Wasserstein medians: robustness, PDE characterization and numerics - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2023

Wasserstein medians: robustness, PDE characterization and numerics

Résumé

We investigate the notion of Wasserstein median as an alternative to the Wasserstein barycenter, which has become popular but may be sensitive to outliers. In terms of robustness to corrupted data, we indeed show that Wasserstein medians have a breakdown point of approximately 1 2. We give explicit constructions of Wasserstein medians in dimension one which enable us to obtain L p estimates (which do not hold in higher dimensions). We also address dual and multimarginal reformulations. In convex subsets of R d , we connect Wasserstein medians to a minimal (multi) flow problem à la Beckmann and a system of PDEs of Monge-Kantorovich-type, for which we propose a p-Laplacian approximation. Our analysis eventually leads to a new numerical method to compute Wasserstein medians, which is based on a Douglas-Rachford scheme applied to the minimal flow formulation of the problem.
Fichier principal
Vignette du fichier
2307.01765.pdf (2.63 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Licence

Dates et versions

hal-04154602 , version 1 (06-07-2023)

Licence

Identifiants

Citer

Guillaume Carlier, Enis Chenchene, Katharina Eichinger. Wasserstein medians: robustness, PDE characterization and numerics. 2023. ⟨hal-04154602⟩
71 Consultations
40 Téléchargements

Altmetric

Partager

More