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Abstract—Pointwise maximal leakage (PML) is an
operationally meaningful privacy measure that quantifies
the amount of information leaking about a secret X to a single
outcome of a related random variable Y . In this paper, we extend
the notion of PML to random variables on arbitrary probability
spaces. We develop two new definitions: First, we extend PML to
countably infinite random variables by considering adversaries
who aim to guess the value of discrete (finite or countably
infinite) functions of X . Then, we consider adversaries who
construct estimates of X that maximize the expected value of
their corresponding gain functions. We use this latter setup to
introduce a highly versatile form of PML that captures many
scenarios of practical interest whose definition requires no
assumptions about the underlying probability spaces.

I. INTRODUCTION

Recently, the problem of private data analysis has attracted

much attention from an information-theoretic perspective. A

wide variety of privacy measures, for example, mutual infor-

mation [1–5], measures based on f -divergences [6, 7], prob-

ability of correctly guessing [8], information privacy [9, 10],

and log-lift [11, 12] are studied that aim to quantify the amount

of information leaking about a (private) random variable X by

disclosing a related random variable Y . (See [13] for a recent

survey on information-theoretic privacy measures.) Pointwise

maximal leakage (PML) [14, 15] is one such measure that is

particularly robust and operationally meaningful. Introduced

by Saeidian et al. [14], PML is a generalization of the pre-

existing notion of maximal leakage [16–18]. While maximal

leakage quantifies the information leaking from the average

outcome of the random variable Y , PML can be used to

measure the information leaking from each individual outcome

Y = y. Hence, the pointwise definition sets up a more

flexible framework in which information leakage is viewed

as a random variable that can be bounded and controlled

in different ways [14, Sec. III]. The original definition of

maximal leakage is also retrieved as the expected value of

the information leakage random variable.

To define PML, [14] exploits and unifies two seemingly

different formalizations of maximal leakage: the randomized

function view [18] and the gain function view [19]. The

randomized function view of leakage assumes that an ad-

versary attempts to guess the value of an arbitrary discrete

(randomized) function of X , denoted by U . Then, PML is
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defined as (the logarithm of) the multiplicative increase in the

probability of correctly guessing the value of U after observing

an outcome Y = y, compared to the prior probability of

correctly guessing the value of U . On the other hand, the gain

function view of leakage considers an adversary who wishes to

maximize the expected value of an arbitrary non-negative gain

function. In this case, PML is defined as (the logarithm) of the

multiplicative increase in the expected gain of an adversary

who has observed Y = y, compared to the prior expected

gain. In [14, Thm. 2], it is shown that when X takes values

in a finite alphabet, the two definitions of leakage are in fact

equivalent.

While PML is a robust and meaningful privacy measure,

currently its definition is restricted to finite alphabet random

variables. Our goal in this paper is to extend the notion

of PML to random variables on general measurable spaces.

In [18, Thm. 7], Issa et al. undertake a similar task and define

a version of maximal leakage on general alphabets. Their

definition, however, has certain limitations. Most importantly,

while X is assumed to be a random variable on a measurable

space, their setup still concerns an adversary who aims to guess

the value of a finite alphabet random variable U , i.e., they

consider the randomized function view of leakage. While this

setup is suitable when X has a discrete (finite or countably

infinite) alphabet, it results in a conceptually weaker definition

in the general case as it is assumed that adversaries do not

exploit the generalized structure of the space of X which is

no longer restricted to be purely atomic. For example, if X
is an absolutely continuous random variable (with respect to

the Lebesgue measure), then an adversary can reasonably aim

to construct a real-valued guess of X so as to maximize a

gain function that is decreasing in the mean squared error.

Such attack scenarios cannot be directly studied using the

randomized function view of leakage.

In this paper, we generalize the definition of PML in two

directions: First, in Section III, we extend the randomized

function view of leakage to countable probability spaces

(Thm. 2). Then, in Section IV, we use the gain function

view of leakage to obtain a universal definition of PML

that requires no assumptions about the underlying probability

spaces (Thm. 3). This latter setup considers an adversary who

is interested in maximizing the expected value of an arbitrary

non-negative and measurable gain function, so the resulting

notion of privacy is highly robust. We show that in both

cases PML can be written as the Rényi divergence [20, 21]

of order infinity of the posterior distribution of X from the

http://arxiv.org/abs/2304.07722v1


prior distribution of X . Finally, in Corollary 1 we discuss the

nuances of defining an information leakage random variable

in the general setup and show how densities can be useful

for deriving a form of PML that is a measurable function

of Y . Throughout the paper, we give examples of common

attack scenarios and evaluate PML for typical mechanisms,

for example, adding independent Gaussian noise to a Gaussian

random variable X (Example 4).

II. NOTATION AND BACKGROUND

A. Notation

We adopt the following notational conventions: R+ =
[0,∞), R̄+ = [0,∞], Z = {. . . ,−1, 0, 1, . . .}, N = {0, 1, . . .},

N
∗ = {1, 2, . . .}, and [n] = {1, . . . , n} with n ∈ N

∗. Sets are

represented by uppercase letters, e.g., E, and 1E denotes the

indicator function of E. Collections of sets are represented by

calligraphic letters, e.g., E . If E is a topological space then

BE denotes the Borel σ-algebra on E. Given a measurable

space (E, E), we use E+ to denote the set of all functions that

are measurable relative to E and BR̄+
. Suppose µ and ν are

measures on (E, E) and assume that µ is σ-finite. If ν ≪ µ,

then we write p = dν
dµ

, or alternatively, ν(dx) = p(x)µ(dx)

to imply that
∫

E
f(x) ν(dx) =

∫

E
f(x) p(x) µ(dx) for all

f ∈ E+, where p ∈ E+ is the Radon-Nikodym derivative of ν
with respect to µ.

