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THE HORTON-STRAHLER NUMBER OF GALTON-WATSON

TREES WITH POSSIBLY INFINITE VARIANCE

Robin KHANFIR*

July 10, 2023

Abstract

The Horton-Strahler number, also known as the register function, provides a tool for quan-

tifying the branching complexity of a rooted tree. We consider the Horton-Strahler number of

critical Galton-Watson trees conditioned to have size n and whose offspring distribution is in

the domain of attraction of an α-stable law with α ∈ [1, 2]. We give tail estimates and when

α 6=1, we prove that it grows as 1
α logα/(α−1) n in probability. This extends the result in Bran-

denberger, Devroye & Reddad [6] dealing with the finite variance case for which α= 2. We

also characterize the cases where α=1, namely the spectrally positive Cauchy regime, which

exhibits more complex behaviors.

Keywords Horton-Strahler number · Register function · Galton-Watson trees · tail estimates ·
stable laws

Mathematics Subject Classification 60C05 · 60J80 · 60F05 · 05C05 · 60E07

1 Introduction

The Horton-Strahler number of a finite rooted tree is an integer that quantifies its branching com-

plexity. One possible formal definition is given recursively as follows.

Definition 1.1 Let t be a finite rooted tree. Its Horton-Strahler number S(t) is defined as follows.

(a) If t reduces to a single node, then S(t) = 0.

(b) Otherwise, S(t) is the maximum of the Horton-Strahler numbers of the subtrees t1, ..., tk that

are attached to the root, plus one if that maximum is not uniquely achieved. Namely,

S(t) = max
1≤i≤k

S(ti) + 1{
#argmax1≤i≤k S(ti)≥2

}.

�

Alternatively, S(t) is also the height of the largest perfect binary tree that can be embedded into t
(see Section 3.1 for more details). In this article, we provide estimates on the Horton-Strahler num-

ber of critical Galton-Watson trees conditioned to be large. Before discussing our results precisely,

let us provide a brief history with general references on related topics.

Background. The Horton-Strahler number was introduced independently by the two hydrogeolo-

gists Horton [21] and Strahler [33] to obtain quantitative empirical laws about river systems, that
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are represented by trees whose leaves are springs and whose root corresponds to the outlet of the

basin. Many key physical characteristics of stream networks have been since modeled with the help

of this number: see e.g. Peckham [30], Fac-Beneda [15], Chavan & Srinivas [8] and Bamufleh et al.

[3]. The Horton-Strahler number appears independently in other scientific fields (anatomy, botany,

molecular biology, physics, social network analysis, etc). In computer science, it is used to opti-

mize the amount of memory or time needed to manipulate data structures. It is sometimes called

the register function in this context because the minimum number of registers needed to evaluate an

arithmetic expression A is equal to the Horton-Strahler number of the syntax tree of A. We refer to

Viennot [35] for a survey on those various applications.

The Horton-Strahler number is encountered in many areas of mathematics: see for instance

Esparza, Luttenberger & Schlund [14] for connections with mathematical logic, formal language

theory, algebra, combinatorics, topology, approximation theory, and more. In the probability area,

let us mention Kovchegov & Zaliapin [27], which considers the Horton-Strahler number through the

prism of pruning operations on trees. Here, we rather focus on probabilistic works that discuss the

Horton-Strahler number of uniform samples of standard families of combinatorial trees. Flajolet,

Raoult & Vuillemin [17] and Kemp [22] consider the Horton-Strahler number of a uniform random

ordered rooted binary tree Tn with n leaves (a uniform n-Catalan tree) and they prove that

E[S(Tn)] = log4 n+D(log4 n) + o(1)

as n → ∞, where logb x = lnx/ ln b stands for the logarithm of x to the base b, and D is a

1-periodic continuous function. Here, all the random variables that we consider are defined on

the same probability space (Ω,F ,P) whose expectation is denoted by E. In particular, S(Tn) is

subject to deterministic oscillations. Moreover, Devroye & Kruszewski [9] proved that S(Tn) is

highly concentrated around its expected value via exponential tail estimates. These results were

extended to k-ary trees by Drmota & Prodinger [10].

More recently, Brandenberger, Devroye & Reddad [6] showed that the Horton-Strahler number

of a critical Galton-Watson tree with finite variance offspring distribution conditioned to have n ver-

tices always grows as log4 n in probability, which extends all the results that have been previously

obtained on first-order behavior. In a companion paper [24], we go further and we study, among

other things, the fluctuations and deterministic oscillations of the Horton-Strahler number of large

Catalan trees.

Framework and main results. Let us give a precise overview of the present article which provides

tail estimates and characterizes the first-order behavior of the Horton-Strahler number of critical

Galton-Watson trees conditioned to have size n and whose offspring distribution is in the domain

of attraction of an α-stable law with α ∈ [1, 2]. This framework extends the finite variance case,

where α = 2, and it includes the so-called spectrally positive Cauchy (or 1-stable) laws. To that

end, let us introduce our basic notations and assumptions.

Throughout this work, µ = (µ(k))k∈N stands for a probability measure on the set N of nonneg-

ative integers. We shall always assume µ to be non-trivial and critical, namely

(1) µ(0) > 0 and
∑

k∈N

kµ(k) = 1.

We view it as the critical offspring distribution of a (rooted and ordered) Galton-Watson tree denoted

by τ , which is then almost surely finite. See Section 2.1 for a formal definition. Several results are

expressed in terms of the following functions

(2) ∀s ∈ [0, 1], ϕ(s) =
∑

k∈N

skµ(k) and ψ(s) = ϕ(1 − s)− (1− s),

that are strictly convex thanks to (1).

Our first contribution consists in four propositions that connect S(τ) to other simple character-

istics of τ and that hold under the sole assumption that µ is non-trivial and critical. More precisely,
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− Proposition 3.5 provides an upper bound for the size #τ of τ when S(τ) is small,

− Proposition 3.6 provides a lower bound for the height |τ | of τ when S(τ) is large,

− Proposition 3.7 provides a lower bound for S(τ) when the height |τ | of τ is large ,

− Proposition 3.9 provides a lower bound for S(τ) when the maximal out-degree of τ is large.

We will use these propositions to derive the order of magnitude of S(τ) under P( · |#τ = n). These

estimates are fairly general and they are sufficiently accurate to be interesting in their own right.

Our second goal is to estimate the tail of the Horton-Strahler number of Galton-Watson trees

whose offspring distribution has possibly infinite variance. We work under the assumption that

(3) µ belongs to the domain of attraction of a stable law.

We denote the scaling index of (the type of) the limiting law by α: since µ has a finite mean, we

get α ∈ [1, 2] and since µ is supported on [0,∞), we only deal with spectrally positive stable laws:

namely, their skewness parameter β is equal to 1 and the support of their Lévy measure is included

in (0,∞). By standard results, see e.g. [5, Theorem 8.3.1], Assumption (3) is equivalent to the

existence of a function L : [0,∞) 7→ (0,∞) that is slowly varying and such that

(4) µ ([n,∞)) ∼ n−αL(n) if α ∈ [1, 2) and

n∑

k=0

k2µ(k)− 1 ∼ 2L(n) if α = 2.

Note that
∑n

k=0 k
2µ(k) − 1 is nondecreasing and ultimately positive since µ satisfies (1) (we refer

to Proposition 2.9 for more details). We first discuss our results in the cases where α ∈ (1, 2], and

then we consider the cases where α = 1 that feature more complicated behaviors.

The cases where α ∈ (1, 2]. In these cases, our results are simply expressed in terms of the index α
only. First of all, we prove in Proposition 3.12 that if µ is in the domain of attraction of an α-stable

law with α ∈ (1, 2], then the tail of S(τ) follows the universal exponential decay

− log α
α−1

P(S(τ) ≥ n) ∼ n,

where logb x = lnx/ ln b stands for the logarithm of x to the base base b. This extends the work of

Brandenberger, Devroye & Reddad [6] who proved the α = 2 case under the assumption that µ has

a finite variance.

We next discuss the behaviour of S(τ) under P( · |#τ = n) and to that end, we assume that

(5) µ is aperiodic

(namely that µ is not supported by a proper additive subgroup of Z) because this implies that

P(#τ = n) > 0 for all n that are large enough. Then, we prove the following.

Theorem 1.2 Assume that µ is critical and aperiodic and that it belongs to the domain of attraction

of a stable law of index α ∈ (1, 2]. Then, the following convergence holds in probability.

(6)
αS(τ)

log α
α−1

n
under P( · |#τ = n) −→ 1.

This extends the work of Brandenberger, Devroye & Reddad [6] who proved the α = 2 case under

the assumption that µ has a finite variance.

Our proof of Theorem 1.2 relies on results in Duquesne [11] on the height of α-stable trees

and in Kortchemski [25] on the asymptotic behavior of the positive excursion of the random walk

(Wn)n∈N. These results are recalled precisely in Section 2.2, Proposition 2.11. Let us mention that

(6) holds true when µ is not aperiodic by restricting to the integers such that P(#τ = n) > 0.

3



The 1-stable cases. In these more complex cases, we need to specify a converging sequence of

rescaled centered sums of µ-distributed independent random variables. More precisely, we denote

by (Wn)n∈N a (left-continuous) random walk starting at W0 = 0, whose jump law is given by

(7) P(W1 = k) = µ(k + 1), k ∈ {−1} ∪ N.

Note that E[W1] = 0. Then µ belongs to the domain of attraction of a 1-stable law if and only if

there exists a (0,∞)-valued sequence (an)n∈N tending to∞ such that

(8)
Wn + bn
an

(law)
−−−→
n→∞

X, where bn=nE[W11{|W1|>an}] and E[e−λX ]=eλ lnλ

for all n ∈ N and λ ∈ (0,∞). Let us mention here that an ∼ nL(an) and that bn/an → ∞,

necessarily. The law of X is a spectrally positive Cauchy (or 1-stable) law. Its Fourier transform is

given by E[exp(iuX)] = exp(−π
2 |u| − iu ln |u|), u ∈ R. We refer to Proposition 2.12 for details.

The asymptotic behavior of S(τ) in the 1-stable case is expressed in terms of the sequence

(bn)n∈N and the following function Υ that is derived from ψ in (2) as follows.

(9) ∀s ∈ (0, 1), Υ(s) =

∫ 1

s

dr

r ln Λ(r)
, where Λ(s) =

sψ′(s)

sψ′(s)− ψ(s)
.

We refer to Section 3.3 for more details on the definition of Υ. Proposition 3.12 asserts that if µ is

in the domain of attraction of a 1-stable law, then the tail of S(τ) satisfies

(10) Υ
(
P (S(τ) ≥ n)

)
∼ n.

In contrast to the cases where α ∈ (1, 2] for which we can show that Υ(s) ∼0+ log α
α−1

1/s, the

asymptotic behavior of Υ when α = 1 depends on the slowly varying function L appearing in (4):

see Proposition 3.11 for a precise statement. As discussed in Examples 3.13, the following holds.

(a) If L(n)∼(lnn)−1−κ with κ∈(0,∞), then Υ(s)∼0+
ln 1/s

ln ln 1/s and −lnP(S(τ)≥n)∼n lnn.

(b) If L(n)∼ exp(−(ln n)κ) with κ∈ (0, 1), then Υ(s)∼0+
1

1−κ
ln 1/s

ln ln 1/s and −lnP(S(τ)≥n)∼

(1−κ)n ln n.

(c) If L(n)∼exp(− lnn/ ln lnn) then Υ(s)∼0+
ln 1/s

ln ln ln 1/s and − lnP(S(τ)≥n)∼n ln lnn.

When the Galton-Watson tree τ is conditioned to be large, the size of its Horton-Strahler num-

ber is of order Υ( 1
bn
) as proved by the following theorem that first handles the case where τ is

conditioned to have at least n vertices.

Theorem 1.3 Assume that µ is critical and that it belongs to the domain of attraction of a 1-stable

law. Then, the following convergence holds in probability.

(11)
S(τ)

Υ( 1
bn
)

under P( · |#τ ≥ n) −→ 1,

where Υ is given by (9) and (bn)n∈N by (8).

Our proof of Theorem 1.3 and of Theorem 1.4 below, rely on several results of Kortchemski &

Richier [26] and of Berger [4] that specify the asymptotic behavior of positive excursion of the

random walk (Wn)n∈N. They are recalled precisely in Section 2.2, Lemma 2.13 and Propositions

2.15 and 2.16.

As discussed by Kortchemski & Richier [26] and Berger [4], it is not clear how one could

control τ under P( · |#τ = n) by assuming only that µ ([n,∞)) ∼ L(n)/n as in (4). Here, we

work under the stronger assumption that µ(n) ∼ L(n)/n2, which implies the previous one and also

implies that µ is aperiodic.
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Theorem 1.4 Assume that µ is critical and that there is a slowly varying function L such that

(12) µ(n) ∼
L(n)

n2
.

Then, the following convergence holds in probability.

(13)
S(τ)

Υ( 1
bn
)

under P( · |#τ = n) −→ 1,

where Υ is given by (9) and (bn)n∈N by (8).

As already mentioned, when α = 1, the rescaling sequence Υ( 1
bn
) depends on the slowly varying

function L appearing in (4): as discussed in Examples 4.2, the following holds true.

