∫
R

(
1 − ρ2

n

)
∂xφn + 1

ℓ

∫
R

∫
Tℓ

1
|ψ̂n|2

⟨wn, ψ̂n⟩C ⟨i∂xwn, ψ̂n⟩C + Rn.

Since pn → 0 as n → ∞, we infer from the inequality |ψ̂n| = ρn ≥ δn, and from (47) that

pn ≤
∣∣pn + knπ

∣∣ ≤ 1
2δn

∫
R

∣∣1 − ρ2
n

∣∣∣∣ρn∂xφn

∣∣ + 1
ℓδn

∫
R

∫
Tℓ

∣∣⟨wn, ψ̂n⟩C
∣∣ ∣∣∂xwn

∣∣ + Cℓ p
2
n.

On the other hand, we also check that

En = 1
2

∫
R

(
|∇ρn|2 + ρ2

n|∇φn|2 + (1 − ρ2
n)2

2
)

+ 1
2ℓ

∫
R

∫
Tℓ

(
|∇wn|2 + 2⟨wn, ψ̂n⟩2

C

)
.

As in the proof of Lemma 11, we derive from the Young inequality, and then from (46), that

pn ≤ En√
2 δn

+ Cℓ p
2
n ≤ τ + δ√

2 δn

pn + Cℓp
3
2
n

(
1 + p

1
2
n

)
.

Using the fact that pn → 0 and δn → 1 as n → ∞, we obtain in this limit that τ + δ ≥
√

2.
Since δ can be chosen as any arbitrary small positive number, the inequality in (39) is proved,
and as a consequence, so is Lemma 8.

3.4 Proof of Proposition 2

The concavity of the function I2d on the interval [0, π] is a direct consequence of Lemmas 1, 3
and 4. Combining Lemmas 7 and 8 with the strict inequality in (10) guarantees that the function
I2d is also strictly sub-additive on [0, π]. We now use its π-periodicity and its parity to extend
this property to R/πZ.
Fix two numbers (p1, p2) ∈ (R/πZ)2, with p1 ̸= 0 and p2 ̸= 0, and consider two numbers
0 < p1, p2 < π such that p1 = [p1] and p2 = [p2]. Two situations can occur. When p1 + p2 ≤ π,
the strict sub-additivity of the function I2d on [0, π] directly provides

I2d(p1 + p2) = I2d(p1 + p2) < I2d(p1) + I2d(p2) = I2d(p1) + I2d(p2).

Otherwise, we know that π < p1 +p2 < 2π, so that 0 < π−p1 +π−p2 < π. Since 0 < π−p1 < π
and 0 < π − p2 < π, we can again invoke the strict sub-additivity of the function I2d on [0, π]
to obtain

I2d(π − p1 + π − p2) < I2d(π − p1) + I2d(π − p2).
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Since the function I2d is even and π-periodic, this can be rewritten as

I2d(p1 + p2) < I2d(p1) + I2d(p2),

which again leads to
I2d(p1 + p2) < I2d(p1) + I2d(p2).

This concludes the proofs of (11) and of Proposition 2.

4 The compactness of the minimizing sequences

4.1 Proof of Lemma 9

Assume for the sake of a contradiction that

lim inf
n→∞

sup
x∈R

∣∣1 − |ψ̂n(x)|
∣∣ = ν > 0.

In this case, we can find a sequence of points (an)n≥0 in R such that∣∣ψ̂n(an)
∣∣ ≤ 1 − ν

2 , (48)

for n large enough. Given a compact subset K of R, which contains 0, we deduce from condi-
tion (21) that ∫

K

∫
Tℓ

(
|∇ψn(· + an, ·)|2 + (1 − |ψn(· + an, ·)|2)2

)
→ 0,

as n → ∞. As a consequence, we obtain

∇ψn(· + an, ·) → 0 in L2(K × Tℓ), and 1 − |ψn(· + an, ·)|2 → 0 in L2(K × Tℓ). (49)

Moreover, we also have

∫
K

∫
Tℓ

|ψn(· + an, ·)|2 ≤ ℓ|K| +
(
ℓ|K|

) 1
2

( ∫
K

∫
Tℓ

(
1 − |ψn(· + an, ·)|2

)2
) 1

2
,

for any n ≥ 0. Up to a subsequence, we can therefore assume that there exists a function
ψ∞ ∈ H1(K × Tℓ) such that

ψn(· + an, ·) ⇀ ψ∞ in H1(K × Tℓ).