Throughout the paper, we assume that a probability space

(Ω,H,P) is fixed in the background. Given f ∈ H+, the

essential supremum of f with respect to P is ess sup
P
f =

sup{c ∈ R+ : P(f > c) > 0}. A mapping X : Ω → E
is called a random variable taking values in (E, E) if X is

measurable relative to H and E . We use PX to denote the

distribution of X . A mapping PY |X : E × F → [0, 1] is

called a transition probability kernel (or simply kernel) from

(E, E) into (F,F) if the mapping x 7→ PY |X=x(B) is in E+
for all B ∈ F , and PY |X=x(·) is a probability measure on

(F,F) for all x ∈ E. Let PXY be a probability measure

on the product space (E × F, E ⊗ F) with marginals PX

and PY . Then we write PXY (dx, dy) = PX(dx)PY |X=x(dy)
to imply that E f =

∫

E×F
f(x, y)PXY (dx, dy) =

∫

E
PX(dx)

∫

F
f(x, y) PY |X=x(dy) for all f ∈ (E ⊗ F)+.

Suppose Y is a random variable taking values in (F,F).
Let σY denote the σ-algebra generated by Y on Ω. We use

E[f | Y ] to denote the conditional expectation of f ∈ H+

given σY . Since E[f | Y ] ∈ (σY )+, then there exists φ ∈ F+

such that E[f | Y ] = φ ◦ Y . Hence, we use the notation

E[f | Y = y] to represent φ(y) for each y ∈ F .

B. PML for finite alphabet random variables

We begin by recalling the definition of Rényi divergence of

order infinity [20, 21], which we later use to provide simplified

expressions for PML.

Definition 1 (Rényi divergence of order ∞ [21, Thm. 6]):

Let P and Q be probability measures on the measurable space

(Ω,H). Let µ be a σ-finite measure satisfying P ≪ µ and

Q ≪ µ. The Rényi divergence of order ∞ of P from Q is

defined as

D∞(P‖Q) = log sup
A∈H

P (A)

Q(A)
= log

(

ess sup
P

p

q

)

,

where p = dP
dµ

and q = dQ
dµ

.

If P ≪ Q the divergence can also be expressed as

D∞(P‖Q) = log

(

ess sup
P

dP

dQ

)

= log

(

ess sup
Q

dP

dQ

)

.

On the other hand, if P 6≪ Q, then D∞(P‖Q) = ∞.1 When

the sample space Ω is countable we may write (1) in the form

D∞(P‖Q) = log

(

sup
ω∈Ω

P (ω)

Q(ω)

)

.

In [14], Saeidian et al. use two different threat models to

introduce PML on finite spaces: the randomized function view

of leakage [14, Def. 1] based on the setup of Issa et al. [18],

and the gain function view of leakage [14, Cor. 1] based on

the setup of Alvim et al. [19]. The following definition is a

generalization of [14, Def. 1] where the alphabets of X , Y ,

and U are no longer restricted to be finite but are allowed to

be countable.

Definition 2 (Randomized function view of leakage): Sup-

pose X is a random variable on the discrete set E, and Y is

a random variable on the discrete set F . Let PXY denote the

joint distribution of X and Y . The pointwise maximal leakage

from X to y ∈ F is defined as2

ℓPXY
(X → y) := log sup

PU|X

supPÛ|Y
P

(

U = Û | Y = y
)

maxu∈G PU (u)
,

where U is any random variable on a countable set G such
that the Markov chain U −X − Y holds.

Theorem 1 ([14, Thm. 1]): If X has a finite support, then

the pointwise maximal leakage from X to y ∈ F , described

by Definition 2, is given by

ℓPXY
(X → y) = D∞(PX|Y=y‖PX),

where PX|Y=y denotes the posterior distribution of X given
y ∈ F .

III. PML FOR DISCRETE RANDOM VARIABLES:

RANDOMIZED FUNCTION VIEW

In this section, we show that the result of Theorem 1 can

be extended to cases where the support of X is countably

infinite. Note that the randomized function view described

by Definition 2 is a special case of the more general gain

function view presented in Definition 3 (see Example 2). Still,

Definition 2 is of independent interest for us since it provides

a strong operational meaning for PML on discrete probability

spaces while its corresponding result in Theorem 2 can be

proved without any measure theoretic intricacies.

Theorem 2: Let X and Y be random variables taking values

in the countable sets E and F , respectively. The pointwise

1We use the conventions that 0/0 = 1 and x/0 = ∞ if x > 0.
2To be able to define the leakage for all y ∈ F when F is a countable

set, we may assume that P(· | Y = y) = P(·) if PY (y) = 0. That is,
conditioning on events with probability zero equals no conditioning.



maximal leakage from X to y ∈ F , described by Definition 2,

is given by

ℓPXY
(X → y) = D∞(PX|Y =y‖PX).

Theorem 2 is proved in Appendix A.

Example 1 (Geometric distribution): Suppose X ∼
Geom(p) with p ∈ (0, 1). Let Y be a binary random variable

defined through the kernel PY |X=x(0) = 1−PY |X=x(1) = qx

with q ∈ (0, 1) and x ∈ N
∗. Then, PY (0) = 1 − PY (1) =

pq
1−q+pq

, and

ℓPXY
(X → 0) = log sup

x∈N∗

PY |X=x(0)

PY (0)
= log

1− q + pq

p
,

ℓPXY
(X → 1) = log sup

x∈N∗

PY |X=x(1)

PY (1)
= log

1− q + pq

1− q
.