(a) If L(n)∼(lnn)−1−κ with κ∈(0,∞), then Υ( 1
bn
)∼ lnn

ln lnn .

(b) If L(n)∼exp(−(lnn)κ) with κ∈(0, 1), then Υ( 1
bn
)∼ 1

1−κ
lnn

ln lnn .

(c) If L(n) ∼ exp(− lnn/ ln lnn), then Υ( 1
bn
)∼ lnn

ln ln lnn .

Organisation of paper. In Section 2, we properly set our framework and we recall from previous

works the tools that we use later on in the paper: Section 2.1 is devoted to Galton-Watson trees

and Section 2.2 to known limit theorems for random walks and Galton-Watson trees. In Section

3, we study the distribution of the Horton-Strahler number of Galton-Watson trees. In Section 3.1,

we first establish new technical results on Horton-Strahler numbers (especially in Lemmas 3.1 and

3.2). Section 3.2 focuses on proving Propositions 3.5, 3.6, 3.7, and 3.9 that link the Horton-Strahler

number to size, height, and maximal out-degree of Galton-Watson trees. Section 3.3 is devoted to

the tail asymptotics of Galton-Watson trees whose offspring distribution belongs to the domain of

attraction of a stable law: in particular, we prove Proposition 3.12, that is one of the main results

of the paper and we discuss Examples 3.13 (a), (b), and (c). Section 4 is devoted to the proof of

Theorems 1.2, 1.3 and 1.4 and we discuss Examples 4.2 (a), (b), and (c), in the end of Section 4.3.

2 Framework and tools

In this section, we recall a set of well-known results that are used in the rest of the article and in the

proofs of Theorems 1.2, 1.3 and 1.4. With the exception of Lemma 2.13, this section contains no

new result.

2.1 Galton-Watson trees

Rooted ordered trees. We recall Ulam’s formalism on rooted ordered trees. Let N∗ = {1, 2, 3, ...}
be the set of positive integers and let U be the following set of finite words

U =
⋃

n∈N

(N∗)n

with the convention (N∗)0 = {∅}. The set of words U is totally ordered by the lexicographic

order denoted by ≤. Let u = (u1, ..., un) ∈ U and v = (v1, ..., vm) ∈ U, we write u ∗ v =
(u1, ..., un, v1, ..., vm) ∈ U for the concatenation of u and v. We denote by |u| = n the height

of u, and if n ≥ 1 then we denote by ←−u = (u1, ..., un−1) the parent of u. We also say that

u is a child of v when ←−u = v. The genealogical order � is a partial order on U defined by

u � v ⇐⇒ ∃u′ ∈ U, v = u ∗ u′. When u � v, we will say that u is an ancestor of v. When u � v
but u 6= v, we write u ≺ v. Finally, we write u ∧ v ∈ U for the most recent common ancestor of u
and v, that is their common ancestor with maximal height.
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Definition 2.1 We say that a subset t of U is a tree when the following is satisfied:

(a) ∅ ∈ t,

(b) for all u ∈ t, if u 6= ∅ then←−u ∈ t,

(c) For all u ∈ t, there exists an integer ku(t) ∈ N such that u∗(i)∈ t⇐⇒ 1≤ i≤ku(t).

We denote by T the space of all trees. �

Let t ∈ T. The size of t is simply the (possibly infinite) number #t of its vertices and we say that

t is finite if #t < ∞. As a graph, the edges of t are given by the unordered pairs {u,←−u } for all

u ∈ t\{∅}. Therefore the degree of u ∈ t is ku(t) + 1 if u 6= ∅ and k∅(t) otherwise. Namely,

ku(t) is the out-degree of u (alternatively, if one views t as a family tree whose ancestor is ∅, then

ku(t) stands for the number of children of u). We use the following notations for the height of t and

its maximal out-degree.

(14) |t| = max
u∈t
|u| and ∆(t) = max

u∈t
ku(t).

We also denote the subtree stemming from u ∈ t and the tree pruned at u respectively by

(15) θut = {v ∈ U : u ∗ v ∈ t} and Cutu t = t\{v ∈ t : u ≺ v}

Observe that θut and Cutu t both belong to T.

Galton-Watson trees and the Many-To-One Principle. Let us equip the set of trees T with the

sigma-field F (T) generated by the sets {t ∈ T : u ∈ t}, where u ranges in U. Formally, a random

tree is a function τ : Ω→ T that is (F ,F (T))-measurable.

Definition 2.2 Let µ = (µ(k))k∈N be a probability measure on N. A Galton-Watson tree with

offspring distribution µ (a GW(µ)-tree, for short) is a random tree τ that satisfies the following.

(a) k∅(τ) has law µ.

(b) For all k ∈N
∗ such that µ(k)> 0, the subtrees θ(1)τ, . . . , θ(k)τ under P( · | k∅(τ) = k) are

independent with the same law as τ under P. �

It is well-known that a GW(µ)-tree τ is almost surely finite if and only if its offspring distribution

is subcritical or critical and non-trivial, namely if (1) holds, and in that case for all finite tree t ∈ T,

(16) P(τ = t) =
∏

u∈t

µ
(
ku(t)

)
.

As observed by Kesten [23], a critical GW(µ)-tree conditioned to be large locally converges in

law to a tree τ∞ with a single infinite line of descent and whose law can be informally described as

follows: all individuals of τ∞ reproduce independently, the individuals of the infinite line of descent

reproduce according to the µ-size-biased distribution (kµ(k))k∈N whereas the others reproduce

according to µ. More precisely, we introduce the following.

Definition 2.3 Let µ be a non-trivial critical offspring distribution. A size-biased GW(µ)-tree is a

random tree τ∞ that satisfies the following.

(a) For all n ∈ N, there is a unique u ∈ τ∞ such that |u| = n and #(θuτ∞) = ∞. We denote

this vertex by Un. Note that U0 = ∅ and that
←−
Un+1 = Un. Hence, there exists a N

∗-valued

sequence of random variables (Jn)n∈N∗ such that Un is the word (J1, . . . , Jn) for all n ∈ N
∗.

(b) The random variables (kUn(τ∞), Jn+1), for n∈N, are independent and distributed as follows:

(17) ∀j, k ∈ N
∗, P(Jn+1 = j ; kUn(τ∞) = k) = 1{j≤k}µ(k).
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(c) Conditionally given (kUn(τ∞), Jn+1)n∈N, the finite subtrees stemming from the infinite line

of descent, which are the θUn∗(j)τ∞ for j ∈ {1, . . . , kUn(τ∞)}\{Jn+1} and n∈N, are inde-

pendent GW(µ)-trees. �

Remark 2.4 Note that the individual Un+1 on the infinite line of descent has Jn+1 − 1 siblings

strictly on the left hand side and kUn(τ∞)−Jn+1 siblings strictly on the right hand side. Their joint

law is given by the following bivariate generating function:

(18) ∀s, r ∈ [0, 1], E
[
rJn+1−1skUn(τ∞)−Jn+1

]
=
ϕ(r)− ϕ(s)

r − s
,

where ϕ is given by (2) and where the quotient is equal to ϕ′(r) when r = s. �

As mentioned above, size-biased trees are the local limits of critical Galton-Watson trees condi-

tioned to be large and therefore appear in many results concerning the asymptotic behavior of

branching processes: we refer to Lyons, Pemantle & Peres [29], Aldous & Pitman [2] and Abraham

& Delmas [1] for general results in this vein. One key tool involving size-biased GW(µ)-trees is the

so-called Many-To-One Principle, which is part of folklore (see e.g. Duquesne [12, Equation (24)]

for a proof) and which we use in our article in the following form.

Proposition 2.5 (Many-To-One Principle) Let τ be a GW(µ)-tree and let τ∞ be a size-biased

GW(µ)-tree. We keep the notations of Definition 2.3. Then, for all n ∈ N and for all bounded

functions G1 : T× U −→ R and G2 : T −→ R, it holds that

E

[
∑

u∈τ

1{|u|=n}G1(Cutu τ, u) G2(θuτ)

]
= E

[
G1(CutUn τ∞, Un)

]
E
[
G2(τ)

]
.

Lukasiewicz path associated with a tree. We recall here a key combinatorial tool to study Galton-

Watson trees via random walks.

Definition 2.6 Let t ∈ T be finite and let u(t) = (uj(t))0≤j<#t be the sequence of its vertices listed

in increasing lexicographic order: u0(t) = ∅ < u1(t) < . . . < uj(t) < uj+1(t) < . . . < u#t−1(t).
The sequence u(t) is often called the depth-first exploration of t. We then define a Z-valued path

W (t) = (Wj(t))0≤j≤#t by setting W0(t) = 0 and

(19) Wj+1(t) =Wj(t) + kuj(t)(t)− 1

for all 0 ≤ j < #t, that is the Lukasiewicz path of t. �

In probability, Lukasiewicz paths originate from queuing systems theory to study the waiting line

of a single server subject to the Last-In-First-Out policy and they have been used by Le Gall &

Le Jan [18] to define Lévy trees. In the following lemma, we recall that Lukasiewicz paths are

adapted processes that completely encode finite trees and that are particularly well-suited to study

Galton-Watson trees (see e.g. Le Gall [19, Proposition 1.1] and [19, Corollary 1.6] for more details).

Proposition 2.7 Let t ∈ T be finite. Let τ be a GW(µ)-tree where µ is non-trivial and critical.

Then the following holds true.

(i) Lukasiewicz paths provide a one-to-one correspondence between the set of finite trees and the

set of finite nonnegative excursions of left-continuous walks, which is defined by

⋃

n∈N∗

{
(wj)0≤j≤n ∈ Z

n : w0=0, wn=−1, wj ≥ 0 andwj+1−wj≥−1 for all 0≤j<n
}
.
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(ii) For all m ∈ N, we denote by Rmt the tree t restricted to its m+ 1 first vertices (with respect

to the lexicographic order). Namely,

(20) Rmt = {uj(t) : 0 ≤ j ≤ min(m,#t− 1)}

where (uj(t)) stands for the vertices of t listed in lexicographic order. Then, Rmt is a mea-

surable function of
(
Wj(t) ; 0 ≤ j ≤ min(m,#t)

)
.

(iii) Let (Wn)n≥0 be a Z-valued random walk whose jump distribution is given by (7). We set

H1 = inf{j ∈ N : Wj = −1}, which is an a.s. finite stopping time since E[W1] = 0. Then,

(
Wj(τ)

)
0≤j≤#τ

(law)
=

(
Wj

)
0≤j≤H1

.

In particular, #τ and H1 have the same law.

(iv) More generally, for all p ∈ N, we set

(21) H0 = 0 and Hp = inf{j ∈ N : Wj = −p} .

Then there is an i.i.d. sequence (τp)p∈N of GW(µ)-trees such that

(22) ∀p ∈ N,
(
p+WHp+j

)
0≤j≤Hp+1−Hp

=
(
Wj(τp)

)
0≤j≤#τp

.

2.2 Limit theorems.

In this section we recall − mostly from Bingham, Goldies & Teugels [5] and Feller [16] − limit

theorems for sums of i.i.d. random variables belonging to the domain of attraction of stable laws.

We also recall useful limit theorems for Galton-Watson trees and random walks from Berger [4],

Duquesne [11], Kortchemski [25], and Kortchemski & Richier [26].

Regularly and slowly varying functions. Recall that a measurable and locally bounded function

l : (0,∞) → (0,∞) is slowly varying at infinity (resp. at 0+) if l(cx) ∼ l(x) as x → ∞ (resp. as

x → 0+) for all c ∈ (0,∞). Also recall that f : (0,∞) → (0,∞) is regularly varying of index

α ∈ R at ∞ (resp. at 0+) if there exists a slowly varying function l at ∞ (resp. at 0+) such that

f(x) = xαl(x). Below we gather in a single proposition several well-known results on slowly and

regularly varying functions that are used in this article.

Proposition 2.8 Let l be a slowly varying function at∞. Then the following holds true.

(i) (Potter’s bound) For all ε ∈ (0,∞) and all c ∈ (1,∞), there exists x0 ∈ (0,∞) such that for

all x ∈ [x0,∞) and all λ ∈ [1,∞), it holds

1

c
λ−ε ≤

l(xλ)

l(x)
≤ cλε.

Therefore, ln l(x) = o(lnx) and if f is regularly varying with index ρ ∈ R\{0}, then

ln f(x) ∼ ρ lnx. Moreover, if xn ∼ yn →∞ then l(xn) ∼ l(yn) and f(xn) ∼ f(yn).

(ii) (Karamata’s Abelian Theorem for Tails) Let ρ∈(0,∞). Then
∫∞

y−1−ρl(y) dy<∞ and, as

x→∞,

∫ ∞

x
y−1−ρl(y) dy ∼ 1

ρx
−ρl(x) and

∫ x

1
yρ−1l(y) dy ∼ 1

ρx
ρl(x).

(iii) Suppose that
∫∞

y−1l(y) dy <∞ and set l(x)=
∫∞
x y−1l(y) dy. Then l is slowly varying at

∞ and limx→∞ l(x)/l(x)=∞.
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(iv) (Monotone Density Theorem) Let u : [0,∞) → R be a locally Lebesgue integrable function

and set U(x) =
∫ x
0 u(y) dy for all x ∈ R. Assume that there are c, ρ ∈ (0,∞) such that

U(x) ∼ cxρl(x) as x → ∞ and furthermore assume that u is ultimately monotone. Then

u(x) ∼ cρxρ−1l(x) as x→∞.