Combining (49) with the Rellich-Kondrachov theorem, we check that the function ψ∞ is a
constant function of modulus 1, and that the previous convergence is actually strong in H1(K×
Tℓ).
Observe finally that∫

K
|ψ̂n(· + an) − ψ∞|2 ≤ 1

ℓ

∫
K

∫
Tℓ

|ψn(· + an, ·) − ψ∞|2 → 0,

while ∫
K

|∂xψ̂n(· + an)|2 ≤ 1
ℓ

∫
K

∫
Tℓ

|∂xψn(· + an)|2 → 0.

Hence we have
ψ̂n(· + an) → ψ∞ in H1(K),
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as n → ∞. Invoking the Rellich compactness theorem, we can assume, up to a further subse-
quence, that

ψ̂n(· + an) → ψ∞ in L∞(K).

Since 0 ∈ K, this is enough to guarantee that

|ψ̂n(an)| → |ψ∞| = 1,

which provides a contradiction with (48). This concludes the proof of Lemma 9.

4.2 Proof of Lemma 10

Concerning the proof of (23), we set ψn = ψ̂n +wn as in (7). Going back to (22), we decompose
the energy E(ψn) as

E(ψn) = En + Rn, (50)

with
En := 1

2ℓ

∫
R

∫
Tℓ

(
|∂xψ̂n|2 + 1

2
(
1 − |ψ̂n|2

)2 + |∇wn|2 + 2⟨wn, ψ̂n⟩2
C

)
,

and
Rn := 1

2ℓ

∫
R

∫
Tℓ

(
− |wn|2

(
1 − |ψ̂n|2

)
+ 2⟨wn, ψ̂n⟩C |wn|2 + 1

2 |wn|4
)
.

We have to check that the term Rn tends to 0 as n → ∞. Using the Cauchy-Schwarz inequality,
we observe that∣∣Rn

∣∣ ≤ 1
2ℓ

∥∥wn

∥∥2
L4(R×Tℓ)

(∥∥1 − |ψ̂n|2
∥∥

L2(R×Tℓ) + 2
∥∥⟨wn, ψ̂n⟩C

∥∥
L2(R×Tℓ) + 1

2
∥∥wn

∥∥2
L4(R×Tℓ)

)
≤ 1

2ℓ
∥∥wn

∥∥2
L4(R×Tℓ)

(
4 ℓ

1
2 En

1
2 +

∥∥wn

∥∥2
L4(R×Tℓ)

)
.

(51)

As a consequence, we are reduced to prove that, under condition (21),∥∥wn

∥∥
L4(R×Tℓ) → 0, (52)

as n → ∞. The proof of this claim is classical in the context of concentration-compactness
arguments (see [16, Lemma I.1]). For the sake of completeness, we give the following detail.
Fix the positive number r such that (21) holds, and set

εn := sup
a∈R

1
ℓ

∫
B(a,r)

∫
Tℓ

e(ψn).

Invoking the Poincaré-Wirtinger inequality, we check that∥∥wn

∥∥
L2(B(a,r)×Tℓ) ≤

∥∥∂ywn

∥∥
L2(B(a,r)×Tℓ) ≤

∥∥∇wn

∥∥
L2(B(a,r)×Tℓ),

for any n ≥ 0 and any a ∈ R. Combining this inequality with the Gagliardo-Nirenberg inequality,
we can find a number Cr, only depending on r, such that∫

B(a,r)

∫
Tℓ

|wn|4 ≤Cr

( ∫
B(a,r)

∫
Tℓ

|wn|2
)( ∫

B(a,r)

∫
Tℓ

(
|∇wn|2 + |wn|2

))

≤2Cr

( ∫
B(a,r)

∫
Tℓ

|∇wn|2
)2
.
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Recall next that ∫
B(a,r)

∫
Tℓ

|∇wn|2 ≤ 2
∫

B(a,r)

∫
Tℓ

e(ψn) ≤ 2 ℓ εn,

so that ∫
B(a,r)

∫
Tℓ

|wn|4 ≤ 8 ℓCr εn

∫
B(a,r)

∫
Tℓ

e(ψn).