IV. PML ON ARBITRARY PROBABILITY SPACES: GAIN

FUNCTION VIEW

In this section, we present a universal definition of PML

that not only showcases the robustness of PML as a privacy

measure but also requires no assumptions about the underlying

probability spaces. The setup is an extension of [19].

Definition 3 (Gain function view of leakage): Suppose X
is a random variable taking values in (E, E) with distribution

PX and Y is a random variable taking values in (F,F). Let

PXY denote the joint distribution of X and Y . The pointwise

maximal leakage from X to y ∈ F is

ℓPXY
(X → y) := log sup

(D,D),
g∈Γ

sup
PW |Y

E[g(X,W ) | Y = y]

supw∈D E[g(X,w)]
, (1)

where the supremum in the numerator is over all transition

probability kernels PW |Y from (F,F) into (D,D), and Γ
denotes the set of all gain functions defined as

Γ := {g ∈ (E ⊗ D)+ | sup
w∈D

E[g(X,w)] < ∞}.

The above definition models an adversary who is interested in

constructing an estimate of X , denoted by W , which would

maximize the expected value of her gain function. W is a

random variable taking values in (D,D) and gain functions

are picked from the set Γ. Then, to measure the amount

of information leaking about X by disclosing an outcome

Y = y, we evaluate the ratio of the adversary’s expected gain

given observation y ∈ F , and her expected gain without any

observations. PML is then defined by taking the supremum of

this ratio over all possible measurable spaces (D,D) and all

g ∈ Γ. Note that the requirement supw∈D E[g(X,w)] < ∞
implies that the adversary chooses a function such that her

expected gain can potentially be improved upon observing

y ∈ F .

Below, we provide two examples of gain functions that

describe typical attack scenarios. The first one concerns an

adversary who wishes to guess the value of a discrete function

of X , denoted by U , which retrieves the setup of [18, Thm. 7].

This setup can be used to model a hypothesis-testing adversary.

For example, we may take U = 1A∗(X) to model a binary

hypothesis test for determining whether or not X is in the set

A∗ ∈ E . The second example describes an adversary who aims

to approximate the value of a random variable on a separable

metric space.

Example 2 (Guessing a discrete function of X): Suppose U
is a discrete random variable taking values in the set A and

induced by the kernel PU|X . To model an adversary who is

interested in guessing the value of U we let D = A, define

D to be the discrete σ-algebra on A (i.e., its power set), and

express the gain function g• as follows:

g•(x,w) = PU|X=x(w), x ∈ E,w ∈ D.

In this case, the denominator of (1) describes the prior

probability of correctly guessing the value of U whereas

the numerator represents the posterior probability of correctly

guessing U given Y = y.

Example 3 (Approximate guessing in metric spaces): Let

(A, ρ) be a complete and separable metric space. Suppose U
is a random variable taking values in (A,BA) induced by a

kernel PU|X . Fix ε > 0. Our goal is to model an adversary

who attempts to guess the value of U within a radius of ε.

Suppose D is a countable dense subset of A and D is the

discrete σ-algebra on D. Let Bε(w) = {a ∈ A : ρ(a, w) < ε}
denote the open ball of radius ε centered at w ∈ D. Consider

the gain function g∼ defined as

g∼(x,w) = PU|X=x(Bε(w)), x ∈ E,w ∈ D.

Note that the countability of D ensures that g∼ defined above

is E ⊗ D-measurable. Then, for fixed w ∈ D we have

E[g∼(X,w)] =

∫

PU|X=x(Bε(w))PX (dx) = PU (Bε(w))

= P[U ∈ Bε(w)].

Hence, evaluating the denominator of (1) with g∼ yields the

prior probability of approximately guessing U . Similarly, it

can be verified that the numerator of (1) evaluated with g∼
describes the posterior probability of approximately guessing

U given Y = y.

We are now in place to state the main result of our paper:

that PML in the form described by Definition 3 can too be

written as the Rényi divergence of the posterior distribution

of X from the prior distribution of X . The proof is inspired

by a result of van Erven and Harremoës [21, Thm. 2] where

it is shown that the general expression for Rényi divergence

can be written as the supremum of the divergence evaluated

over all finite and measurable partitions of the underlying σ-

algebra.

Theorem 3 requires a single assumption: that the joint

distribution PXY can be disintegrated into the marginal PY

and a transition probability kernel PX|Y from (F,F) into

(E, E). We discuss this assumption in Remark 1.

Theorem 3: Suppose there exists a transition probability ker-

nel PX|Y from (F,F) into (E, E) such that PXY (dx, dy) =



PY (dy)PX|Y =y(dx). Then, the pointwise maximal leakage

from X to y ∈ F , described by Definition 3, is given by

ℓPXY
(X → y) = D∞(PX|Y =y‖PX). (2)

Proof: Fix y ∈ F . To simplify the numerator of (1) we

make use of the following lemma proved in Appendix B.

Lemma 1: Let W be a random variable induced by a

transition probability kernel PW |Y from (F,F) into (D,D).
Given g ∈ Γ, if there exists a transition probability kernel

PX|Y from (F,F) into (E, E) such that PXY (dx, dy) =
PY (dy)PX|Y =y(dx), then

sup
PW |Y

E[g(X,W ) |Y = y] = sup
w∈D

∫

E

g(x,w)PX|Y =y(dx),

(3)

where the supremum on the LHS is over all kernels from

(F,F) into (D,D).
First, we assume that PX|Y=y ≪ PX . For notational

convenience, let f(x) :=
dPX|Y =y

dPX
(x) denote the Radon-

Nikodym derivative of PX|Y=y with respect to PX . We begin

by showing that ℓPXY
(X → y) ≤ D∞(PX|Y =y‖PX). Fix an

arbitrary measurable space (D,D), and a gain function g ∈ Γ.