(v) (Karamata’s Abelian Theorem for Laplace Transform) Let U : [0,∞) → [0,∞) be a mea-

surable function such that Û(λ) := λ
∫∞
0 e−λxU(x) dx<∞ for all λ ∈ (0,∞). Assume that

there are c ∈ (0,∞) and ρ ∈ (−1,∞) such that U(x) ∼ c
Γ(1+ρ)x

ρl(x) as x → ∞, then

Û(λ) ∼ cλ−ρ l(1/λ) as λ→ 0+.

Proof. For (i), see e.g. [5, Theorem 1.5.6]. For (ii), see e.g. [5, Theorem 1.5.8 and Proposition

1.5.10]. For (iii), see e.g. [5, Theorem 1.5.9b]. For (iv), see e.g. [5, Theorem 1.7.2]. For (v), see

e.g. [5, Theorem 1.7.6]. �

Limit theorems: the cases where α ∈ (1, 2]. We next recall equivalent formulations of the

property for a probability measure µ on N to belong to the domain of attraction of a stable law of

index α ∈ (1, 2] (we handle 1-stable laws separately).

Proposition 2.9 Let µ be a probability measure on N that satisfies (1). Recall from (2) the definition

of ψ. Let (Wn)n∈N be a random walk whose jumps distribution is specified in (7). Let α ∈ (1, 2].
Then, the following assertions are equivalent.

(a) µ belongs to the domain of attraction of an α-stable law.

(b) There exists L : (0,∞) → (0,∞) that varies slowly at ∞ such that if α ∈ (1, 2) then

µ([n,∞))∼ n−αL(n), and if α=2 then
∑

0≤k≤n k
2µ(k) − 1∼ 2L(n) which is ultimately

positive by (1).

(c) If α∈(1, 2) then ψ(s) ∼0+
α−1

Γ(2−α)s
αL(1/s), and if α=2 then ψ(s) ∼0+ s2L(1/s).

(d) There exists a (0,∞)-valued sequence (an)n∈N tending to∞ such that 1
an
Wn converges in

law to the spectrally positive α-stable random variable Xα whose Laplace exponent is given

for all λ ∈ [0,∞) by lnE[exp(−λXα)]=
α−1

Γ(2−α)λ
α if α∈(1, 2) and by λ2 if α=2.

Moreover, if one of the four equivalent assumptions from above holds true, then aαn ∼ nL(an) and

an ∼ n1/αL∗(n) where the function L∗ : x ∈ (0,∞) 7→ x−1/α inf{y ∈ (0,∞) : yα/L(y) > x} is

slowly varying at∞.

Proof. For (a) ⇔ (b), see e.g. [5, Theorem 8.3.1]. The equivalence (a) ⇔ (d) follows from

the definition of the domain of attraction of a stable law: the limiting law is necessarily spectrally

positive since µ is supported by N and among the spectrally positive α-stable types, it is always

possible to choose a centered one as α ∈ (1, 2] (see e.g [5, Section 8.3] and [16, Chapter XVII.5]).

For (b) ⇔ (c) see e.g. [5, Theorem 8.1.6]. More precisely, recall from (2) the definitions of ϕ
and ψ. Then, for all λ∈(0,∞), set

(23) f1(λ) := ϕ(e−λ)− 1 + λ = ψ(1 − e−λ) + 1
2λ

2 +O(λ3).

If α∈ (1, 2) then [5, Theorem 8.1.6] asserts that (b) is equivalent to f1(λ) ∼0+
α−1

Γ(2−α)λ
αL(1/λ),

which implies that (b) ⇔ (c) in these cases (with Proposition 2.8 (i)). If α=2 then [5, Theorem

8.1.6] asserts that (b) is equivalent to f1(λ) ∼0+ λ
2(12 + L(1/λ)) and (23) implies that (b)⇔ (c).

Let us prove the last point of the proposition. We assume that (a-d) hold true. By Grim-

vall [20, Theorem 2.1], limn→∞ E[exp(− λ
an
Wn)] = E[e−λXα ] for all λ ∈ (0,∞). Observe that

E[exp(−λWn)] = (eλ(f1(λ) + 1−λ))n. If α ∈ (1, 2), we easily get nf1(λ/an) ∼
α−1

Γ(2−α)λ
α as

n→∞ for all λ∈(0,∞) and thus aαn ∼ nL(an). If α = 2, we get

nλ
an

+ n ln
[
1− λ

an

(
1− λ

an

(
1
2+L(an)

)
(1 + o(1))

)]
∼ nL(an)

a2n
λ2,
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which implies that a2n ∼ nL(an). In both cases, we observe that aαn/L(an) ∼ n and we use [5,

Theorem 1.5.12] to complete the proof of the proposition. �

We next recall standard results on the size of Galton-Watson trees, which are expressed in terms

of random walks thanks to Proposition 2.7.

Proposition 2.10 Let µ be a probability measure on N that satisfies (1). Let (Wn)n∈N be a random

walk whose jumps distribution is specified by (7). Recall from (21) the definition of the stopping

times (Hp)p∈N. Let τ be a GW(µ)-tree. Then the following holds true.

(i) (Hp)p∈N is a random walk with positive jumps.

(ii) (Kemperman) P(Hp = n) = p
nP(Wn=−p) for all n, p ∈ N

∗.

(iii) Suppose that µ satisfies Proposition 2.9 (a-d) and is aperiodic. Then, P(#τ =n)∼ cα
nan

and

P(#τ ≥n)∼ αcα
an

where cα is the value at 0 of the (continuous version) of the density of Xα,

and where (an) and Xα are as in Proposition 2.9 (d).

(iv) Suppose that µ satisfies Proposition 2.9 (a-d). Recall that |τ | stands for the height of τ . Then,

P(|τ | ≥ n)

ψ (P(|τ | ≥ n))
∼ (α− 1)n.

Proof. Note that (i) is an immediate consequence of the Markov property and the left-continuity

of W . For (ii), see e.g. [5, Theorem 8.9.15]. Let us prove (iii). By (ii) and by Proposition 2.7

(iii), we see that P(#τ = n) = 1
nP(Wn=−1). We next use Gnedenko’s local limit Theorem (see

e.g. [5, Theorem 8.4.1]) to get limn→∞ |anP(Wn=−1)−cα|=0 and thus P(#τ=n)∼ cα
nan

. Since

(an) varies regularly with index 1/α by Proposition 2.9, we get P(#τ ≥n) ∼ αcα
an

by Karamata’s

Abelian Theorem for Tails (see Proposition 2.8 (ii)). For (iv), see Slack [32, Lemma 2]. �

We next recall two limit theorems that are used to prove Theorem 1.2. One follows from the

convergence of rescaled GW(µ)-trees to stable trees due to Duquesne [11]. The other is the uniform

integrability of the density of the law of (roughly speaking) the Lukasiewicz path of a GW(µ)-tree

τ under P( · |#τ=n) with respect to P( · |#τ≥n) that has been proved in Kortchemski [25].

Proposition 2.11 Assume that µ satisfies (1), that it is aperiodic, and that it belongs to the domain

of attraction of a stable law of index α ∈ (1, 2]. More precisely, we assume that Proposition 2.9 (d)
holds true. Let τ be a GW(µ)-tree. Recall from (14) that |τ | stands for the maximal height of τ , and

that W (τ) stands for its Lukasiewicz path as in Definition 2.6. Then, the following holds true.

(i) There exists a random variable M ∈ (0,∞) such that ann |τ | under P( · |#τ = n) converges

in law to M as n→∞.

(ii) Let r∈(0, 1). Then for all large enough n∈N, there is a function D
(r)
n :N→ [0,∞) such that

(24) E
[
f
(
Wmin(⌊nr⌋,·)(τ)

) ∣∣#τ = n
]
=E

[
f
(
Wmin(⌊nr⌋,·)(τ)

)
D(r)
n

(
W⌊rn⌋(τ)

) ∣∣#τ ≥ n
]

for all bounded function f :NN → [0,∞). Moreover, these functions satisfy

(25) lim
c→∞

lim sup
n→∞

E
[
1
{D

(r)
n (W⌊rn⌋(τ))≥c}

D(r)
n

(
W⌊rn⌋(τ)

) ∣∣#τ ≥ n
]
= 0.

Proof. The point (i) is a consequence of the convergence of rescaled Galton Watson trees to the α-

stable tree: see Duquesne [11, Theorem 3.1]. Here, M is the height of the normalized α-stable tree

that is a (0,∞)-valued random variable. See Kortchemski [25, Equation (1) and Lemma 2] for (24).

For (25), [25, Equation (12)] shows that D
(r)
n (an · ) uniformly converges on all compact intervals

of (0,∞) towards a continous function. Moreover, the laws of a−1
n W⌊rn⌋(τ) under P( · |#τ = n)

are tight in (0,∞) (see [25, Equation (17)]), which completes the proof of (25) by (24). �

Limit theorems: the 1-stable case. We now consider the spectrally positive 1-stable law, which

features more complicated behaviors.
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Proposition 2.12 Let µ be a probability measure on N that satisfies (1). Recall from (2) the defini-

tion of ψ. Let (Wn)n∈N be a random walk whose jumps distribution is given by (7).

(i) The following assertions are equivalent.

(a) µ belongs to the domain of attraction of a 1-stable law.

(b) There exists L : (0,∞)→(0,∞) that varies slowly at∞ such that
∫∞

y−1L(y) dy<∞
and such that µ([n,∞)) ∼ n−1L(n).

(c) There exists a (0,∞)-valued sequence (an)n∈N tending to ∞ such that 1
an
(Wn + bn)

converges in law to X, where bn = nE[W11{|W1|>an}] and where X is the spectrally

positive 1-stable random variable whose Laplace exponent is given for all λ ∈ (0,∞)
by lnE[exp(−λX)]=λ ln λ.

(ii) Assume that (a-c) hold true. Then,
∑

k≥n kµ(k) ∼ ℓ(n) where ℓ is the slowly varying func-

tion defined by

(26) ∀x ∈ (0,∞), ℓ(x) =

∫ ∞

x

L(y)

y
dy.

This implies that ψ(s) ∼0+ sℓ(1/s). Moreover, L(x)=o(ℓ(x)) as x→∞.

(iii) Assume that (a-c) hold true. Then, an ∼ nL(an) and an ∼ nL∗(n) where the function

L∗ : x ∈ (0,∞) 7→ x−1 inf{y ∈ (0,∞) : y/L(y) > x} varies slowly at ∞. Moreover,

bn ∼ nℓ(an) where ℓ is given by (26) and therefore an = o(bn).

Proof. The equivalences (a) ⇔ (b) and (a) ⇔ (c) are proved as in Proposition 2.9 (for the form

of bn, see e.g. [16, Chapter IX.8, Equation (8.15)]). To prove (ii), first observe that
∑

k≥n kµ(k)=∑
j≥1 µ([max(n, j),∞)) = nµ([n,∞)) +

∑
j>n µ([j,∞)). Then note that nµ([n,∞)) ∼ L(n)

and that
∑

j>n µ([j,∞)) ∼ ℓ(n) where ℓ is defined by (26). By Proposition 2.8 (iii), L(n) =
o(ℓ(n)) and we get

∑
k≥n kµ(k) ∼ ℓ(n). By [5, Theorem 8.1.6], this is equivalent to f1(λ) ∼0+

λℓ(1/λ) where f1 is given by (23). This implies ψ(s) ∼0+ sℓ(1/s) by Proposition 2.8 (i), which

completes the proof of (ii). Then, we prove an ∼ nL(an) and an ∼ nL∗(n) as in Proposition 2.9.

Next observe that bn = n
∑

k>an
kµ(k + 1)∼ nℓ(an). Thus an/bn ∼ L(an)/ℓ(an) → 0 by (ii).

This completes the proof of (iii). �

Suppose that Proposition 2.12 (c) holds true. Since an = o(bn), it holds b−1
n W⌊ns⌋ → −s in

law, and thus in probability, for all s ∈ [0,∞). Standard arguments (or a stronger result such as

Skorokhod [31, Theorem 2.7]) entail the following convergence

(27)
(

1
bn
W⌊ns⌋ ; s ∈ [0,∞)

)
−→

(
−s ; s ∈ [0,∞)

)

in probability for the topology of uniform convergence on all compact intervals. Recall from (21)

the definition of the stopping times (Hp)p∈N. Then, (27) implies for all x ∈ [0,∞) that

(28) 1
nH⌊bnx⌋ −→ x

in probability. Namely the law of H1 is relatively stable (see e.g. [5, Section 8.8 § 1]). Since the

total size of a GW(µ)-tree τ has the same distribution as H1 (by Proposition 2.7 (iii)), the law of

#τ is thus relatively stable. By use of Berger [4, Theorem 2.4 and Lemma 4.3] and Kortchemski &

Richier [26, Proposition 12], we get the following.