By summation we are then led to∫
R

∫
Tℓ

|wn|4 ≤ 8 ℓCr εnE(ψn). (53)

Since εn → 0 as n → ∞ by (21), and since the energies E(ψn) are bounded, we conclude
that (52) does hold. Inserting this limit into (50) and (51), and using again the boundedness
of the energies E(ψn), we deduce that the sequence (En)n≥0 is also bounded, and then that Rn

converges to 0 as n → ∞. In view of (50), this completes the proof of (23).
We now turn to (24). In view of Lemma 9, we can assume, up to a subsequence, that all the
functions ψ̂n satisfy

δn := inf
x∈R

∣∣ψ̂n(x)
∣∣ ≥ δ∗,

for a fixed number δ∗ > 0. In this case, we can write

wn = ⟨wn, ψ̂n⟩C
ψ̂n

|ψ̂n|2
+ ⟨wn, iψ̂n⟩C

i ψ̂n

|ψ̂n|2
,

so that
1
2ℓ

∫
R

∫
Tℓ

⟨i∂xwn, wn⟩C = 1
2ℓ

∫
R

∫
Tℓ

1
|ψ̂n|2

(
⟨wn, ψ̂n⟩C ⟨i∂xwn, ψ̂n⟩C + ⟨wn, iψ̂n⟩C ⟨∂xwn, ψ̂n⟩C

)
.

Integrating by parts the last term in this identity, we obtain

1
2ℓ

∫
R

∫
Tℓ

⟨i∂xwn, wn⟩C = 1
ℓ

∫
R

∫
Tℓ

1
|ψ̂n|2

⟨wn, ψ̂n⟩C ⟨i∂xwn, ψ̂n⟩C + Rn, (54)

with

Rn = 1
2ℓ

∫
R

∫
Tℓ

1
|ψ̂n|2

( 2
|ψ̂n|2

⟨ψ̂n, ∂xψ̂n⟩C ⟨wn, ψ̂n⟩C ⟨wn, iψ̂n⟩C

− ⟨wn, ∂xψ̂n⟩C ⟨wn, iψ̂n⟩C − ⟨wn, ψ̂n⟩C ⟨wn, i∂xψ̂n⟩C
)
.

Since ∣∣Rn

∣∣ ≤ 2
ℓ δ∗

∫
R

∫
Tℓ

|wn|2 |∂xψ̂n| ≤ 2
ℓ δ∗

∥∥wn

∥∥2
L4(R×Tℓ)

∥∥∂xψ̂n

∥∥
L2(R×Tℓ),

we infer from (23) and (52) that Rn → 0 as n → ∞. In view of (54), this concludes the proof
of (24), and of Lemma 10.

4.3 Proof of Lemma 11

Recall first that
δn ≥ 1 − sup

x∈R

∣∣1 − |ψ̂n(x)|
∣∣,

so that by Lemma 9, we can assume, up to a subsequence, that

δn > 0,
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for any n ≥ 0. In particular, we can lift the function ψ̂n as ψ̂n = ρne
iφn , where ρn and φn are

continuous real-valued functions defined on the whole line R. In this situation, it follows from [5,
Lemma 3] that the untwisted momentum [P ](ψ̂n) is equal to

[P ]
(
ψ̂n

)
= 1

2

∫
R

(
1 − ρ2

n

)
∂xφn modulo π.

Going back to (8) and (24), we obtain

[P ]
(
ψn

)
= 1

2

∫
R

(
1 − ρ2

n

)
∂xφn + 1

ℓ

∫
R

∫
Tℓ

1
|ψ̂n|2

⟨wn, ψ̂n⟩C ⟨i∂xwn, ψ̂n⟩C + o(1) modulo π, (55)

as n → ∞.
Similarly, we can expand the energy of the function ψ̂n as

E
(
ψ̂n

)
= 1

2

∫
R

(
|∇ρn|2 + ρ2

n|∇φn|2 + (1 − ρ2
n)2

2
)
,

so that we derive from (23) that

E(ψn) = 1
2

∫
R

(
|∇ρn|2 + ρ2

n|∇φn|2 + (1 − ρ2
n)2

2
)

+ 1
2ℓ

∫
R

∫
Tℓ

(
|∇wn|2 + 2⟨wn, ψ̂n⟩2

C

)
+ o(1). (56)

We next estimate the first integral term in the right-hand side of (55) as

√
2δn

∣∣∣∣ ∫
R

(
1 − ρ2

n

)
∂xφn

∣∣∣∣ ≤ 2
∫
R

∣∣1 − ρ2
n

∣∣
√

2
ρn

∣∣∂xφn

∣∣ ≤
∫
R

(
ρ2

n|∇φn|2 + (1 − ρ2
n)2

2
)
,

while we bound the second one by

√
2δn

∣∣∣∣ ∫
R

∫
Tℓ

1
|ψ̂n|2

⟨wn, ψ̂n⟩C ⟨i∂xwn, ψ̂n⟩C
∣∣∣∣ ≤

∫
R

∫
Tℓ

√
2
∣∣⟨wn, ψ̂n⟩C

∣∣ ∣∣∂xwn

∣∣
≤1

2

∫
R

∫
Tℓ

(
|∂xwn|2 + 2⟨wn, ψ̂n⟩2

C

)
.