We can write

sup
PW |Y

E[g(X,W ) | Y = y]

sup
w∈D

E[g(X,w)]
=

sup
w∈D

∫

E
g(x,w) PX|Y =y(dx)

sup
w∈D

∫

E
g(x,w) PX(dx)

≤ sup
w∈D

∫

E
g(x,w) PX|Y =y(dx)
∫

E
g(x,w) PX(dx)

= sup
w∈D

∫

E
g(x,w) f(x) PX(dx)
∫

E
g(x,w) PX(dx)

≤ ess sup
PX

f

= exp
(

D∞(PX|Y =y‖PX)
)

.

Thus, ℓPXY
(X → y) ≤ D∞(PX|Y =y‖PX).

Now, we show that ℓPXY
(X → y) ≥ D∞(PX|Y =y‖PX).

Since PX|Y=y ≪ PX we may, without loss of generality,

assume that f(x) < ∞ for all x ∈ E. Let D = Z ∪ {−∞},

and suppose D is the discrete σ-algebra on D. Fix ε > 0 and

consider the following (countable and disjoint) partition of E:

Bε
w = {x ∈ E : ewε ≤ f(x) < e(w+1)ε}, w ∈ D, (4)

which is indexed by D. Note that since f(x) is E-measurable,

Bε
w ∈ E for all w ∈ D. Let us define the gain function g∗ :

E ×D → R+ as follows:

g∗(x,w) =

{

1
PX (Bε

w) 1Bε
w
(x) if PX(Bε

w) > 0,

0 if PX(Bε
w) = 0.

Then, we can write

exp
(

ℓPXY
(X → y)

)

≥
supPW |Y

E[g∗(X,W ) | Y = y]

supw∈D E[g∗(X,w)]

=
supw∈D

∫

E
g∗(x,w) PX|Y=y(dx)

supw∈D

∫

E
g∗(x,w) PX(dx)

=

sup
w∈D:PX(Bε

w)>0

∫

E
1

PX (Bε
w) 1Bε

w
(x) PX|Y=y(dx)

sup
w∈D:PX(Bε

w)>0

∫

E
1

PX (Bε
w) 1Bε

w
(x) PX(dx)

=

sup
w∈D:PX(Bε

w)>0

PX|Y =y(B
ε
w)

PX (Bε
w)

sup
w∈D:PX(Bε

w)>0

PX (Bε
w)

PX (Bε
w)

= sup
w∈D:PX(Bε

w)>0

PX|Y=y(B
ε
w)

PX(Bε
w)

(5a)

= ess sup
PX

f̄ , (5b)

where

f̄(x) :=
∑

w∈D

PX|Y=y(B
ε
w)

PX(Bε
w)

1Bε
w
(x), x ∈ E.

In (5b), we have written (5a) as a function of x. We have

replaced the supremum over w in (5a) with the essential

supremum over x in (5b) because f̄ is constant on each set Bε
w.

Note that f̄(x) < ∞ for all x ∈ E even if there exists w ∈ D
such that PX(Bε

w) = 0. This is because PX|Y=y ≪ PX and

we use the convention that 0/0 = 1.

Let G := σ{Bε
w} denote the σ-algebra on E generated

by the collection of sets {Bε
w}. We argue that f̄ is (a

version of) the conditional expectation of f given G, that is,

f̄ = E[f | G]. Clearly, f̄ is G-measurable, so we should verify

that
∫

A
f dPX =

∫

A
f̄ dPX for all A ∈ G. It is, however,

sufficient to verify this equality for A = Bε
w because each

non-empty set in G can be written as a countable union of sets

in {Bε
w} and the monotone convergence theorem ensures that

∫

∪iCi
f dPX =

∑

i

∫

Ci
f dPX for each countable collection

of disjoint sets {Ci} in G. Thus, by noting that
∫

Bε
w

f̄ dPX = PX|Y=y(B
ε
w) =

∫

Bε
w

f dPX ,

for all w ∈ D we conclude that f̄ = E[f | G].
Finally, we can write

ℓPXY
(X → y) ≥ log ess sup

PX

E[f | G]

≥ log

((

ess sup
PX

f

)

e−ε

)

(6a)

= log ess sup
PX

f − ε

= D∞(PX|Y =y‖PX)− ε,

where (6a) is due to the fact that by the definition of the sets

{Bε
w} in (4), E[f | G] never differs from f by more than a

factor of eε. Then, letting ε → 0, we obtain ℓ(X → y) ≥
D∞(PX|Y =y‖PX), which completes the proof for the case

PX|Y=y ≪ PX .

On the other hand, if PX|Y=y 6≪ PX then there exists A0 ∈
E such that PX(A0) = 0 and PX|Y =y(A0) > 0. Let (D,D) be



an arbitrary measurable space, and consider the gain function

g(x,w) = 1A0
(x) for all w ∈ D. Then, it is easy to see

that E[g(X,W ) | Y = y] = PX|Y=y(A0) > 0 for all kernels

PW |Y while supw∈D E[g(X,w)] = 0. Hence, ℓ(X → y) =
D∞(PX|Y =y‖PX) = ∞, as desired.

Remark 1: Theorem 3 assumes that the joint distribution

PXY can be disintegrated into the marginal PY and a kernel

PX|Y . This can be achieved in different ways. For example,

we may start with a distribution PY and a kernel PX|Y

and construct PXY such that it satisfies PXY (dx, dy) =
PY (dy)PX|Y =y(dx). Otherwise, we may assume that (E, E)
is a Borel space [22, Def. 8.35] in which case the existence

of a regular version of the conditional probability P[ · | Y ]
restricted to σX ⊂ H is guaranteed [23, Thm. IV.2.18].