Lemma 2.13 Let µ be a probability measure on N that satisfies (1) and that belongs to the domain

of attraction of a 1-stable law. Let τ be a GW(µ)-tree. Then,

(29) P(#τ ≥ n) ∼
L(bn)

bnℓ(bn)
,

where (bn), L and ℓ are as in Proposition 2.12. If the more restrictive assumption (12) holds, then

(30) P(#τ = n) ∼
1

n
P(#τ ≥ n) ∼

L(bn)

b2n
.
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Proof. Since bn/n ∼ ℓ(an) → 0 as n → ∞, (28) implies that there is a sequence (cn) tending to

∞ such that 1
cn
Hn → 1 in probability: namely, the law of H1 is relatively stable. Then, [5, Theorem

8.8.1] asserts the existence of a function l that slowly varies at∞ such that
∑

0≤k≤nP(H1≥k)∼ l(n)

and 1−E[e−λH1 ] ∼0+ λ l(1/λ). Thus, (28) easily entails that ℓ(an)l(n)→ 1. By Berger [4, Lemma

4.3], we get ℓ(an) ∼ ℓ(bn) and thus,
∑

0≤k≤n P(#τ ≥ k) =
∑

0≤k≤n P(H1 ≥ k) ∼ 1/ℓ(bn). By

Kortchemski & Richier [26, Proposition 12], we get (29) because within the notations of [26], we

necessarily get Λ(n)∼ 1/ℓ(bn). Moreover, Berger [4, Theorem 2.4] asserts that if (12) holds then

P(Wn =−1)∼nL(bn)/b
2
n, so (30) follows from Kemperman’s identity (Proposition 2.10 (ii)). �

Remark 2.14 Although the difficult part of (29) is the very content of Kortchemski & Richier [26,

Proposition 12], the relatively explicit form of the right member of (29) seems novel under the sole

assumption that µ belongs to the domain of attraction of a 1-stable law. �

We next recall two limit theorems on the maximal out-degree of a GW(µ)-tree when µ be-

longs to the domain of attraction of a 1-stable law. They are part of more general results due to

Kortchemski & Richier [26].

Proposition 2.15 Let τ be a GW(µ)-tree with offspring distribution µ that satisfies (1) and that

belongs to the domain of attraction of a 1-stable law. Recall from (14) that the notation ∆(τ)
stands for the maximal out-degree of τ . Then, the following holds true.

(i) The following convergence holds in distribution on [0,∞):

(31)
1

bn
∆(τ) under P( · |#τ ≥ n) −→ J,

where the law of J is given by P(J ≥ x) = 1/x for all x ∈ [1,∞).

(ii) Under the more restrictive assumption (12), the following convergence holds in probability:

(32)
1

bn
∆(τ) under P( · |#τ = n) −→ 1.

Proof. For (i), see [26, Theorem 6]. For (ii), see [26, Theorem 1]. �

Recall that W (τ) stands for the Lukasiewicz path of τ , as in Definition 2.6. We conclude this

section by recalling a result from Kortchemski & Richier [26] that shows that the law of W (τ)
under P( · |#τ = n) is closed in variation distance to the law of the Vervaat transform of the path

(W0,W1, . . . ,Wn−1,−1) under P. More precisely, let (Wn)n∈N be as in Proposition 2.12. For all

n ∈ N
∗, we introduce the following notations.

(33) In = − min
0≤j≤n−1

Wj and σn = inf{0 ≤ k ≤ n− 1 : Wk = −In}

and

(34) Z
(n)
j =

{
Wσn+j + In if 0 ≤ j < n− σn,

In − 1 +Wj−(n−σn) if n ≥ j ≥ n− σn.

Namely, Z(n) is constructed by reading the increments of (W0,W1, ...,Wn−1,−1) from left to right

in cyclic order by starting at time σn: this is a kind of Vervaat transform of (W0,W1, ...,Wn−1,−1)
(see Vervaat [34] for more details). We shall use Kortchemski & Richier [26, Theorem 21], which

we re-state by convenience into the following proposition.

Proposition 2.16 Assume that µ satisfies (1) and (12). We keep the above notation. Then,

sup
A∈B(Rn+1)

∣∣∣P
(
W (τ) ∈ A

∣∣#τ = n
)
− P

(
Z(n) ∈ A

) ∣∣∣ −→ 0,

where B(Rn+1) stands for the Borel sigma-field of Rn+1.

Proof. See Kortchemski & Richier [26, Theorem 21] and note P(In > 1)→ 1 by e.g. (27). �
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3 Distribution of the Horton-Strahler number of Galton-Watson trees

3.1 Alternative definitions of the Horton-Strahler number and basic results

In this section, we prove basic results on the Horton-Strahler number: firstly, we provide alternative

definitions, secondly we state a key upper bound in Lemma 3.1, and finally we prove in Lemma 3.2

a recursive equation satisfied by the tail of the Horton-Strahler of GW(µ)-trees that is the starting

point of the analysis of their asymptotic behavior.

Let us first recall alternative definitions of the Horton-Strahler number. The first one uses Horton

pruning of a finite tree t ∈ T that is defined as follows: remove the leaves of t and merge each line

into one edge (a line in t is a maximal sequence of vertices v0, . . . , vn ∈ t such that kv1(t)= . . .=
kvn−1(t)=1 and vj =

←−vj+1 for all 0≤ j <n). The resulting tree is called the Horton-pruned tree,

which we denote here by Prun(t). Then, S(t) is the minimal number of Horton prunings that are

necessary to obtain {∅} from t. Namely,

(35) S(t) = min
{
n ∈ N : Prunn(t) = {∅}

}
,

where Prunn stands for the n-th iteration of Prun for all n ∈ N
∗ and where Prun0 stands for the

operation that merges each line into one edge. We refer to Kovchegov & Zaliapin [27, Section 2.3]

for a proof and more details.

Another useful definition uses embeddings of perfect binary trees. More precisely, let t, t′ ∈ T

be finite. Then, φ : t → t′ is an embedding if it is injective and if φ(u ∧ v) = φ(u)∧φ(v) for all

u, v ∈ t. For all n ∈ N, we denote by T2,n =
⋃

0≤k≤n{1, 2}
k the n-perfect binary tree, with the

convention that {1, 2}0={∅}. Then, for all finite tree t ∈ T,

(36) S(t) = max
{
n ∈ N : ∃φ : T2,n → t embedding

}
.

This result seems to be ‘part of the folklore’. Let us however provide a short proof.

Proof of (36). We reason by induction on the height of t. Note that (36) obviously holds true if

|t| = 0. Now assume k := k∅(t)≥ 1 and let φ : T2,n+1 → t be an embedding, we separate the

cases according to the positions of φ(∅), φ(1), φ(2).
If (i) � φ(∅) with 1≤ i≤ k, then we have (i) � φ(u) for all u ∈ T2,n+1 by definition, and we

check that setting φ(u) = (i) ∗ φi(u) defines an embedding φi : T2,n+1 → θ(i)t. Conversely, an

embedding φi : T2,n+1 → θ(i)t induces an embedding φ : T2,n+1 → t such that (i) � φ(∅). Thus,

max
{
n ∈ N : ∃φ : T2,n → t embedding, (i) � φ(∅)

}
= S(θ(i)t).

Otherwise, ∅ = φ(∅) = φ(1) ∧ φ(2) so we have distinct 1 ≤ i, j ≤ k such that (i) � φ(1) and

(j) � φ(2). Similarly as before, we see that setting φ((1)∗u)=(i)∗φi(u) and φ((2)∗u)=(j)∗φj (u)
respectively defines two embeddings φi : T2,n → θ(i)t and φj : T2,n → θ(j)t. Conversely, two

embeddings φi : T2,n → θ(i)t and φj : T2,n → θ(j)t induces an embedding φ : T2,n+1 → t such

that φ(∅) = ∅, (i) � φ(1), and (j) � φ(2). Thus,

max
{
n ∈ N : ∃φ : T2,n → t embedding, (i) � φ(1), (j) � φ(2)

}
= 1+min

(
S(θ(i)t),S(θ(j)t)

)
.

Taking the maximum over φ(∅), φ(1), φ(2) and recalling Definition 1.1 concludes the proof. �

The definition (36) immediately implies the following. Let t, t′ ∈ T be finite.

(37) If there is an embedding φ : t→ t′, then S(t) ≤ S(t′).

We next use (36) and (37) to get an upper bound of S(t) in terms of S(Rmt), where Rmt is

defined in (20) (recall that it is the tree consisting in the first m + 1 vertices of t in lexicographic

order) and of Rmt
⋆, where t⋆ is the mirror image of t that is formally defined as follows.
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Let t ∈ T and u ∈ t\{∅} be the word (j1, . . . , jn). We set u|0 =∅ and u|p=(j1, . . . , jp) for

all 1≤p≤n. Then, the mirror image of u is the word u⋆=(j⋆1 , . . . , j
⋆
n) where

j⋆p := ku|p−1
(t)− jp + 1, 1 ≤ p ≤ n.

We also set ∅⋆=∅. Then t⋆={u⋆ : u∈ t} and it is easy to show that t⋆ ∈ T. Observe that u 7→ u⋆

is a bijective embedding so S(t⋆) = S(t) by (37). We stress that the word u⋆ depends on the tree

t on which u is observed. Nevertheless, this notation should not lead to confusion here because the

underlying tree will always be clear according to context. Since ku⋆(t
⋆) = ku(t), (16) implies that

if τ is a GW(µ)-tree whose offspring distribution µ satisfies (1), then so is τ⋆. Furthermore, since

#τ⋆ = #τ , if n ∈ N
∗ is such that P(#τ=n)>0, then we easily check that

(38) under P( · |#τ = n), τ⋆
(law)
= τ.

The following lemma plays a key role in the proofs of Theorems 1.2 and 1.4.

Lemma 3.1 Let t ∈ T be finite. Then the following holds true.

(i) For all u ∈ t, we set t≤u = {v∈ t : v≤u}. Then,

(39) S(t) ≤ 1 + max
(
S(t≤u) , max{S(θvt) : v∈ t,←−v �u and v>u}

)
.

(ii) Let m ∈ N be such that 2m ≥ #t+ |t|. Then,

(40) S(t) ≤ 1 + max
(
S(Rmt),S(Rmt

⋆)
)
.

(iii) If τ is a random finite tree such that τ⋆ has the same law as τ , then for all n,m ∈ N
∗, we get

(41) P(S(τ) ≥ n) ≤ 2P
(
S(Rmτ) ≥ n− 1

)
+ P(#τ + |τ | > 2m).

Proof. We first prove (i). If S(t)=0, then (39) is obviously true. We next suppose that S(t)=n≥1,

and to simplify notation, we set

J∅, uK = {v ∈ t : v�u} and B = {v ∈ t : ←−v � u and v > u}.

By (36), there is an embedding φ : T2,n → t. Observe that φ(1) and φ(2) cannot both belong to

J∅, uK, otherwise it would imply φ(1) ∧ φ(2)=φ(∅) ∈ {φ(1), φ(2)} (by definition of embeddings

since ∅=(1)∧ (2)), which contradicts the injectivity of φ. Thus, there is j∈{1, 2} such that either

φ(j) ∈ t≤u\J∅, uK or φ(j) ∈ t\t≥u. In the first case, by definition of embeddings, φ(j) � φ((j)∗v)
for all v ∈ T2,n−1 and so φ((j) ∗ T2,n−1)⊂ t≤u. Then, (36) entails n−1≤S(t≤u). Suppose next

that φ(j) ∈ t\t≥u. Since t\t≥u is the disjoint union of the v ∗ (θvt) for v ∈B, there exists v ∈B
such that φ((j) ∗ T2,n−1)⊂φ(j) ∗ (θφ(j)t)⊂ v ∗ (θvt). Then, (36) entails n−1≤maxv∈B S(θvt),
which completes the proof of (39).

Let us now prove (ii). To that end, we denote by u the ≤-minimal leaf of θut. We also set

t≥u={v∈ t : v≥u} ∪ J∅, uK. By definition, t= t≤u ∪ t≥u and J∅, uK= t≤u ∩ t≥u. Then, note that

for all v∈B, v ∗ (θvt) ⊂ t≥u. Moreover, note that (t≥u)
⋆= t⋆≤u⋆ . Therefore, (37) and (i) imply

(42) S(t) ≤ 1 + max
(
S(t≤u),S(t≥u)

)
= 1 +max

(
S(t≤u),S(t

⋆
≤u⋆)

)
.

Next set m+1 = #t≤u=#{v∈ t :v≤u} and m′+1 = #t≥u=#{v∈ t⋆ :v≤u⋆}. Observe that

Rmt= t≤u and Rm′t⋆= t⋆≤u⋆ . Moreover, #t=#t≤u+#t≥u−#J∅, uK=m+m′+1− |u|. Thus,

m+m′<#t+ |t|. If 2m ≥ #t+ |t|, then m′< 1
2 (#t+ |t|)≤m and Rm′t⋆⊂Rmt

⋆. By (37), we

get S(Rm′t⋆)≤S(Rmt
⋆) and we obtain (40) by (42).

Inequality (41) is an easy consequence of (40): we leave the details to the reader. �

We next prove the main equation that is satisfied by the tail distribution of the Horton-Strahler

number of a Galton-Watson tree.
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Lemma 3.2 Let τ be a GW(µ)-tree whose offspring distribution µ satisfies (1). Recall ϕ and ψ
from (2). For all n ∈ N, we set qn = P(S(τ) > n). Then,

(43) 1− q0 =
µ(0)

1− µ(1)
and 1− qn+1 = ϕ(1− qn) + (qn − qn+1)ϕ

′(1− qn), n ∈ N.