In view of (55) and (56), we are led to

∣∣[P ](ψn)
∣∣ ≤ E(ψn) + o(1)√

2δn

+ o(1),

as n → ∞. Using the fact that δn → 1 in this limit by Lemma 9, we obtain (25), which concludes
the proof of Lemma 11.

4.4 Proof of Lemma 13

We split the proof into four steps.

Step 1. There exists a number Mp > 0, depending only on p, such that, given any integer
m ≥ 1, there exists a number Rm ≤ R̃m ≤ 2Rm such that

1
ℓ

∫
Tℓ

(
e
(
ψnm

)
(R̃m, y) + e

(
ψnm

)
(−R̃m, y)

)
dy ≤ Mp

Rm
. (57)
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This follows from the fact that (ψnm)m≥1 is a minimizing sequence for the minimization problem
I2d(p). As a consequence, we can find a positive number Mp, depending only on p, such that

1
ℓ

∫ 2Rm

Rm

∫
Tℓ

(
e
(
ψnm

)
(−x, y) + e

(
ψnm

)
(x, y)

)
dx dy ≤ Mp.

This is sufficient to find a number Rm ≤ R̃m ≤ 2Rm satisfying (57).
As a consequence of (57), the restrictions ψnm(±R̃m, ·) lie in H1(Tℓ). We now check that a
function ψ ∈ H1(Tℓ) with sufficiently small Ginzburg-Landau energy does not vanish.

Step 2. Let ψ ∈ H1(Tℓ). There exists a number 0 < κℓ < 1, depending only on ℓ, such that, if

κ(ψ) := 1
2ℓ

∫
Tℓ

|∂yψ|2 + 1
4ℓ

∫
Tℓ

(
1 − |ψ|2

)2 ≤ κℓ, (58)

then the function ψ does not vanish on Tℓ, and can be lifted as ψ = |ψ| eiφ, where φ is a
continuous, ℓ-periodic, real-valued function. Moreover, there exists a number Cℓ > 0, depending
only on ℓ, such that the mean value

ψ̂ := 1
ℓ

∫
Tℓ

ψ,

satisfies ∣∣∣ψ̂∣∣∣ ≥ 1 − Cℓ κ(ψ)
1
2 ≥ 1

2 , (59)

and ∣∣∣∣arg
(
ψ̂

)
− 1
ℓ

∫
Tℓ

φ

∣∣∣∣ ≤ Cℓ κ(ψ)
1
2 , (60)

when the function ψ satisfies the condition in (58).

Assume that a function ψ ∈ H1(Tℓ) vanishes. Up to a translation, we can assume that ψ(0) = 0,
so that we can write ∣∣ψ(y)

∣∣ ≤ √
y ∥∂yψ∥L2(Tℓ),

for any 0 ≤ y ≤ ℓ. In this case, either

1
2ℓ

∫
Tℓ

|∂yψ|2 ≥ 1
4ℓ2 ,

or we can compute

1
4ℓ

∫
Tℓ

(
1 − |ψ|2

)2 ≥ 1
4ℓ

∫ ℓ

0

(
1 − y ∥∂yψ∥2

L2(Tℓ)
)2
dy ≥ 1

4
(
1 − ℓ ∥∂yψ∥2

L2(Tℓ)
)2 ≥ 1

16 .

By contraposition, we conclude that a function ψ such that

1
2ℓ

∫
Tℓ

|∂yψ|2 + 1
4ℓ

∫
Tℓ

(
1 − |ψ|2

)2 ≤ min
{ 1

4ℓ2 ,
1
16

}
,

does not vanish on Tℓ.
Consider next its mean value ψ̂, and recall from the Poincaré-Wirtinger inequality that∫

Tℓ

∣∣ψ − ψ̂
∣∣2 ≤ ℓ2

4π2

∫
Tℓ

∣∣∂yψ
∣∣2, (61)
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so that by the triangle and Cauchy-Schwarz inequalities,∣∣ψ̂∣∣ ≥ 1 − 1
ℓ

∫
Tℓ

(
1 − |ψ|

)
− 1
ℓ

∫
Tℓ

∣∣ψ − ψ̂
∣∣

≥ 1 − 2
( 1

4ℓ

∫
Tℓ

(
1 − |ψ|2

)2
) 1

2
− ℓ√

2π

( 1
2ℓ

∫
Tℓ

|∂yψ|2
) 1

2
.

