The Horton-Strahler number of Galton-Watson trees with possibly infinite variance - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2023

The Horton-Strahler number of Galton-Watson trees with possibly infinite variance

Résumé

The Horton-Strahler number, also known as the register function, provides a tool for quantifying the branching complexity of a rooted tree. We consider the Horton-Strahler number of critical Galton-Watson trees conditioned to have size $n$ and whose offspring distribution is in the domain of attraction of an $\alpha$-stable law with $\alpha\in [1, 2]$. We give tail estimates and when $\alpha\neq 1$, we prove that it grows as $\frac{1}{\alpha}\log_{\alpha/(\alpha-1)} n$ in probability. This extends the result in Brandenberger, Devroye & Reddad [6] dealing with the finite variance case for which $\alpha=2$. We also characterize the cases where $\alpha=1$, namely the spectrally positive Cauchy regime, which exhibits more complex behaviors.
Fichier principal
Vignette du fichier
tech_ht_gw_15juin.pdf (411.27 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-04157407 , version 1 (10-07-2023)

Identifiants

Citer

Robin Khanfir. The Horton-Strahler number of Galton-Watson trees with possibly infinite variance. 2023. ⟨hal-04157407⟩
36 Consultations
36 Téléchargements

Altmetric

Partager

More