This equation can be rewritten in terms of ψ as qn − qn+1 = ψ(qn)/ψ
′(qn).

Proof. By Definition 1.1, S(τ)=0 if and only if k∅(τ)=0 or (k∅(τ)=1;S(θ(1)τ)=0). Thus, by

Definition 2.2, we get P(S(τ)=0)=µ(0)+µ(1)P(S(τ)=0), which gives the first equality in (43).

Let us prove the recursive relation in (43). Let n ∈ N. By Definition 1.1, S(τ)≤n + 1 if and

only if S(θuτ)≤n for all children u of ∅ in τ (if any) with the possible exception of one child v,

which may satisfy S(θvτ) = n+ 1. More precisely,

(44) 1{S(τ)≤n+1} =
∏

1≤j≤k∅(τ)

1{S(θ(j)τ)≤n} +
∑

1≤j≤k∅(τ)

1{S(θ(j)τ)=n+1}

∏

1≤i≤k∅(τ)
j 6=i

1{S(θ(i)τ)≤n}.

Taking the expectation yields (43) by Definition 2.2 and since ϕ is the generating function of µ. �

Remark 3.3 Although it seems difficult to solve (43) explicitly in general, it can be done actually

for the so-called α-stable offspring distribution µα, α∈(1, 2], whose generating function is

∀s ∈ [0, 1], ϕα(s) = s+ 1
α (1− s)

α.

Namely, if τα is a GW(µα)-tree then S(τα) is a geometric random variable with parameter 1
α , i.e.

P(S(τα) = n) = 1
α

(
1− 1

α

)n
, n ∈ N.

This is explicitly proved in Kovchegov & Zaliapin [28, Lemma 10] and earlier for the α=2 case,

see Burd, Waymire & Winn [7, Proposition 2.5]. See also Duquesne & Winkel [13] who show that

α-stable offspring distributions are the only laws that are invariant under any hereditary pruning. �

We end this section with a lemma that lists basic properties of ψ, that are useful to analyse (43).

Lemma 3.4 Let µ be a probability on N that satisfies (1). Recall from (2) the definition of ψ. Then,

the following holds true.

(i) ψ is nonnegative, increasing, strictly convex, and analytic on (0, 1]. Moreover, ψ′ is increas-

ing, concave, and ψ(0) = ψ′(0) = 0.

(ii) For all s ∈ (0, 1], 1
2ψ

′(s) ≤ ψ(s)
s ≤ ψ

′(s).

Proof. The point (i) is elementary. The upper bound in (ii) is a consequence of the convexity of

ψ and to obtain the lower bound we apply Hermite-Hadamard inequality that asserts that for all

convex functions f : [a, b]→ R, it holds

(45) f
(
1
2(a+ b)

)
≤

1

b− a

∫ b

a
f(t) dt ≤ 1

2

(
f(a) + f(b)

)
.

We apply (45) to ψ′ after observing 1
sψ(s) =

1
s

∫ s
0 ψ

′(s)ds. �
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3.2 Tail estimates of joint laws

In this section, we provide four estimates of the tail of the joint distribution of the Horton-Strahler

number of a Galton-Watson tree with either its size, its height, or its maximal out-degree. We fix

an offspring distribution µ that satisfies (1) and τ stands for a GW(µ)-tree. Recall from (2) the

definition of ϕ and ψ. Observe that ψ′(1)=1−ϕ′(0)=1−µ(1)>0 by (1). It is convenient to write

(46) qn = P(S(τ) > n), n ∈ {−1} ∪ N,

where q−1 = 1 obviously.

Proposition 3.5 Let τ be a GW(µ)-tree where µ satisfies (1). Then, for all n ∈ N,

(47) E
[
#τ1{S(τ)=0}

]
=

µ(0)

(1− µ(1))2
and ψ′(qn−1)E

[
#τ1{S(τ)≤n}

]
≤ 2.

Proof. Although E[#τ ]=∞, let us first prove that en :=E[#τ1{S(τ)≤n}]<∞. By Definition 1.1,

if S(τ) ≤ n then S(θuτ) ≤ n for all children u of ∅ in τ (if any) and S(θuτ) = n for at most one

child. This implies that for all m,n ∈ N,

(48) min(m,#τ)1{S(τ)≤n} ≤ 1 +

k∅(τ)∑

i=1

min
(
m,#θ(i)τ

)
1{S(θ(i)τ)≤n−1}

+

k∅(τ)∑

i=1

min
(
m,#θ(i)τ

)
1{S(θ(i)τ)≤n}

∏

1≤j≤k∅(τ)
j 6=i

1{S(θ(j)τ)≤n−1}

which makes sense even when n = 0: the first sum in the right-hand side of (48) being null. To

simplify notations, we set en(m) = E[min(m,#τ)1{S(τ)≤n}] for all integers m ≥ 0 and n ≥ −1
(with e−1(m)=0). Taking the expectation in (48) gives en(m)≤1+en−1(m)+en(m)ϕ′(1−qn−1).
It easily implies that en ≤ (1 + en−1)/(1−ϕ

′(1− qn−1)) because limm→∞ en(m) = en. This

recursively entails en <∞ for all integer n ≥ −1.

To simplify notations, we set k∅ = k∅(τ), τj = θ(j)τ and Sj =S(θ(j)τ) for all 1≤ j ≤ k∅(τ).
We first explicitly compute e0 by observing that #τ1{S(τ)=0}=1{k∅=0}+1{k∅=1}(1+τ1)1{S1=0}.

Taking the expectation entails e0=µ(0) + µ(1)(1−q0 + e0). By (43), this becomes

(49) e0 = E[#τ1{S(τ)=0}] =
1− q0

1− µ(1)
=

µ(0)

(1− µ(1))2
.

Next, by using the fact that #τ=1 +
∑

1≤j≤k∅
#τj and by the decomposition (44), we get

#τ 1{S(τ)≤n+1} = 1{S(τ)≤n+1} +

k∅∑

j=1

#τj 1{Sj≤n}

∏

1≤i≤k∅
j 6=i

1{Si≤n}

+

k∅∑

j=1

#τj1{Sj=n+1}

∏

1≤i≤k∅
j 6=i

1{Si≤n} +
∑

1≤i,j≤k∅
j 6=i

#τj1{Sj≤n}1{Si=n+1}

∏

1≤l≤k∅
l 6=i,j

1{Sl≤n}.

Taking the expectation term-by-term, we get

en+1 = 1− qn+1 + enϕ
′(1− qn) + (en+1 − en)ϕ

′(1− qn) + en(qn − qn+1)ϕ
′′(1− qn)

for all n ∈ N. Recall from (2) that ψ(s)=ϕ(1−s)−1 + s. By Lemma 3.2, we find

(50) en+1ψ
′(qn) = 1− qn+1 + en(qn − qn+1)ψ

′′(qn) = 1− qn+1 + en
ψ′′(qn)

ψ′(qn)

∫ qn

0
ψ′(s) ds

16



since ψ(0) = 0 by Lemma 3.4 (i). Still from Lemma 3.4, we know that ψ′ is concave, so we get

ψ′(s) ≤ ψ′(qn)− (qn − s)ψ
′′(qn). Thus,

ψ′′(qn)

ψ′(qn)

∫ qn

0
ψ′(s) ds ≤ qnψ

′′(qn)−
(qnψ

′′(qn))
2

2ψ′(qn)
= 1

2ψ
′(qn)

(
1− (1−x)2

)
,

where x = ψ′′(qn)/(ψ
′(qn)/qn) belongs to [0, 1] since ψ′ is concave. Thus, we get

xn+1 := en+1ψ
′(qn) ≤ 1 + 1

2enψ
′(qn) ≤ 1 + 1

2enψ
′(qn−1) = 1 + 1

2xn

since (qn) is decreasing and ψ′ is increasing. This entails xn ≤ 2 − 2−n(1 − x0), which leads to

(47) because x0=ψ
′(1)e0=(1−µ(1))e0= 1− q0 <1 by (49). �

For all t ∈ T, we set

Z(t) = max{|u| : u ∈ t such that S(θut) = S(t)}.

Note that Z(t) ≤ |t| where recall from (14) that |t| stands for the height of t.

Proposition 3.6 Let τ be a GW(µ)-tree where µ satisfies (1). Recall ψ from (2) and qn from (46).

Recall from (14) that |τ | stands for the height of τ . Then, P(Z(τ)≥m
∣∣S(τ)=n)=(1−ψ′(qn−1))

m

for all m,n ∈ N. This implies that for all λ ∈ (0,∞),

(51) lim sup
n→∞

P
(
ψ′(qn−1)|τ | ≤ λ

∣∣S(τ) = n
)
≤ 1− e−λ.

Proof. By Definition 1.1, for all integers n≥0 and m≥1, it holds

1{Z(τ)≥m ;S(τ)=n} =

k∅(τ)∑

i=1

1{Z(θ(i)τ)≥m−1 ;S(θ(i)τ)=n}

∏

1≤j≤k∅(τ)
j 6=i

1{S(θ(j)τ)≤n−1}

By taking the expectation, we get

P
(
Z(τ) ≥ m ; S(τ) = n

)
= P

(
Z(τ) ≥ m−1 ; S(τ) = n

)
ϕ′(1− qn−1),

which implies the first desired equality as ϕ′(1−qn−1)=1−ψ′(qn−1). Note that ψ′(qn−1)→ψ′(0)=
0. Thus, limn→∞ P(Z(τ)≥λ/ψ′(qn−1) | S(τ)=n)=e

−λ which implies (51) since Z(τ)≤|τ |. �

In [6], Brandenberger, Devroye & Reddad study the Horton-Strahler number of a Galton-

Watson tree conditioned to have exactly n vertices under the assumption that the variance of the

offspring distribution is finite. To that end, they use a (little more than) local convergence of the

conditioned Galton-Watson tree towards the corresponding size-biased tree. We adapt and extend

this idea in a more general context using only the Many-To-One Principle to get the following.

Proposition 3.7 Let τ be a GW(µ)-tree where µ satisfies (1). Recall ψ from (2) and qn from (46).

For all integers n,m∈N such that 2ψ′(P(|τ |≥⌊n/2⌋))≤ψ′(qm), the following inequality holds:

(52) P
(
S(τ) ≤ m

∣∣ |τ | ≥ n
)
≤ exp

(
− 1

8 nψ
′(qm)

)
.

Proof. For all n∈N, we denote by ϕn the n-iterate of ϕ with the convention ϕ0=Id. It is classical

that P(|τ |<n)=ϕn(0). Then, observe the following: the ≤-smallest vertex of τ at height n is the

only vertex u ∈ τ such that |u| = n and such that for all v ∈ τ with v < u and ←−v ≺ u, we have
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|θvτ | + |v| < n. Moreover for all p∈N, (37) implies that if S(τ) ≤ m then S(θvτ) ≤ m for all

v ∈ τ . Therefore,

(53) 1{|τ |≥n ;S(τ)≤m} ≤
∑

u∈τ

1{|u|=n}

∏

w∈τ,i≥1
w∗(i)�u

( i−1∏

j=1

1{|θw∗(j)τ |+|w∗(j)|<n}

)( kw(τ)∏

j=i+1

1{S(θw∗(j)τ)≤m}

)
.

Here we adopt the following convention: a product over an empty set of indices is taken equal to

1. Recall Definition 2.3 of the size-biased GW(µ)-tree τ∞ and recall from (18) in Remark 2.4 the

joint law of the number of left/right siblings of individuals on the infinite line of descent. We now

use the Many-To-One Principle (Proposition 2.5) after taking the expectation in (53) to get

(54) P
(
|τ | ≥ n ; S(τ) ≤ m

)
≤

n−1∏

p=0

ϕ(1−qm)− ϕ(ϕp(0))

1−qm − ϕp(0)
.

We now use convexity properties of ϕ and ψ given in Lemma 3.4 to get an upper bound of the right-

hand side of (54). First observe that the convexity of ϕ implies that for all real numbers s, r∈ [0, 1]
such that s≤r, we have (ϕ(r)−ϕ(s))/(r−s) ≤ (1−ϕ(s))/(1−s). Therefore,

(55)

⌊n/2⌋−1∏

p=0

ϕ(1−qm)− ϕ(ϕp(0))

1−qm − ϕp(0)
≤

⌊n/2⌋−1∏

p=0

1− ϕ(ϕp(0))

1− ϕp(0)
= 1− ϕ⌊n/2⌋(0) .

To get an upper bound of (ϕ(1−qm) − ϕ(ϕp(0)))/(1−qm − ϕp(0)) when p≥⌊n/2⌋, we use the

following: let s, r ∈ [0, 1] and suppose that 2ψ′(s)≤ψ′(r), then

ϕ(1−r)− ϕ(1−s)

s− r
=

1− ϕ(1−s)

s
+
ϕ(1−s)− 1

s
+
ϕ(1−r)− ϕ(1−s)

s− r

=
1− ϕ(1−s)

s
+
ψ(s)

s
−
ψ(r)− ψ(s)

r − s

=
1− ϕ(1−s)

s
+
ψ(s)

s
−

1

r − s

∫ r

s
ψ′(x) dx

≤
1− ϕ(1−s)

s
+ ψ′(s)− 1

2

(
ψ′(r) + ψ′(s)

)

≤
1− ϕ(1 − s)

s
− 1

4ψ
′(r) ≤

1− ϕ(1 − s)

s

(
1− 1

4ψ
′(r)

)
.(56)

Here, we have used Hermite-Hadamard inequality (45) for concave functions, and the two convexity

inequalities 1
sψ(s) ≤ ψ

′(s) and 1
s (1−ϕ(1−s)) ≤ ϕ

′(1) = 1.