The first inequality in estimate (59) follows, when Cℓ is supposed to be larger than 2 + ℓ/(
√

2π),
and it is sufficient to choose κℓ less than 1/(4ℓ2), 1/16 and 1/(4Cℓ)2, to obtain the second one.
We finally turn to (60). We first introduce a continuous, ℓ-periodic, real-valued function φ such
that ψ = |ψ| eiφ on Tℓ. We then compute, using the Poincaré-Wirtinger inequality,

∣∣∣eiφ − ψ̂

|ψ̂|

∣∣∣ =
∣∣∣(|ψ̂| − |ψ|)ψ

|ψ| |ψ̂|
+ ψ − ψ̂

|ψ̂|

∣∣∣ ≤ 2 |ψ − ψ̂|
|ψ̂|

≤
∣∣ψ − ψ̂

∣∣ ≤
∫
Tℓ

∣∣∂yψ
∣∣,

and deduce from the Cauchy-Schwarz inequality that
∣∣∣eiφ − ψ̂

|ψ̂|

∣∣∣ ≤
√

2 ℓ κ(ψ)
1
2 . (62)

At this stage, we invoke the inequality∣∣arg(z2) − arg(z1)
∣∣ ≤ 2

π

∣∣z1 − z2
∣∣, (63)

which holds for complex numbers z1 and z2 of modulus 1, such that |z2 − z1| ≤ 1. Note that the
numbers arg(z2) and arg(z1) in this inequality are defined in R/2πZ, so that the notation | · | in
the left-hand side of (63) corresponds to the natural distance on this set.
Going back to (62), we finally fix Cℓ := max{2 + ℓ/(

√
2π), (2

√
2ℓ)/π}, so that |eiφ − ψ̂/|ψ̂|| ≤ 1,

when κ(ψ) ≤ κℓ := min{1/(4ℓ2), 1/16, 1/(4Cℓ)2}. In this case, we infer from (62) and (63) that
∣∣∣φ− arg

(
ψ̂

)∣∣∣ ≤ 2
√

2 ℓ
π

κ(ψ)
1
2 ≤ Cℓ κ(ψ)

1
2 ≤ 1

2 .

Invoking the continuity of the phase function φ, we can find a number τ ∈ R such that arg(ψ̂) = τ
modulo 2π, and ∣∣φ(x) − τ

∣∣ ≤ Cℓ κ(ψ)
1
2 ,

for any x ∈ Tℓ. Integrating this inequality on Tℓ, we conclude that∣∣∣∣1
ℓ

∫
Tℓ

φ− τ

∣∣∣∣ ≤ Cℓ κ(ψ)
1
2 .

Since τ = arg(ψ̂) modulo 2π, this completes the proof of (60), as well as of Step 2.
Given a number R ≥ 2, we now connect two functions ψ± ∈ H1(Tℓ) satisfying (58) by a
function Ψ ∈ H1([−R,R] × Tℓ,C) of Ginzburg-Landau energy of order κ(ψ−) + κ(ψ+) + 1/R.
More precisely, we show

Step 3. Let ψ± ∈ H1(Tℓ) satisfying (58). Given a number R ≥ 2, there exists a function
Ψ ∈ H1([−R,R] × Tℓ,C) such that Ψ(±R, ·) = ψ±, and moreover,

ER

(
Ψ

)
≤ Cℓ

(
κ(ψ−) + κ(ψ+) + 1

R

)
, and

∣∣∣[PR]
(
Ψ

)∣∣∣ ≤ Cℓ

(
κ(ψ−) + κ(ψ+)

) 1
2
, (64)

for a number Cℓ ≥ 0, depending only on ℓ.

21



Under condition (58), it follows from Step 2 that the functions ψ± do not vanish. In particular,
we can find continuous, ℓ-periodic, real-valued functions ρ± and φ± such that ψ± = ρ± e

iφ± on
Tℓ. Using this notation, we observe that

κ(ψ±) = 1
2ℓ

∫
Tℓ

(
(∂yρ±)2 + ρ2

±(∂yφ±)2)
+ 1

4ℓ

∫
Tℓ

(
1 − ρ2

±
)2
.

Setting
φ̂± = 1

ℓ

∫
Tℓ

φ±(y) dy,

we first derive from the Sobolev embedding theorem and the Poincaré-Wirtinger inequality the
existence of a number Cℓ, depending only on ℓ, such that

∥∥1 − ρ±
∥∥2

L∞(Tℓ) ≤ Cℓ κ(ψ±), and
∥∥φ± − φ̂±

∥∥
L2(Tℓ) ≤ ℓ

2π
∥∥∂yφ±

∥∥
L2(Tℓ). (65)

Going back to (58), we note that the modulus ρ± are uniformly bounded by a number Cℓ,
depending only on ℓ.
We next define the map Ψ by introducing affine interpolations of the modulus ρ± and the phases
φ±. More precisely, we set

ρ(x, y) =
{

1, for |x| ≤ R− 1 and y ∈ Tℓ,

1 +
(
R− 1 − |x|

)(
1 − ρ±(y)

)
, for R− 1 ≤ ±x ≤ R and y ∈ Tℓ.