In this latter case, PX|Y is any kernel satisfying P[X ∈
A | Y ](ω) = PX|Y=Y (ω)(A) for P-almost all ω ∈ Ω and

all A ∈ E . Hence, Theorem 3 requires that PXY can be

disintegrated into a marginal distribution and a kernel, though

it is immaterial how this is actually achieved. For a detailed

discussion on disintegration theorems and the existence of

regular conditional probabilities see [24].

Equipped with Theorem 3, we can calculate the information

leaking from an observation y ∈ F . However, this result alone

is insufficient for obtaining an information leakage random

variable ℓPXY
(X → Y ). The difficulty is that the mapping

y 7→ ℓPXY
(X → y) must be F -measurable and there are

certain nuances associated with this task. For example, we

need to ensure that if PX|Y=y ≪ PX , then the Radon-

Nikodym derivative
dPX|Y =y

dPX
is jointly measurable in (x, y),

or that the set {y ∈ F : PX|Y=y ≪ PX} is measurable.

To obtain a measurable version of ℓPXY
(X → y) we use

the pragmatic assumption that the joint distribution PXY is ab-

solutely continuous with respect to the product of two σ-finite

measures on (E, E) and (F,F) [25, Sec. 2.6]. This assumption

also has the advantage of guaranteeing that PXY (dx, dy) =
PY (dy)PX|Y =y(dx) holds.

Corollary 1 (Privacy leakage random variable): Suppose

PXY is a probability measure on the product space (E×F, E⊗
F) satisfying

PXY (dx, dy) = p(x, y)µ(dx) ν(dy), x ∈ E, y ∈ F, (7)

where µ and ν are σ-finite measures on (E, E) and (F,F)
respectively, and p ∈ (E ⊗F)+. Then, there exists a transition

probability kernel PX|Y from (F,F) into (E, E) such that

1) PXY (dx, dy) = PY (dy)PX|Y=y(dx);
2) PX|Y =y ≪ PX for ν-almost all y ∈ F ; and

3) the mapping y 7→ ℓPXY
(X → y) is F -measurable.

Corollary 1 is proved in Appendix C.

Remark 2: The assumption of Corollary 1 guarantees that

PXY ≪ PX ⊗ PY , where PX ⊗ PY denotes the product of

PX and PY . This assumption also allows us to write PML in

different forms using densities:

ℓPXY
(X → y) = ess sup

PX

i(X ; y)

= log

(

ess sup
PX

fX|Y (X, y)

fX(X)

)

= log

(

ess sup
PX

fY |X(y,X)

fY (y)

)

,

where i(X ;Y ) = log dPXY

dPX⊗PY
(X,Y ) denotes the information

density (the expectation of which is mutual information),

fX|Y ∈ (E ⊗ F)+ denotes the density of PX|Y with respect

to µ, and fX ∈ E+ denotes the density of PX with respect to

µ. Densities fY |X and fY are defined similarly.

Below, we calculate PML when X has Gaussian distribution

and Y is obtained by adding independent Gaussian noise to X .

Further examples are provided in Appendix E. Here, densities

are defined with respect to the Lebesgue measure.

Example 4 (Additive Gaussian Noise): Suppose Y = X+N
where X ∼ N (0, σ2

X), N ∼ N (0, σ2
N ), and X and N are

independent. The PML from X to y ∈ R is given by

ℓPXY
(X → y) = log sup

x∈R

fY |X(y, x)

fY (y)

=
1

2
log

(

1 +
σ2
X

σ2
N

)

+
y2

2(σ2
X + σ2

N )
.

As expected, for fixed y ∈ R and σ2
X , taking σ2

N → ∞ implies

ℓPXY
(X → y) → 0.

V. CONCLUSIONS

In this paper, we have extended the notion of PML to

random variables with general alphabets. Theorem 2 describes

a direct extension of the randomized function view of leakage

from finite to countably infinite random variables. On the other

hand, Theorem 3 illustrates that the gain function view of

leakage can be used to define PML on arbitrary probability

spaces.

The following points are worth emphasizing:

Properties of PML. We have shown that in all cases PML

can be written as the Rényi divergence of order ∞ of the

posterior distribution of X from the prior distribution of X .

Hence, some properties of PML, such as non-negativity and

satisfying a data-processing inequality, are directly inherited

from the Rényi divergence [21]. We leave the detailed devel-

opment of the properties of PML as future work.

Mechanism design via PML. In Examples 4 and 7, we

have calculated PML in two typical setups involving the

Gaussian distribution. These examples signify the advantage

of PML over the average-case notion of maximal leakage:

In many situations, including these Gaussian examples and

even the discrete case of Example 5, exp
(

ℓPXY
(X → Y )

)

is

not PY -integrable (i.e., its expectation is infinite). However,

one can still characterize privacy using probability bounds

on PML. Such bounds can be useful for designing privacy-

preserving mechanisms, where simple mechanisms are con-

ceived by adding noise with suitable parameters to X . We

shall explore mechanism design with PML in future works.

REFERENCES

[1] S. Asoodeh, F. Alajaji, and T. Linder, “On maximal correlation, mutual
information and data privacy,” in 2015 IEEE 14th Canadian workshop

on information theory (CWIT). IEEE, 2015, pp. 27–31.



