Pointwise Maximal Leakage on General Alphabets - Archive ouverte HAL
Communication Dans Un Congrès Année : 2023

Pointwise Maximal Leakage on General Alphabets

Résumé

Pointwise maximal leakage (PML) is an operationally meaningful privacy measure that quantifies the amount of information leaking about a secret $X$ to a single outcome of a related random variable $Y$. In this paper, we extend the notion of PML to random variables on arbitrary probability spaces. We develop two new definitions: First, we extend PML to countably infinite random variables by considering adversaries who aim to guess the value of discrete (finite or countably infinite) functions of $X$. Then, we consider adversaries who construct estimates of $X$ that maximize the expected value of their corresponding gain functions. We use this latter setup to introduce a highly versatile form of PML that captures many scenarios of practical interest whose definition requires no assumptions about the underlying probability spaces.
Fichier principal
Vignette du fichier
2304.07722.pdf (216.67 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-04155259 , version 1 (07-07-2023)

Identifiants

Citer

Sara Saeidian, Giulia Cervia, Tobias J. Oechtering, Mikael Skoglund. Pointwise Maximal Leakage on General Alphabets. 2023 IEEE International Symposium on Information Theory, Jun 2023, Taipei, Taiwan. ⟨hal-04155259⟩
9 Consultations
16 Téléchargements

Altmetric

Partager

More