(66)

Introducing the integer k ∈ Z such that 2kπ ≤ φ̂+ − φ̂− < 2(k + 1)π, we also set

φ(x, y) =


φ̂+−φ̂−−2kπ

2(R−1) x+ φ̂++φ̂−+2kπ
2 , for |x| ≤ R− 1 and y ∈ Tℓ,

φ±(y) +
(
R− |x|

)(
φ̂± − φ±(y)

)
, for R− 1 ≤ ±x ≤ R and y ∈ Tℓ.

(67)

The map Ψ := ρ eiφ then lies in H1([−R,R] ×Tℓ), with Ψ(±R, ·) = ψ±. From (65) and explicit
computations, we first derive the estimate for ER(Ψ) in (64).
Concerning the estimate for the momentum [PR](Ψ), we write Ψ = Ψ̂+W according to (7), and
recall from (59) that the mean values Ψ̂(±R) = ψ̂± are larger than 1/2. In view of (30), the
momentum [PR](Ψ) is then well-defined by

[PR]
(
Ψ

)
= 1

2

∫ R

−R

(〈
i∂xΨ̂, Ψ̂

〉
C + 1

ℓ

∫
Tℓ

〈
i∂xW,W

〉
C

)
+ 1

2arg
(
Ψ̂(R)

)
− 1

2arg
(
Ψ̂(−R)

)
modulo π.

Recall that Ψ̂ only depends on x and that
∫
Tℓ
W (x, y) dy = 0 for all x ∈ R. By definition of the

function Ψ, we can therefore rewrite the previous formula as

[PR]
(
Ψ

)
= 1

2ℓ

∫ R

−R

∫
Tℓ

〈
i∂xΨ,Ψ

〉
C + 1

2arg
(
ψ̂+

)
− 1

2arg
(
ψ̂−

)
modulo π.

Since ⟨i∂xΨ,Ψ⟩C = −ρ2 ∂xφ, we are led to

[PR]
(
Ψ

)
= 1

2ℓ

∫ R

−R

∫
Tℓ

(
1 − ρ2)

∂xφ+ 1
2

(
arg

(
ψ̂+

)
− 1
ℓ

∫
Tℓ

φ+(y) dy
)

− 1
2

(
arg

(
ψ̂−

)
− 1
ℓ

∫
Tℓ

φ−(y) dy
)

modulo π.
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In view of (65), (66) and (67), we can find further numbers Cℓ > 0, depending only on ℓ, such
that the first term in the right-hand side of this inequality satisfies∣∣∣∣ 1
2ℓ

∫ R

−R

∫
Tℓ

(
1−ρ2)

∂xφ

∣∣∣∣ ≤ Cℓ

∫
Tℓ

(∣∣1−ρ2
+

∣∣ ∣∣φ+−φ̂+
∣∣+∣∣1−ρ2

−
∣∣ ∣∣φ−−φ̂−

∣∣) ≤ Cℓ

(
κ(ψ+)+κ(ψ−)

)
.

Concerning the second and third terms, we directly invoke (60) to obtain∣∣∣∣arg
(
ψ̂±

)
− 1
ℓ

∫
Tℓ

φ±(y) dy
∣∣∣∣ ≤ Cℓκ(ψ±)

1
2 .

Gathering the two previous estimates, we conclude that
∣∣∣[PR]

(
Ψ

)∣∣∣ ≤ Cℓ

(
κ(ψ+) + κ(ψ−)

) 1
2
,

due to the bounds κ(ψ+) ≤ κℓ and κ(ψ−) ≤ κℓ. This is exactly the second inequality in (64).
We now collect the three previous steps in order to complete the proof of Lemma 13.

Step 4. Conclusion.