[2] W. Wang, L. Ying, and J. Zhang, “On the relation between identifiability,
differential privacy, and mutual-information privacy,” IEEE Transactions

on Information Theory, vol. 62, no. 9, pp. 5018–5029, 2016.
[3] A. Makhdoumi, S. Salamatian, N. Fawaz, and M. Médard, “From the

information bottleneck to the privacy funnel,” in 2014 IEEE Information

Theory Workshop (ITW 2014). IEEE, 2014, pp. 501–505.
[4] B. Rassouli and D. Gündüz, “On perfect privacy,” IEEE Journal on

Selected Areas in Information Theory, vol. 2, no. 1, pp. 177–191, 2021.
[5] J. Liao, O. Kosut, L. Sankar, and F. P. Calmon, “Tunable measures for

information leakage and applications to privacy-utility tradeoffs,” IEEE

Transactions on Information Theory, vol. 65, no. 12, pp. 8043–8066,
2019.

[6] M. Diaz, H. Wang, F. P. Calmon, and L. Sankar, “On the robustness of
information-theoretic privacy measures and mechanisms,” IEEE Trans-

actions on Information Theory, vol. 66, no. 4, pp. 1949–1978, 2019.
[7] B. Rassouli and D. Gündüz, “Optimal utility-privacy trade-off with

total variation distance as a privacy measure,” IEEE Transactions on

Information Forensics and Security, vol. 15, pp. 594–603, 2019.
[8] S. Asoodeh, M. Diaz, F. Alajaji, and T. Linder, “Estimation efficiency

under privacy constraints,” IEEE Transactions on Information Theory,
vol. 65, no. 3, pp. 1512–1534, 2018.

[9] B. Jiang, M. Seif, R. Tandon, and M. Li, “Context-aware local informa-
tion privacy,” IEEE Transactions on Information Forensics and Security,
2021.

[10] F. P. Calmon and N. Fawaz, “Privacy against statistical inference,” in
2012 50th annual Allerton conference on communication, control, and

computing (Allerton). IEEE, 2012, pp. 1401–1408.
[11] H. Hsu, S. Asoodeh, and F. P. Calmon, “Information-theoretic privacy

watchdogs,” in 2019 IEEE International Symposium on Information

Theory (ISIT). IEEE, 2019, pp. 552–556.
[12] P. Sadeghi, N. Ding, and T. Rakotoarivelo, “On properties and op-

timization of information-theoretic privacy watchdog,” in 2020 IEEE

Information Theory Workshop (ITW). IEEE, 2021, pp. 1–5.
[13] M. Bloch, O. Günlü, A. Yener, F. Oggier, H. V. Poor, L. Sankar, and R. F.

Schaefer, “An overview of information-theoretic security and privacy:
Metrics, limits and applications,” IEEE Journal on Selected Areas in

Information Theory, vol. 2, no. 1, pp. 5–22, 2021.
[14] S. Saeidian, G. Cervia, T. J. Oechtering, and M. Skoglund, “Pointwise

maximal leakage,” arXiv preprint arXiv:2205.04935, 2022.
[15] ——, “Pointwise maximal leakage,” in 2022 IEEE International Sym-

posium on Information Theory (ISIT), 2022, pp. 626–631.
[16] G. Smith, “On the foundations of quantitative information flow,” in

International Conference on Foundations of Software Science and Com-

putational Structures. Springer, 2009, pp. 288–302.
[17] C. Braun, K. Chatzikokolakis, and C. Palamidessi, “Quantitative notions

of leakage for one-try attacks,” Electronic Notes in Theoretical Computer

Science, vol. 249, pp. 75–91, 2009.
[18] I. Issa, A. B. Wagner, and S. Kamath, “An operational approach to

information leakage,” IEEE Transactions on Information Theory, vol. 66,
no. 3, pp. 1625–1657, 2019.

[19] M. S. Alvim, K. Chatzikokolakis, C. Palamidessi, and G. Smith,
“Measuring information leakage using generalized gain functions,” in
2012 IEEE 25th Computer Security Foundations Symposium, 2012, pp.
265–279.

[20] A. Rényi, “On measures of entropy and information,” in Proceedings of

the Fourth Berkeley Symposium on Mathematical Statistics and Proba-

bility, Volume 1: Contributions to the Theory of Statistics. University
of California Press, 1961, pp. 547–561.

[21] T. van Erven and P. Harremoës, “Rényi divergence and Kullback-Leibler
divergence,” IEEE Transactions on Information Theory, vol. 60, no. 7,
pp. 3797–3820, 2014.

[22] A. Klenke, Probability theory: A comprehensive course. Springer
Science & Business Media, 2013.

[23] E. Çinlar, Probability and stochastics. Springer, 2011, vol. 261.
[24] A. M. Faden, “The existence of regular conditional probabilities: Neces-

sary and sufficient conditions,” The Annals of Probability, pp. 288–298,
1985.

[25] Y. Polyanskiy and Y. Wu, “Lecture notes on information theory,” 2019.



APPENDIX

A. Proof of Theorem 2

The finite case has been proved in [14], so here we

assume that E = {x1, x2, . . .} is countably infinite. Fix

y ∈ F . The argument for showing that ℓPXY
(X → y) ≤

D∞(PX|Y =y‖PX) is identical to the finite case laid out

in [14, Thm. 1], so we only prove that ℓPXY
(X → y) ≥

D∞(PX|Y =y‖PX). Fix a small constant δ > 0 and let k be

an integer satisfying
∑∞

k PX(xk) = PX(Aδ) < δ, where

Aδ := {xk, xk+1, . . .}. For notational convenience, we will

use the shorthands ξ(B) :=

∑

x∈B PX|Y=y(x)
∑

x∈B PX(x)
with B ⊂ E,

and

ℓU (X → y) := log
supPÛ|Y

P

(

U = Û | Y = y
)

maxu∈G PU (u)
,

for a given random variable U induced by a kernel PU|X .

We prove the inequality for the following two cases: First,

we assume that there exists x∗ ∈ E such that log ξ(x∗) =
D∞(PX|Y =y‖PX). Then, we consider the case where the

supremum in the expression of the Rényi divergence is not

attained by any x ∈ E.