Assume that m,n ∈N satisfy 2ψ′(1−ϕ⌊n/2⌋(0))≤ ψ
′(qm). Then, for all p≥ ⌊n/2⌋, we have

2ψ′(1−ϕp(0))≤ψ
′(qm). Applying (56) successively with s=1−ϕp(0) and r=qm gets us

P(|τ | ≥ n ; S(τ) ≤ m) ≤
(
1− ϕ⌊n/2⌋(0)

)(
1− 1

4ψ
′(qm)

)n/2 n−1∏

p=⌊n/2⌋

1− ϕp+1(0)

1− ϕp(0)

≤
(
1− 1

4ψ
′(qm)

)n/2
P(|τ | ≥ n),

by (54) and (55). This easily entails (52) since ln(1−x) ≤ −x for all x ∈ [0, 1). �

Although Proposition 3.7 holds under the sole assumption that µ satisfies (1), its application re-

quires knowing the behavior of the tail of the height |τ | of the GW(µ)-tree τ . When µ belongs to

the domain of attraction of a stable law of index α ∈ (1, 2], Proposition 2.10 (iv) provides such

information, and then Proposition 3.7 entails the following more convenient result.
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Corollary 3.8 Let τ be a GW(µ)-tree where µ satisfies (1) and belongs to the domain of attraction

of a stable law of index α ∈ (1, 2]. Recall ψ from (2) and qn from (46). There exists a constant

Cµ ∈ (0,∞) that only depends on µ such that for all integers n,m ∈ N, it holds

(57) P
(
S(τ) ≤ m

∣∣ |τ | ≥ n
)
≤ Cµ exp

(
− 1

8 nψ
′(qm)

)
.

Proof. To simplify the notations, we set sn = P(|τ | ≥ ⌊n/2⌋) for all n ∈ N. By Proposition 2.10

(iv), the constant 2cµ := supn∈N(n+ 1)ψ(sn)sn
is finite and positive. Then, we get from Lemma 3.4

(ii) that 2ψ′(sn) ≤ 8cµ/(n + 1) for all n ∈ N, by definition of cµ. Let us set Cµ = ecµ ∈ (0,∞)
and let n,m ∈ N. If ψ′(qm) ≥ 8cµ/(n+ 1), then 2ψ′(sn) ≤ ψ

′(qm) so Proposition 3.7 yields (57)

because 1 ≤ Cµ. Otherwise, ψ′(qm) < 8cµ/(n + 1) and Cµ exp(−
1
8nψ

′(qm)) ≥ 1 by choice of

Cµ. Thus, (57) clearly holds in that case, which completes the proof. �

Our last estimate relies on the same idea as Proposition 3.7: if the maximal out-degree of a

Galton-Watson tree is large, then the tree contains several independent disjoint copies of itself.

Proposition 3.9 Let τ be a GW(µ)-tree where µ satisfies (1). Recall ψ from (2) and qn from (46).

Recall from (14) that ∆(τ) stands for the maximal out-degree of τ . Then, for all integers n,m ≥ 1
such that P(∆(τ) ≥ n) > 0, the following inequality holds true:

(58) P
(
S(τ) ≤ m

∣∣∆(τ) ≥ n
)
≤ e−nqm .

Moreover, for all λ ∈ (0,∞), we also have

(59) E
[
e−λ#τ

∣∣∆(τ) ≥ n
]
≤ E

[
e−λ#τ

]n
.

Proof. On the event {S(τ) ≤ m ; ∆(τ) ≥ n}, we decompose τ along the ancestral line of the

≤-first vertex u such that ku(τ)≥n and, by (37), we see S(θu∗(j)τ)≤m for all 1≤j≤n. Hence,

1{S(τ)≤m ;∆(τ)≥n} ≤
∑

u∈τ

1{ku(τ)≥n}

( ∏

v∈τ :v<u

1{kv(τ)<n}

)( n∏

j=1

1{S(θu∗(j)τ)≤m}

)
.

We take the expectation and apply the Many-To-One Principle (Proposition 2.5) ‘forwards and

backwards’ to get

P (S(τ) ≤ m ; ∆(τ) ≥ n) ≤ E

[∑

u∈τ

1{ku(τ)≥n}

∏

v∈τ :v<u

1{kv(τ)<n}

]
P
(
S(τ) ≤ m

)n

= P
(
∆(τ) ≥ n

)(
1− qm

)n
,

which entails (58) since ln(1−x) ≤ −x for all x ∈ [0, 1). To prove (59), we observe that

e−λ#τ1{∆(τ)≥n} ≤
∑

u∈τ

1{ku(τ)≥n}

( ∏

v∈τ :v<u

1{kv(τ)<n}

)( n∏

j=1

e−λ#θu∗(j)τ
)
.

Then, as in the previous argument, we take the expectation and apply the Many-To-One Principle

(Proposition 2.5) ‘forwards and backwards’ to get the desired result. �

3.3 Tail estimates.

In this section, we prove results on the tail of the Horton-Strahler number of a GW(µ)-tree. These

results are expressed in terms of the functions Λ and Υ that are given by

(9) ∀s ∈ (0, 1), Υ(s) =

∫ 1

s

dr

r ln Λ(r)
, where Λ(s) =

sψ′(s)

sψ′(s)− ψ(s)
,

and where ψ is defined in (2). Their basic properties are listed in the following lemma.
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Lemma 3.10 Let µ be a probability on N that satisfies (1). Then, the functions Λ and Υ in (9) are

well-defined, Λ ≥ 2, and Υ is continuous, positive, and decreasing on (0, 1).

Proof. The inequality 1
sψ(s) ≥

1
2ψ

′(s) from Lemma 3.4 (ii) entails that Λ(s) ≥ 2 for all s ∈ (0, 1),
and (iii) follows immediately. �

Under the additional assumption that µ belongs to the domain of attraction of a stable law, the

following lemma shows that Λ varies slowly at 0+.

Proposition 3.11 Let us assume that µ satisfies (1) and that it belongs to the domain of attraction

of a stable law of index α ∈ [1, 2].
(i) If α ∈ (1, 2], then lims→0+ Λ(s) = α

α−1 and Υ(s) ∼0+ log α
α−1

1/s.

(ii) Suppose that α = 1. Let L be such that µ([n,∞)) ∼ n−1L(n) and ℓ be the slowly varying

function given by ℓ(x)=
∫∞
x y−1L(y) dy for all x∈(0,∞) (see Proposition 2.12). Then,

Λ(s) ∼0+
ℓ(1/s)

L(1/s)
and lim

s→0+
Λ(s) =∞.

Proof. Let us prove (i) first. By Proposition 2.9, ψ is regularly varying of index α at 0+. Then,

recall that ψ′ is increasing, and since ψ(s)=
∫ s
0 ψ

′(x) dx, the Monotone Density Theorem (recalled

in Proposition 2.8 (iv)) implies that sψ′(s) ∼0+ αψ(s). This entails lims→0+ Λ(s)= α
α−1 and thus

Υ(s) ∼0+ log α
α−1

1/s. This completes the proof of (i).

Let us assume that α= 1 to prove (ii). To simplify, we denote by ξ a random variable whose

distribution is µ. Thus, xP(ξ > x) ∼∞L(x). Proposition 2.12 (ii) asserts that E[ξ1{ξ>x}] ∼∞ ℓ(x)
and ψ(s) ∼0+ sℓ(1/s). The Monotone Density Theorem again asserts that sψ′(s) ∼0+ sℓ(1/s).
We next consider sψ′(s)−ψ(s), s∈(0, 1) being fixed. To simplify notations, we set λ=− ln(1−s)
and we first observe that

sψ′(s)− ψ(s) = E

[
1− e−λξ − sξ

1−se
−λξ

]
= E

[∫ ξ

0

(
λe−λx − s

1−se
−λx + sxλ

1−se
−λx

)
dx

]
,

(by Fubini) = sλ
1−s

∫ ∞

0
P(ξ > x)xe−λx dx −

(
s

1−s − λ
)∫ ∞

0
P(ξ > x)e−λx dx.

We estimate the second term of the right-hand side by writing

(60)
(

s
1−s + ln(1− s)

)∫ ∞

0
P(ξ > x)e−λx dx ∼0+

1
2s

2
E[ξ] = 1

2s
2.

Next, Karamata’s Abelian Theorem for Laplace transform (as recalled in Proposition 2.8 (v)) asserts

(61) λ

∫ ∞

0
xP(ξ > x) e−λx dx ∼0+ L(1/λ).

Since λ=−ln(1−s), (60) and (61) entail that sψ′(s)−ψ(s) ∼0+ sL(1/s) thanks to Potter’s bound

(see Proposition 2.8 (i)), which implies the desired estimate for Λ since sψ′(s) ∼0+ sℓ(1/s).
Finally, lims→∞ Λ(s) =∞ comes from an application of Proposition 2.8 (iii). �

Proposition 3.12 Let us assume that µ satisfies (1) and that it belongs to the domain of attraction

of a stable law of index α ∈ [1, 2]. Recall the definition of Υ from (9). Then,

(62) Υ
(
P(S(τ) > n)

)
∼ n.

In particular, if α ∈ (1, 2], we get − lnP(S(τ) > n) ∼ n ln α
α−1 .
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Proof. Recall from (46) that qn = P(S(τ) > n) and note that qn → 0. Lemma 3.2 asserts that

qn−qn+1=ψ(qn)/ψ
′(qn), namely q−1

n+1=q
−1
n Λ(qn). To simplify, we set Qn=− ln qn. Therefore,

(63) Qn+1 = Qn + lnΛ(e−Qn), n ∈ N.

By Proposition 3.11, Λ varies slowly at 0+. Thus, Potter’s bound (recalled in Proposition 2.8 (i))
applies to l(y) = Λ(1/y): for any ε∈ (0, 1

10), there is nε ∈N such that for all n ≥ nε and for all

x ∈ [Qn, Qn+1],

∣∣ ln Λ(e−x)− ln Λ(e−Qn)
∣∣ =

∣∣∣ ln
(Λ(e−(x−Qn)e−Qn)

Λ(e−Qn)

)∣∣∣ ≤ ε+ ε(x−Qn)

≤ ε+ ε ln Λ(e−Qn).

by (63) (we apply Proposition 2.8 (i) with l(y)=Λ(1/y), c = eε and λ=ex−Qn). This implies

∣∣∣ 1

lnΛ(e−x)
−

1

lnΛ(e−Qn)

∣∣∣ ≤ ε

ln Λ(e−Qn)
·
1 + lnΛ(e−Qn)

ln Λ(e−x)

≤
ε

ln Λ(e−Qn)
·

1 + lnΛ(e−Qn)

(1− ε) ln Λ(e−Qn)− ε

≤
ε

ln Λ(e−Qn)
·

(ln 2)−1 + 1

1− ε− ε(ln 2)−1
≤

100ε

ln Λ(e−Qn)

because Λ ≥ 2, by Lemma 3.10, and since ε∈(0, 1
10 ). Therefore, by (63), we get

∫ Qn+1

Qn

∣∣∣ 1

lnΛ(e−x)
−

1

lnΛ(e−Qn)

∣∣∣dx ≤ 100ε ·
Qn+1 −Qn
ln Λ(e−Qn)

= 100ε.

This implies that for all ε∈(0, 1
10) and for all n≥nε,

∣∣∣
∑

nε≤k<n

Qk+1 −Qk
ln Λ(e−Qk)

−

∫ Qn

Qnε

dx

ln Λ(e−x)

∣∣∣ =
∣∣∣n− nε −

∫ Qn

Qnε

dx

ln Λ(e−x)

∣∣∣ ≤ 100ε(n − nε).

Hence, limn→∞
1
n

∫ Qn

Q0

dx
ln Λ(e−x)

=1, which proves (62) after the change of variable r = e−x. �

In the 1-stable cases, we provide below three examples of slowly varying functions L that may

govern the tail of µ via the estimate nµ([n,∞)) ∼ L(n). We use the notations of Proposition 3.11.

Example 3.13 (a) Let κ ∈ (0,∞). We consider the case where L(x) = (lnx)−1−κ for x∈(0,∞).
Indeed, this function varies slowly at ∞ and is such that

∫∞
y−1L(y) dy < ∞. Clearly, we have

ℓ(x) = 1
κ(ln x)

−κ = 1
κL(x) ln x. Therefore, Proposition 3.11 (ii) yields

Λ(s) ∼0+
1
κ ln 1/s and Υ(s) ∼0+

ln 1/s

ln ln 1/s
.

If one sets xn=− lnP(S(τ) > n), Proposition 3.12 asserts that xn/ ln xn ∼ n, which implies that

− lnP(S(τ) > n) ∼ n lnn.