Fix an integer m ≥ 1. In view of Step 1, we can find a number Rm ≤ R̃m ≤ 2Rm, such that (57)
holds for some number Mp. Up to a subsequence, we can assume that Mp/Rm ≤ κℓ. By (57),
the maps ψ± := ψnm(±R̃m, ·) then satisfy the condition in (58). Observing that R̃m ≥ Rm ≥ 2,
we can invoke Step 3 with R = R̃m to find a function ψ̃nm := Ψ ∈ H1([−R̃m, R̃m] × Tℓ,C) such
that

ψ̃nm

(
± R̃m, ·

)
= ψnm

(
± R̃m, ·

)
,

E
R̃m

(
ψ̃nm

)
≤ Cℓ

(
κ

(
ψnm(R̃m, ·)

)
+ κ

(
ψnm(−R̃m, ·)

)
+ 1
R̃m

)
,

and ∣∣∣[P
R̃m

]
(
ψ̃nm

)∣∣∣ ≤ Cℓ

(
κ

(
ψnm(R̃m, ·)

)
+ κ

(
ψnm(−R̃m, ·)

)) 1
2
.

The two estimates in Lemma 13 then follow from (57) and the fact that R̃m ≥ Rm. This
concludes the proof of this lemma.

4.5 Proof of Proposition 14

For a fixed integer m, we decompose the energy E(ψnm) as

E
(
ψnm

)
= E

R̃m

(
ψnm

)
+ E

R̃c
m

(
ψnm

)
.

In view of (26), (31) and (32), we have on the one hand,

E
R̃m

(
ψnm

)
≥ ERm

(
ψnm

)
≥ max

{
δ∞, ERm

(
ψ∞

)
− 1
m

}
≥ max

{
δ∞, E

(
ψ∞

)
− 2
m

}
.

On the other hand, we infer from Lemma 13 that

E
R̃c

m

(
ψnm

)
= E

R̃c
m

(
ψ̃nm

)
≥ E

(
ψ̃nm

)
− Cℓ

Rm
,

where Cℓ is the number in Lemma 13. Since Rm → +∞ as m → ∞, inequality (33) follows by
summation.
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We argue similarly for the momentum, which we decompose as

[P ]
(
ψnm

)
= [P

R̃m
]
(
ψnm

)
+ [P

R̃c
m

]
(
ψnm

)
.

Using (31) and (32), we obtain∣∣[P
R̃m

]
(
ψnm

)
− [P ]

(
ψ∞

)∣∣ ≤
∣∣[P

R̃m
]
(
ψnm

)
− [P

R̃m
]
(
ψ∞

)∣∣ +
∣∣[P

R̃c
m

]
(
ψ∞

)∣∣ ≤ 2
m
,

while, by Lemma 13, ∣∣[P
R̃c

m
]
(
ψnm

)
− [P ]

(
ψ̃nm

)∣∣ ≤
∣∣[P

R̃m
]
(
ψ̃nm

)∣∣ ≤ Cℓ

R
1
2
m

.

Inequality (34) follows as well by summation. This completes the proof of Proposition 14.

A Properties of the minimizing energy in one space dimension

In this first appendix, we recall properties of the minimizing energy I1d, which are useful for
the proofs of Lemmas 4 and 5.
Lemma 16. The minimizing energy I1d is a π-periodic and even function on R given by

I1d(q) = 1
3

(
2 − c2

q

) 3
2 ,

for any number q ∈ R. The speed cq in this formula is the unique number in (−
√

2,
√

2] such
that

[q] = Ξ(cq) := π

2 − arctan
(

cq√
2 − c2

q

)
− cq

2

√
2 − c2

q modulo π.

In particular, I1d is
√

2-Lipschitz on R, and concave on the interval [0, π].

Proof. Note first that the minimizing energy I1d is by definition a π-periodic function on R.
It is also even due to the property that [P ](ψ) = −[P ](ψ) for any function ψ ∈ X(R). When
0 ≤ q < π/2, the formula for I1d(q) was derived in [9, Proposition A.6] from [3]. It extends
to q = π/2 by [5, Lemma 6]. Since Ξ(−c) = π − Ξ(c) = −Ξ(c) modulo π, it also extends to
[−π/2, 0] by parity, and then to R by periodicity.
Observe next that

Ξ′(c) = −(2 − c2)
1
2 ,

for −
√

2 < c <
√

2. As a consequence, the function Ξ is a smooth diffeomorphism from
(−

√
2,

√
2) to (0, π), that extends into a continuous function from [−

√
2,

√
2] to [0, π]. In par-

ticular, the map q → cq is well-defined and continuous on [0, π], and smooth from (0, π) to
(−

√
2,

√
2), with

dcq

dq
= − 1

(2 − c2
q)

1
2
. (68)

Therefore, the function I1d is also continuous on [0, π] and smooth on (0, π). Moreover, we check
that

I ′
1d(q) = cq. (69)

Since |cq| <
√

2 for any 0 < q < π, the function I1d is
√

2-Lipschitz on the interval (0, π). By
continuity, this property extends to [0, π], and again by periodicity, to R.
Going back to (68), we next notice that the map q → cq is decreasing on (0, π). In view of (69),
so is the derivative I ′