Suppose log ξ(x∗) = D∞(PX|Y =y‖PX). Assume δ is

sufficiently small so that x∗ is not in the set Aδ. Define

the finite random variable W with alphabet D = {1, . . . , k}
according to the kernel PW |X=xi

(i) = 1 for i ∈ [k − 1] and

PW |X=xi
(k) = 1 for i ≥ k. Then, PW (i) = PX(xi) for

i ∈ [k− 1] and PW (k) = PX(Aδ). Now, consider the random

variable U῝ induced by the shattering channel PU῝|W defined

in [18, Thm. 1], which yields

ℓPXY
(X → y) = sup

PU|X

ℓU (X → y)

≥ ℓU῝(X → y)

= log max
i∈[k]

PW |Y =y(i)

PW (i)
(8a)

= log max{ξ(x1), . . . , ξ(x
∗), . . . , ξ(xk−1), ξ(Aδ)}

≥ log ξ(x∗) = D∞(PX|Y=y‖PX),

where (8a) is due to the definition of the shattering channel.

Hence, ℓPXY
(X → y) ≥ D∞(PX|Y =y‖PX) holds in the first

case.

Next, suppose the supremum in the expression of the

Rényi divergence is not attained by any x ∈ E. Let

M = D∞(PX|Y=y‖PX), where M ∈ (0,∞]. Since the

supremum is not attained by any x, then we must have

lim sup
n→∞

log ξ(xn) = M . Fix an arbitrary 0 < m < M ,

and define the set Bm = {x ∈ E : ξ(x) > m}. Clearly, for

each 0 < m < M and 0 < δ < 1 the two sets Aδ and Bm

have non-empty intersection. Define Em,δ := Aδ ∩ Bm and

E′
m,δ := Aδ \Bm. Similarly to the previous case, we define a

finite random variable W ′ with alphabet D′ = {1, . . . , k+1}
according to the kernel PW ′|X=xi

(i) = 1 for i ∈ [k − 1],

PW ′|X=x(k) = 1 for x ∈ Em,δ, and PW ′|X=x(k+1) = 1 for

x ∈ E′
m,δ . Now, consider the random variable U ′

῝
induced by

the shattering channel PU ′
῝
|W ′ . We obtain

ℓPXY
(X → y) ≥ ℓU ′

῝
(X → y)

= log max
i∈[k+1]

PW ′|Y=y(i)

PW ′ (i)

= log max
{

ξ(x1), . . . , ξ(xk−1), ξ(Em,δ), ξ(E
′
m,δ)

}

≥ log ξ(Em,δ) = log

∑

x∈Em,δ
PX|Y =y(x)

∑

x∈Em,δ
PX(x)

≥ log inf
x∈Em,δ

PX|Y=y(x)

PX(x)
≥ m,

where the last inequality follows by the definitions of the sets

Em,δ and Bm. Finally, taking m → M yields

ℓPXY
(X → y) ≥ M = D∞(PX|Y=y‖PX),

as desired.

B. Proof of Lemma 1

To show that the LHS of (3) lower bounds the RHS, fix an

arbitrary kernel PW |Y . We have

E[g(X,W ) | Y = y] =

∫

E×D

g(x,w) PXW |Y=y(dx, dw)

=

∫

D

PW |Y =y(dw)

∫

E

g(x,w) PX|Y =y(dx)

≤

∫

D

PW |Y =y(dw)

(

sup
w∈D

∫

E

g(x,w) PX|Y=y(dx)

)

= sup
w∈D

∫

E

g(x,w) PX|Y =y(dx).

Taking the supremum over all kernels PW |Y we obtain

sup
PW |Y

E[g(X,W ) | Y = y] ≤ sup
w∈D

∫

E

g(x,w) PX|Y=y(dx).

To show that the LHS of (3) upper bounds the RHS, fix an

arbitrary a < supw∈D

∫

E
g(x,w) PX|Y=y(dx). Then, there

exists w′ ∈ D such that
∫

E
g(x,w′) PX|Y=y(dx) ≥ a. Let δw

denote the Dirac measure defined by

δw(A) =

{

1 if w ∈ A,

0 if w /∈ A,

for each A ∈ D. We can write

sup
PW |Y

E[g(X,W ) | Y = y]

≥

∫

E

PX|Y=y(dx)

∫

D

g(x,w) δw′(dw)

=

∫

E

g(x,w′) PX|Y =y(dx)



≥ a.

Then, letting a → supw∈D

∫

E
g(x,w) PX|Y =y(dx) we obtain

the desired inequality.

C. Proof of Corollary 1

Define the functions

q(y) :=

∫

E

p(x, y) µ(dx), y ∈ F,

r(x) :=

∫

F

p(x, y) ν(dy), x ∈ E,

k(x, y) :=

{

p(x,y)
q(y) if q(y) > 0,

r(x) if q(y) = 0,
, x ∈ E, y ∈ F.

Let

PX|Y=y(A) :=

∫

A

k(x, y) µ(dx), A ∈ E , y ∈ F.

It can easily be checked that PX|Y defined above is a transition

probability kernel from (F,F) into (E, E).
First, we show that PX|Y =y ≪ PX holds ν-almost every-

where. Suppose A0 ∈ E satisfies PX(A0) = 0. Noting that

PX(dx) = r(x)µ(dx), we have

PX(A0) =

∫

A0

r(x) µ(dx) =

∫

E

1A0
(x) r(x) µ(dx) = 0,

i.e., 1A0
(x) r(x) = 0 µ-almost everywhere. In other words,

µ(A0 ∩ {x ∈ E : r(x) > 0}) = 0. (9)

Now, if q(y) = 0, then PX|Y =y(A0) = PX(A0) = 0 by

construction. So, suppose q(y) > 0. In this case, we have

PX|Y =y(A0) =
1

q(y)

∫

A0

p(x, y) µ(dx)

=
1

q(y)

(

∫

A0∩{r>0}

p(x, y) µ(dx)

+

∫

A0∩{r=0}

p(x, y) µ(dx)

)

.