(b) Let κ ∈ (0, 1). We next consider the case where L(x) = exp(−(lnx)κ) for x ∈ (0,∞). Again,

this function varies slowly at∞ and verifies
∫∞

y−1L(y) dy<∞. An integration by parts gives

ℓ(x) = 1
κ(lnx)

1−κL(x) + 1−κ
κ

∫ ∞

x

L(y)

y(ln y)κ
dy ∼∞

1
κ(ln x)

1−κL(x),

21



and Proposition 3.11 (ii) thus implies that

Λ(s) ∼0+
1
κ(ln 1/s)

1−κ and Υ(s) ∼0+
1

1−κ ·
ln 1/s

ln ln 1/s
.

If one sets xn=− lnP(S(τ)>n), Proposition 3.12 asserts that xn/ lnxn ∼ (1−κ)n, which yields

− lnP(S(τ) > n) ∼ (1−κ)n ln n.

(c) We finally consider the case where L(x) = exp(− ln x/ ln lnx) for all x ∈ (ee,∞). This

function still slowly varies and verifies
∫∞

y−1L(y) dy < ∞. We make the change of variable

z = ln y/ ln ln y and then an integration by parts to compute

ℓ(x) ∼∞

∫ ∞

lnx
ln lnx

e−z ln(z) dz ∼∞

[
− e−z ln z

]∞
lnx

ln lnx

∼∞ L(x) ln lnx.

Therefore, Proposition 3.11 (ii) implies that

Λ(s) ∼0+ ln ln 1/s and Υ(s) ∼0+
ln 1/s

ln ln ln 1/s
.

If one sets xn=− lnP(S(τ)>n), Proposition 3.12 asserts that xn/ ln lnxn ∼ n, which entails

− lnP(S(τ) > n) ∼ n ln lnn.

�

We use further the following estimates.

Proposition 3.14 Let us assume that µ satisfies (1) and that it belongs to the domain of attraction

of a stable law of index α ∈ [1, 2]. Then, for all λ ∈ (0,∞) and all κ ∈ R, the following holds true:

ln ln 1/s =
s→0+

o (Υ(s)) , Υ(λs lnκ 1/s) ∼0+ Υ(s), and Υ(sΛ(s)κ) ∼0+ Υ(s).

In particular, Υ is slowly varying at 0+.

Proof. Recall that Λ is slowly varying at 0+ from Proposition 3.11 so lnΛ(s) = o(ln 1/s) by

Proposition 2.8 (i). This allows us to write

ln ln 1/s ∼0+

∫ 1/2

s

dr

r ln 1/r
=

s→0+
o
(
Υ(s)

)
.

Next, without loss of generality, we may assume that λ∈ [1,∞), so that 1 ≤ λ ln|κ| 1/s when s is

small enough. Recall from Lemma 3.10 that Λ ≥ 2. Thus,

∣∣Υ(λs lnκ 1/s)−Υ(s)
∣∣ ≤

∫ λs ln|κ| 1/s

s
λ
ln−|κ| 1/s

dr

r lnΛ(r)
≤

1

ln 2
ln

(
λ2 ln2|κ| 1/s

)
=

s→0+
o
(
Υ(s)

)
,

which is the second estimate. Then, observe that lims→0+ sΛ(s)
|κ| = 0 because Λ slowly varies at

0+. Another application of Proposition 2.8 (i), together with Λ ≥ 2, entails that ln Λ(r) ≥ 1
2 lnΛ(s)

for all small enough s and for all r ∈ (0, 1) such that sΛ(s)−|κ| ≤ r ≤ sΛ(s)|κ|. Therefore,

∣∣Υ(sΛ(s)κ)−Υ(s)
∣∣ ≤

∫ sΛ(s)|κ|

sΛ(s)−|κ|

dr

r ln Λ(r)
≤

2

lnΛ(s)
ln

(
Λ(s)2|κ|

)
= 4|κ| =

s→0+
o
(
Υ(s)

)
.

which completes the proof. �
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4 Proofs of Theorems 1.2, 1.3 and 1.4

4.1 Proof of Theorem 1.2

In all this section, we assume that the critical offspring distribution µ belongs to the domain of

attraction of an α-stable law with α ∈ (1, 2], and more precisely, we assume that Proposition 2.9

(a-d) hold. Let us set γ = ln α
α−1 . Recall from Propositions 3.11 (i) and 3.12 that

(64) γΥ(s) ∼0+ ln 1/s and − lnP(S(τ) > n) ∼ γn.

The proof of Theorem 1.2 is separated into two parts: a lower bound and an upper bound.

Lower bound. We first prove for all ε ∈ (0, 1) that

(65) P
(
αγS(τ) ≤ (1− ε) lnn

∣∣ #τ = n
)
−−−−→
n→∞

0.

The idea is to apply Proposition 3.7, or rather Corollary 3.8, and to switch the conditioning on the

size of τ with the conditioning on the height of τ . To that end, we use Proposition 2.11 (i) to find

lim sup
η→0

lim sup
n→∞

P
(
|τ | ≤ η n

an

∣∣ #τ = n
)
= 0.

Therefore, to prove (65), we only need to prove for all η ∈ (0, 1) that

lim sup
n→∞

P
(
|τ | > η n

an
; αγS(τ) ≤ (1−ε) ln n

∣∣ #τ = n
)
= 0.

We roughly bound the conditional probability by the ratio of the probabilities as follows.

(66) P
(
|τ |>η n

an
; αγS(τ) ≤ (1−ε) ln n

∣∣ #τ=n
)
≤

P
(
αγS(τ) ≤ (1−ε) ln n

∣∣ |τ |>η n
an

)

P(#τ=n)
.

Since an ∼ n
1
α
+o(1) by Proposition 2.9 and Potter’s bound (see Proposition 2.8 (i)), Proposition

2.10 (iii) entails the following estimate for the denominator of the right-hand side of (66):

(67) P(#τ = n) ∼
cα
nan

∼ n−1− 1
α
+o(1).

To bound the right-hand side of (66), we want to apply Corollary 3.8 and to that end, we first control

ψ′
(
P
(
S(τ) > 1−ε

αγ lnn
))

. By Potter’s bound and Proposition 2.9 (c), we get lnψ(s) ∼0+ α ln s.

Lemma 3.4 (ii) then yields lnψ′(s) ∼0+ (α − 1) ln s. Together with (64), this implies that

(68) ψ′
(
P
(
S(τ) > 1−ε

αγ lnn
))
∼ n−(1−ε)α−1

α
+o(1).

We eventually apply Corollary 3.8, and then (67) and (68), to get that

P
(
S(τ) ≤ 1−ε

αγ lnn
∣∣ |τ |> ηn

an

)
≤ Cµ exp

(
− ηn

8an
ψ′
(
P
(
S(τ)> 1−ε

αγ lnn
)))
≤ exp

(
− nε

α−1
2α

)

for all sufficiently large n. The previous upper bound combined with (66) and (67) implies (65).

Upper bound. We want to prove for all ε ∈ (0, 1) that

(69) P
(
αγS(τ) ≥ (1 + 2ε) ln n

∣∣ #τ = n
)
−−−−→
n→∞

0.

To that end, we first show

(70) P
(
αγS(τ) ≥ (1 + ε) lnn

∣∣ #τ ≥ n
)
−−−−→
n→∞

0.
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Indeed, we use the following rough bound

P
(
αγS(τ) ≥ (1 + ε) ln n

∣∣ #τ ≥ n
)
≤

P
(
αγS(τ) ≥ (1 + ε) ln n

)

P(#τ ≥ n)
.

Then, by Propositions 2.10 (iii) and 2.9 on the one hand, and by (64) on the other hand, we observe

P(#τ ≥ n) ∼
cα
an
∼ n−

1
α
+o(1) and P

(
αγS(τ) ≥ (1+ε) ln n

)
∼ n−(1+ε) 1

α
+o(1),

which implies (70). �

We then recall from (38) that under P( · |#τ = n), τ and its mirror image have the same law.

Therefore, (41) in Lemma 3.1 applies with m=⌊ 78n⌋ and one gets, for all sufficiently large n,

P
(
S(τ) ≥ 1+2ε

αγ lnn
∣∣#τ = n

)
≤ 2P

(
S(R⌊ 7

8 n⌋
τ) ≥ 1+ε

αγ lnn
∣∣#τ = n

)
+P

(
|τ | > 1

2n
∣∣#τ = n

)
.

By Proposition 2.11 (i), P
(
|τ | > 1

2n
∣∣#τ = n

)
→ 0 when n → ∞. To control the first

term of the right-hand side of the previous inequality, we use Proposition 2.11 (ii): to that end,

recall from Proposition 2.7 (ii) that R⌊ 7
8 n⌋

τ is a measurable function of the Lukasiewicz path

(Wk(τ))0≤k≤⌊ 7
8 n⌋

. Therefore, for all n ∈ N and c ∈ (0,∞),

xn := P
(
S(R⌊ 7

8 n⌋
τ) ≥ 1+ε

αγ lnn
∣∣ #τ = n

)

= E

[
1{

S(R
⌊ 7
8 n⌋

τ)≥
1+ε
αγ lnn

}D(7/8)
n

(
W⌊ 7

8 n⌋
(τ)

) ∣∣ #τ ≥ n
]

≤ E

[
1
{S(τ)≥

1+ε
αγ lnn}

D(7/8)
n

(
W⌊ 7

8 n⌋
(τ)

) ∣∣ #τ ≥ n
]

≤ cP
(
S(τ)≥ 1+ε

αγ lnn
∣∣#τ≥n

)
+ E

[
1{

D
(7/8)
n (W

⌊ 7
8 n⌋

(τ))≥c
}D(7/8)

n

(
W⌊ 7

8 n⌋
(τ)

) ∣∣#τ≥n
]

by (37). We make n → ∞ then c → ∞, and thus, by (70) and (25) in Proposition 2.11, we get

lim supn→∞ xn = 0. This implies (69) and readily completes the proof of Theorem 1.2. �

4.2 Proof of Theorem 1.3

In all this section, we assume that the critical offspring distribution µ belongs to the domain of

attraction of a 1-stable law, and more precisely, we assume that Proposition 2.12 (a-c) hold. It is

convenient to set

∀x ∈ [0,∞), qx = P
(
S(τ) ≥ x

)
.

Recall from (14) that ∆(τ) stands for the maximal out-degree of τ , which is the relevant quantity

to consider in the 1-stable cases. Note that P(∆(τ)≥n) ≥ µ([n,∞)) > 0 for all n ∈ N. We first

prove the following estimates.

Lemma 4.1 Under the same assumption and notations as in Theorem 1.3, the following holds true

for all ε ∈ (0, 1) and all κ ∈ (0,∞).

(i) There is n0 ∈ N that depends on ε and κ such that for all integers n ≥ n0,

bnq(1+ε)Υ( 1
bn

) ≤ (lnn)−κ and bnq(1−ε)Υ( 1
bn

) ≥ (ln n)κ.

(ii) Recall from (9) the definition of Λ. Then, limn→∞ bnΛ(
1
bn
)q(1+ε)Υ( 1

bn
) = 0.

(iii) It holds limn→∞ nκ P
(
S(τ) ≤ (1−ε)Υ

(
1
bn

) ∣∣∆(τ) > 1
2bn

)
= 0.
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Proof. Let us prove (i). By Proposition 3.12 then Proposition 3.14, we have

Υ
(
q(1±ε)Υ( 1

bn
)

)
∼ (1± ε)Υ

(
1
bn
) ∼ (1± ε)Υ

( (ln bn)∓κ

bn

)
.

Then, for all sufficiently large n, Υ
(
q(1+ε)Υ( 1

bn
)

)
>Υ

( (ln bn)−κ

bn

)
and Υ

(
q(1−ε)Υ( 1

bn
)

)
<Υ

( (ln bn)κ
bn

)
,

which implies that

bnq(1+ε)Υ( 1
bn

) ≤ (ln bn)
−κ and bnq(1−ε)Υ( 1

bn
) ≥ (ln bn)

κ

because Υ decreases (see Lemma 3.10). By Proposition 2.12 (iii), bn varies regularly with index 1
and by Proposition 2.8 (i), ln bn ∼ lnn, which implies the desired result.

We use similar arguments to prove (ii): by Proposition 3.12 then Proposition 3.14, we get

Υ
(
q(1+ε)Υ( 1

bn
)

)
∼ (1 + ε)Υ

(
1
bn
) ∼ (1 + ε)Υ

(
1
bn
Λ
(

1
bn

)−1−κ)
,

so Υ
(
q(1+ε)Υ( 1

bn
)

)
>Υ

(
1
bn
Λ
(

1
bn

)−1−κ)
for all sufficiently large n, which implies that

bnΛ
(

1
bn

)
q(1+ε)Υ( 1

bn
)≤Λ

(
1
bn

)−κ
.

This implies (ii) since limx→∞Λ(1/x)=∞ by Proposition 3.11 (ii).
To prove (iii), we first use (i) with e.g. κ=2. Then, Proposition 3.9 implies that

nκP
(
S(τ) ≤ (1−ε)Υ

(
1
bn

) ∣∣∆(τ) > 1
2bn

)
≤ nκ exp

(
− 1

2bnq(1−ε)Υ( 1
bn

)

)
≤ nκ exp

(
− 1

2(ln n)
2
)

for all sufficiently large n, which entails the desired result. �

The proof of Theorem 1.3 is cut into two parts: firstly an upper bound and secondly a lower bound.