1d. This guarantees the concavity of the function I1d on the interval [0, π],
and completes the proof of Lemma 16.
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B Useful characterizations of concavity and strict sub-additivity

In this second appendix, we first give the

Proof of Lemma 3. We assume for the sake of a contradiction that the function f is not concave
on [a, b]. We are then able to find three numbers a ≤ α < β ≤ b and 0 < µ < 1 such that

f(xµ) < µf(α) + (1 − µ)f(β),

with xµ = µα + (1 − µ)β. We consider the straight line ∆ going through the points (α, f(α))
and (β, f(β)), whose equation is explicitly given by y = τx+ σ, with τ = (f(β) − f(α))/(β−α)
and σ = (βf(α) − αf(β))/(β − α). We can rewrite the previous inequality as the fact that the
straight line ∆µ, which is parallel to ∆ and goes through the point (xµ, f(xµ)), is strictly below
the line ∆. Indeed, we check that

f(xµ) − τxµ = f(xµ) − β
f(β) − f(α)

β − α
+ µ

(
f(β) − f(α)

)
< f(β) − β

f(β) − f(α)
β − α

= σ. (70)

As a consequence, we can introduce the straight line ∆∗, which contains at least one point
(x, f(x)) for a number α ≤ x ≤ β, and which is, among all the parallel lines to ∆, the most
below this line. The line ∆∗ is given by the equation y = τx+ σ∗, in which

σ∗ = min
{
f(x) − τx, x ∈ [α, β]

}
.

This number is well-defined by continuity of the function f and it is strictly less than σ by (70).
We finally introduce the number

x∗ = min
{
x ∈ [α, β] s.t. f(x) = τx+ σ∗

}
.

Again by continuity of the function f , as well as by definition of the number σ∗, the number x∗
is well-defined. Moreover, it lies in the interval (α, β) due to the fact that σ∗ < σ. Therefore,
we can deduce from (12) the existence of a number δ∗ such that

1
2

(
f(x∗ + δ∗) + f(x∗ − δ∗)

)
≤ f(x∗),

where we can assume that α ≤ x∗ − δ∗ < x∗ + δ∗ ≤ β. In this case, it follows from the definition
of the number x∗ that

f(x∗) = τx∗ + σ∗, and f(x∗ − δ∗) > τ(x∗ − δ∗) + σ∗,

so that
f(x∗ + δ∗) < τ(x+ δ∗) + σ∗.

Since α ≤ x∗ + δ∗ ≤ β, this is a contradiction with the definition of the number σ∗. Hence the
concavity of the function f on [a, b] is proved.

We next provide the

Proof of Lemma 7. Using the concavity of the function f on [0, R], and the fact that f(0) = 0,
we already know that this function is sub-additive on [0, R]. Recall indeed that

x f(y) ≥ y f(x) + (x− y) f(0) = y f(x), (71)
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for any numbers 0 ≤ y ≤ x ≤ R, so that

f(x1) + f(x2) ≥ f(x1 + x2), (72)

for any numbers 0 ≤ x1, x2 ≤ R, with 0 ≤ x1 + x2 ≤ R.
We now assume that the function f is not strictly sub-additive on [0, R]. In this situation, there
exist numbers 0 < x1, x2 ≤ R, with x∗ := x1 + x2 ∈ (0, R], such that the previous inequality is
an equality. We claim that

f(y) = y

x∗
f(x∗), (73)

for any 0 ≤ y ≤ x∗. This identity already holds for y = 0 and y = x∗. Moreover, it follows
from (71) that the case of equality into (72) can only hold if and only if

f(x1) = x1
x∗
f(x∗)

(
and f(x2) = x2

x∗
f(x∗)

)
.

When x1 < y < x∗, we again deduce from the concavity of the function f that

y

x∗
f(x∗) = y

x1
f(x1) ≥ f(y) + y − x1

x1
f(0) = f(y),

and (73) follows from the already proved reverse inequality (71). Similarly, when 0 < y < x1,
we have

x1
x∗
f(x∗) = f(x1) ≥ x∗ − x1

x∗ − y
f(y) + x1 − y

x∗ − y
f(x∗),

which amounts to the inequality
y

x∗
f(x∗) ≥ f(y).

We are again led to (73) by the reverse inequality (71). This completes the proof of (73).
It is then enough to set µ = f(x∗)/x∗ to obtain (20). Since the function f is non-negative, the
number µ is also non-negative. This concludes the proof of the alternative in Lemma 7.
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