The first integral is zero due to (9). Moreover, for each x ∈
E, r(x) = 0 implies that p(x, y) = 0 ν-almost everywhere;

thus, the second integral is also zero ν-almost everywhere. We

conclude that PX|Y=y ≪ PX for ν-almost all y ∈ F .

Next, we argue that PXY (dx, dy) = PY (dy)PX|Y =y(dx).
Noting that PY (dy) = q(y) ν(dy) and PX|Y =y(dx) =
k(x, y)µ(dx) we write

PY (dy)PX|Y=y(dx) = q(y) k(x, y)µ(dx) ν(dy)

=

{

p(x, y)µ(dx) ν(dy) if q(y) > 0,

0 if q(y) = 0.

= p(x, y)µ(dx) ν(dy) (10a)

= PXY (dx, dy),

where (10a) is due to the fact that for each y ∈ F , q(y) = 0
implies p(x, y) = 0 µ-almost everywhere and a Radon-

Nikodym derivative is specified uniquely up to almost every-

where equivalence.

Finally, we show that the mapping y 7→ ℓPXY
(X →

y) is F -measurable. Define the set B0 = {y ∈ F :
∫

{r=0} k(x, y)µ(dx) = 0} which is guaranteed to be in F

by Fubini’s theorem. The leakage ℓPXY
(X → y) can be

expressed as

ℓPXY
(X → y) =

{

ess supPX

(

k(x,y)
r(x)

)

if y ∈ B0,

∞ if y /∈ B0.

Note that
k(x, y)

r(x)
, which is an (E ⊗ F)-measurable function,

is used as the Radon-Nikodym derivative
dPX|Y =y

dPX
. It remains

to show that the essential supremum of a jointly measurable

function is measurable. We state this in the form of a lemma,

proved in Appendix D.

Lemma 2: Given measurable spaces (E, E) and (F,F),
suppose s ∈ (E ⊗ F)+. Let PX be a probability measure

on (E, E). Then, the function t : F → R̄+ defined as

t(y) = ess supPX
s(x, y) is F -measurable.

Equipped with Lemma 2, we conclude that the mapping

y 7→ ℓPXY
(X → y) is F -measurable, as desired.

D. Proof of Lemma 2

To show that t is F -measurable it suffices to show that the

inverse image t−1(c,∞] is in F for each c ∈ R+. Fix an

arbitrary c ∈ R+. Given y ∈ F , define the set Cy = {x ∈
E : s(x, y) > c} which is in E by the measurability of the

mapping x 7→ s(x, y) for fixed y ∈ F . Now, we write

t−1(c,∞] = {y ∈ F : t(y) > c}

= {y ∈ F : PX({x ∈ E : s(x, y) > c}) > 0}

= {y ∈ F : PX(Cy) > 0}

=

{

y ∈ F :

(
∫

E

1Cy
(x) PX(dx)

)

> 0

}

.

The mapping (x, y) 7→ 1Cy
(x) is E ⊗ F -measurable since

{(x, y) ∈ E × F : 1Cy
(x) = 1} = {(x, y) ∈ E × F :

s(x, y) > c} ∈ E ⊗ F . Then, Fubini’s theorem ensures that

y 7→
∫

E
1Cy

(x) PX(dx) is F -measurable, which in turn,

implies that t−1(c,∞] belongs to F .



E. Other examples

Example 5 (Poisson and Binomial distributions): Suppose

X ∼ Pois(λp), where λ > 1, p ∈ (0, 1), and λ(1 − p) < 1.

Assume Y is defined through the kernel

PY |X=x(y) =















(

λ(1− p)
)y−x

e−λ(1−p)

(y − x)!
if y ≥ x,

0 if y < x,

where x ∈ N. It can be easily verified that X | Y = y ∼
Binom(y, p). Hence, the PML from X to y ∈ N is given by

ℓPXY
(X → y) = log sup

x∈N

PX|Y=y(x)

PX(x)

= log max
x∈{0,...,y}

PX|Y=y(x)

PX(x)

= log
(

eλp λ−y y!
)

.

Example 6 (Gaussian mixtures): Suppose X ∼ Ber(12 ) is

an equiprobable Bernoulli random variable, and Y | X = x ∼

N (x, σ2) has Gaussian distribution with mean x ∈ {0, 1} and

variance σ2. The PML from X to each y ∈ R can be computed

as

ℓPXY
(X → y) = log max

x∈{0,1}

fY |X(y, x)

fY (y)

= log
2

exp
(

−
|y−1

2
|

σ2

)

+ 1
.

Specifically, ℓPXY
(X → 1

2 ) = 0 and limy→∞ ℓPXY
(X →

y) = limy→−∞ ℓPXY
(X → y) = log 2.

Example 7 (Bivariate Gaussian): Suppose X and Y are

zero-mean jointly Gaussian random variables with variances

σ2
X and σ2

Y , respectively, and correlation coefficient ρ ∈
(−1, 1). Then, Y | X = x ∼ N ( σY

σX
ρx, (1 − ρ2)σ2

Y )), and

the PML from X to y ∈ R is

ℓPXY
(X → y) =

{

y2

2σ2
Y

− 1
2 log(1− ρ2) if ρ 6= 0,

0 if ρ = 0.
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