Upper bound. We first prove for all ε ∈ (0, 1) that

(71) P
(
S(τ) ≥ (1 + ε)Υ

(
1
bn

) ∣∣ #τ ≥ n
)
−−−−→
n→∞

0.

To that end, we use a direct upper bound, then we combine Lemma 2.13 with Proposition 3.11 (ii):

P
(
S(τ) ≥ (1+ε)Υ

(
1
bn

) ∣∣ #τ ≥ n
)
≤
q(1+ε)Υ( 1

bn
)

P(#τ ≥ n)
∼ Λ

(
1
bn

)
bn q(1+ε)Υ( 1

bn
).

Next, we use Lemma 4.1 (ii) to conclude. �

Lower bound. We next prove for all ε ∈ (0, 1) that

(72) P
(
S(τ) ≤ (1− ε)Υ

(
1
bn

) ∣∣ #τ ≥ n
)
−−−−→
n→∞

0.

To that end, we first prove that

(73) lim
n→∞

P
(
#τ < n

∣∣ ∆(τ) ≥ 2bn
)
−−−−→
n→∞

0.

Indeed, by (59) in Proposition 3.9 combined with Markov inequality, for all λ ∈ (0,∞), it holds

P
(
#τ < n

∣∣∆(τ) ≥ 2bn
)
≤ eλE

[
e−

λ
n
#τ

]⌊2bn⌋.
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Recall from Proposition 2.7 (iv) that E
[
exp

(
−λn#τ

)]⌊2bn⌋=E
[
exp

(
−λnH⌊2bn⌋

)]
. The convergence

(28) with x=2 then implies that limn→∞ E
[
e−

λ
n
#τ

]⌊2bn⌋=e−2λ. Thus,

lim sup
n→∞

P
(
#τ < n

∣∣∆(τ) ≥ 2bn
)
≤ e−λ −−−−→

λ→∞
0

which entails (73). �

We next prove that for all c ∈ (0,∞),

(74) lim sup
n→∞

P
(
∆(τ) ≥ cbn

)

P(#τ ≥ n)
≤

4

c
.

Indeed, we first prove the case where c = 2. Observe that

u(n) :=
P
(
∆(τ) ≥ 2bn

)

P(#τ ≥ n)
= P

(
∆(τ) ≥ 2bn

∣∣#τ ≥ n
)
+ u(n)P

(
#τ < n

∣∣∆(τ) ≥ 2bn
)
.

By (73), for all sufficiently large n, we get P
(
#τ < n

∣∣∆(τ) ≥ 2bn
)
≤ 1

2 . It therefore implies

u(n)≤ 2P
(
∆(τ)≥ 2bn

∣∣#τ ≥ n
)
→ 2P(J ≥ 2) = 1 by (31) in Proposition 2.15. This proves (74)

when c=2. Then, recall from Proposition 2.12 (iii) that (bn) is 1-regularly varying. Then for all

sufficiently large n, we get cbn ≥ 2b⌊ 1
4 cn⌋

and thus

P
(
∆(τ) ≥ cbn

)

P(#τ ≥ n)
≤

P
(
∆(τ) ≥ 2b⌊ 1

4 cn⌋

)

P(#τ ≥ n)
= u(⌊

1

4
cn⌋)

P(#τ ≥ ⌊ 14 cn⌋)

P(#τ ≥ n)
.

This implies the desired result since we know from Lemma 2.13 that the sequence n 7→P(#τ ≥n)
varies regularly with exponent −1, and since lim supn→∞ u(⌊ 14 cn⌋) ≤ 1 as proved above. �

We complete the proof of (72) as follows.

vn := P
(
S(τ) ≤ (1−ε)Υ

(
1
bn

) ∣∣ #τ ≥ n
)

≤
P
(
S(τ) ≤ (1−ε)Υ

(
1
bn

)
; ∆(τ) > 1

2bn
)

P(#τ ≥ n)
+ P

(
∆(τ) ≤ 1

2bn
∣∣ #τ ≥ n

)

≤
P
(
∆(τ) > 1

2bn
)

P(#τ ≥ n)
P
(
S(τ) ≤ (1−ε)Υ

(
1
bn

) ∣∣ ∆(τ) > 1
2bn

)
+ P

(
∆(τ)≤ 1

2bn
∣∣ #τ ≥ n

)
.

This first term of the above right-hand side converges to 0 by (74) with c=1/2 and by Lemma 4.1

(iii). Moreover, (31) in Proposition 2.15 asserts that limn→∞ P
(
∆(τ) ≤ 1

2bn
∣∣#τ ≥ n

)
= 0. This

completes the proof of (72), and of Theorem 1.3. �

4.3 Proof of Theorem 1.4

Throughout this section, we assume there exists a function L that varies slowly at ∞ such that

µ(n) ∼ n−2L(n). This implies that µ([n,∞)) ∼ n−1L(n) so, by Proposition 2.12, µ belongs to

the domain of attraction of a 1-stable law. The proof of Theorem 1.4 is separated into two parts:

firstly a lower bound and secondly an upper bound.

Lower bound. We prove for all ε ∈ (0, 1) that

(75) P
(
S(τ) ≤ (1−ε)Υ

(
1
bn

) ∣∣ #τ = n
)
−−−−→
n→∞

0.
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Indeed, observe that

vn := P
(
S(τ) ≤ (1−ε)Υ

(
1
bn

) ∣∣ #τ = n
)

≤
P
(
S(τ) ≤ (1−ε)Υ

(
1
bn

)
; ∆(τ) > 1

2bn
)

P(#τ = n)
+ P

(
∆(τ) ≤ 1

2bn
∣∣ #τ = n

)

≤
P
(
∆(τ)> 1

2bn
)

nP(#τ = n)
nP

(
S(τ) ≤ (1−ε)Υ

(
1
bn

) ∣∣∆(τ) > 1
2bn

)
+ P

(
∆(τ) ≤ 1

2bn
∣∣#τ = n

)
.

Then recall from (30) in Lemma 2.13 that nP(#τ = n) ∼ P(#τ ≥ n). Thus, by (74), we get

lim sup
n→∞

P
(
∆(τ) > 1

2bn
)

nP(#τ = n)
≤ 8.

By Lemma 4.1 (iii), limn→∞ nP
(
S(τ)≤(1−ε)Υ

(
1
bn

) ∣∣∆(τ)> 1
2bn

)
=0. Then, (32) in Proposition

2.15 applies and asserts that limn→∞ P
(
∆(τ)≤ 1

2bn
∣∣#τ=n

)
=0, which finally implies (75). �

Upper bound. We finally show for all ε ∈ (0, 1) that

(76) P
(
S(τ) ≥ (1+ε)Υ

(
1
bn

) ∣∣ #τ = n
)
−−−−→
n→∞

0.

To prove (76), we use the result of Kortchemski & Richier [26, Theorem 21] that is recalled in

Proposition 2.16 and that shows that the law of the Lukasiewicz path (Wj(τ))0≤j≤n of τ under

P( · |#τ = n) is close in total variation distance to the law of (Z
(n)
j )0≤j≤n as defined in (34).

First, let us briefly recall the definition of Z(n): let (Wn)n∈N be a left-continuous random walk

starting at 0 and whose jump distribution is given by (7). We recall from (33) the two notations

In = −min0≤j≤n−1Wj and σn = inf{0≤k≤n−1 : Wk=−In}. Then,

Z
(n)
j =Wσn+j + In if 0≤j <n−σn and Z

(n)
j = In−1 +Wj−(n−σn) if n≥j≥n−σn.

Next, we interpret Proposition 2.16 in terms of trees, i.e. we view Z(n) as the Lukasiewicz path of

a random tree τ (n). Namely, observe that Z
(n)
0 = 0, Z

(n)
n = −1, and the other values of Z(n) are

nonnegative. Plus, maybe except at the cutting time n−σn−1 when Z
(n)
n−σn−Z

(n)
n−σn−1=−1−Wn−1,

the jumps of Z(n) are larger or equal to −1. Consequently, if Wn−1 ≤ 0 then Proposition 2.7 (i)
applies and Z(n) is the Lukasiewicz path associated with a tree τ (n). If Wn−1>0 then we take τ (n)

equal to the star-tree with n−1 leaves, which we denote by ⋆n (or any tree with n vertices).

(77) If Wn−1≤0 then (Wj(τ
(n)))0≤j≤n=(Z

(n)
j )0≤j≤n and if Wn−1>0 then τ (n)=⋆n.

Moreover, observe that Proposition 2.12 (c) easily implies that P
(
τ (n)=⋆n

)
=P(Wn−1>0)→ 0.

Thus, thanks to Proposition 2.16, in order to prove (76), we only need to show

(78) P
(
τ (n) 6= ⋆n ; S(τ

(n)) ≥ (1+ε)Υ
(

1
bn

))
−−−−→
n→∞

0.

To that end, we discuss a decomposition of τ (n) at the ‘cutting time’ n−σn−1 and we recall

from (22) in Proposition 2.7 the existence of an i.d.d. sequence (τp)p∈N of GW(µ)-trees given by

∀p ∈ N, (p+WHp+j)0≤j≤Hp+1−Hp =
(
Wj(τp)

)
0≤j≤#τp

,

where Hp = inf{j ∈N : Wj =−p}. Let us denote by u
(n)
0 =∅<u

(n)
1 <. . . <u

(n)
n−1 the vertices of

τ (n) listed in lexicogaphic order. From the definition of Z(n) and thanks to Proposition 2.7 (ii), we

first derive that if Wn−1≤0 then

(79) Rn−σn−1

(
τ (n)

)
= Rn−σn−1

(
τIn

)
and k

u
(n)
n−σn−1

(τ (n)) = −Wn−1,
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where we recall from (20) in Proposition 2.7 that Rm(t) = Rmt stands for the tree consisting of the

first m + 1 vertices of t taken in lexicographic order. We now look at the subtrees that are grafted

either at u
(n)
n−σn−1 or to the right of its ancestral line: namely, the subtrees that are grafted at the

following set of vertices

B =
{
v ∈ τ (n) : ←−v � u

(n)
n−σn−1 and v > u

(n)
n−σn−1

}
.

If we denote by v(0)<v(1)<. . .<v(#B − 1) the vertices of B listed in lexicographic order, then

by definition of Z(n) and by definition of the trees τp as recalled above, we get that if Wn−1 ≤ 0
then

(80) θv(p)τ
(n) = τp, 0 ≤ p ≤ In − 1 = #B − 1.

To prove (78), we then use (39) in Lemma 3.1 (i) that asserts on the event {Wn−1≤0} that

S
(
τ (n)

)
≤ 1 + max

(
S
(
Rn−σn−1

(
τ (n)

))
,max
v∈B
S
(
θvτ

(n)
))
.

Then, the identities (79) and (80), together with the monotony property (37) of S , yield that

S
(
τ (n)

)
≤ 1 + max

0≤p≤In
S
(
τp
)
.

Therefore, we obtain the following:

xn := P

(
τ (n) 6= ⋆n ; S(τ

(n)) ≥ (1+ε)Υ
(

1
bn

))

≤ P

(
max

0≤p≤⌊2bn⌋
S
(
τp
)
≥ (1+ε)Υ

(
1
bn

)
− 1

)
+ P

(
In > 2bn

)

≤ (2bn + 1)P
(
S(τ) ≥ (1+ε)Υ

(
1
bn

)
− 1

)
+ P

(
1
nH⌊2bn⌋ ≤ 1

)
,

since the τp are GW(µ)-trees. Then, recall from (28) that 1
nH⌊2bn⌋ → 2 in probability, which implies

that P
(
1
nH⌊2bn⌋≤ 1

)
→ 0. Then, Lemma 4.1 (i) asserts that bnP

(
S(τ)≥ (1+ε)Υ

(
1
bn

)
−1

)
→ 0,

which finally implies (78) and which completes the proof of Theorem 1.4. �

We conclude this article by providing an asymptotic equivalent of the rescaling sequence Υ
(

1
bn

)
,

that gives the order of S(τ) under P( · |#τ = n), in the three cases considered in Example 3.13.

Example 4.2 We recall from Proposition 2.12 (iii) that bn varies regularly with index 1, which

implies ln bn ∼ lnn by Proposition 2.8 (i).

(a) Let κ ∈ (0,∞). We consider the case where L(x) = (ln x)−1−κ for all x ∈ (0,∞). Recall

from Example 3.13 that Υ(s) ∼0+ (ln 1
s )/(ln ln

1
s ). Therefore, we easily get

Υ
(

1
bn

)
∼

lnn

ln lnn
.

(b) Let κ ∈ (0, 1). We next consider the case where L(x) = exp(−(ln x)κ) for all x ∈ (0,∞).
Recall from Example 3.13 that Υ(s) ∼0+

1
1−κ(ln

1
s )/(ln ln

1
s ). Therefore, we easily get

Υ
(

1
bn

)
∼

1

1−κ
·

lnn

ln lnn
.

(c) Let us finally consider the case where L(x) = exp(− lnx/ ln lnx) for all x ∈ (ee,∞). Recall

from Example 3.13 that Υ(s) ∼0+ (ln 1
s )/(ln ln ln

1
s ). Therefore, we easily get

Υ
(

1
bn

)
∼

lnn

ln ln lnn
.

�
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