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Wasserstein medians: robustness, PDE characterization and

numerics

G. Carlier∗ E. Chenchene† K. Eichinger‡

July 6, 2023

Abstract

We investigate the notion of Wasserstein median as an alternative to the Wasserstein
barycenter, which has become popular but may be sensitive to outliers. In terms of robust-
ness to corrupted data, we indeed show that Wasserstein medians have a breakdown point
of approximately 1

2
. We give explicit constructions of Wasserstein medians in dimension one

which enable us to obtain Lp estimates (which do not hold in higher dimensions). We also
address dual and multimarginal reformulations. In convex subsets of Rd, we connect Wasser-
stein medians to a minimal (multi) flow problem à la Beckmann and a system of PDEs of
Monge–Kantorovich-type, for which we propose a p-Laplacian approximation. Our analysis
eventually leads to a new numerical method to compute Wasserstein medians, which is based
on a Douglas–Rachford scheme applied to the minimal flow formulation of the problem.

Keywords: Wasserstein medians, optimal transport, duality, Beckmann’s problem, p-Laplace
system approximation, Douglas–Rachford splitting method.

1 Introduction

The notions of mean and median are well-known to be of variational nature. For instance, the
arithmetic mean of a sample composed by N points in Rd is the minimizer of the sum of the
squared Euclidean distances to the sample points. Minimizing a weighted sum of distances to the
sample points, one gets a notion of weighted medians, which in the literature is commonly referred
to as Torricelli–Fermat–Weber points or geometric medians. As pointed out by Maurice Fréchet
in his seminal work [29], these definitions can be generalized to any metric space (X , d), yielding
the notion of Fréchet mean and Fréchet median (or in general typical element).

The concept of Wasserstein barycenter, which corresponds to Fréchet means over the Wasser-
stein space of probability measures with finite second moments and equipped with the quadratic
Wasserstein distance, was introduced and extensively studied in [1]. Since then, research on Wasser-
stein barycenters has expanded in various directions. For instance, investigations have been con-
ducted on Riemannian manifolds [33], population barycenters involving possibly infinitely many
measures [35], and Radon spaces [34]. The concept has gained popularity as a valuable tool for
meaningful geometric interpolation between probability measures, finding applications in diverse
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Figure 1: Superposition of a Wasserstein median (blue), a Wasserstein barycenter (black) and
the corresponding sample of N = 9, 29, 39, 59, 81 one-dimensional histograms. Each histogram
represents the daily attendance frequency of some London underground stations1. Second row: the
corresponding cumulative distribution functions.

fields such as image synthesis [44], template estimation [10], bayesian learning [6], and statis-
tics [40]. Despite the inherent complexity of computing Wasserstein barycenters [2], numerical
methods based on entropic regularization and the Sinkhorn algorithm have demonstrated their
efficiency in calculating these interpolations [9, 20,42].

In the present paper, we investigate a slightly different problem, namely that of Wasserstein
medians, which, given weights λ1, . . . λN and probability measures ν1, . . . , νN with finite first mo-
ments, over a metric space X , consists in finding a probability measure ν minimizing the dis-
persion criterion

∑N
i=1 λiW1(νi, ν). Following Fréchet’s metric viewpoint, this amounts to look

for Torricelli–Fermat–Weber or equiprobable points in the Wasserstein space of order one. Our
primary motivation for studying these objects comes from the following question: does the well-
known robustness of geometric medians extend to Wasserstein medians? Consider for instance
the problem of averaging the daily attendance frequency of some London underground stations as
in Figure 1 or the five pictures on the left of Figure 2. It is pretty clear in these examples that
Wasserstein medians show some sort of robustness, and that in general they should behave quite
differently from the barycenter.

Our objective is to further explore the notion of Wasserstein median with a first focus on
stability and robustness. We also investigate in depth the one-dimensional case where special con-
structions (which we call vertical and horizontal selections) select medians which inherit properties
of the sample measures, in particular, we show that if all the sample measures νi are absolutely
continuous with densities bounded by some Mi, then there exists a Wasserstein median with a
density bounded by maxiMi, which, as we will show later (Example 5.3), cannot be true in higher
dimensions. For more general situations, we present some general tools to study Wasserstein me-
dians, such as multi-marginal and dual formulations for the initial convex minimization problem.
To the best of our knowldege, Wasserstein medians have not been very much investigated even
in the Euclidean setting with more than two sample measures, however related optimal matching
problems (with two sample measures and additional constraints) have been studied in [38], [31]
and [15]. In the Euclidean setting in several dimensions, we also characterize medians by a min-
imal flow problem à la Beckmann [7] and a system of PDEs of Monge–Kantorovich type. This
analysis leads to a new numerical method to compute Wasserstein medians, which is based on a
Douglas–Rachford scheme applied to the minimal flow formulation of the problem.

The paper is organized as follows: in Section 2, we introduce the problem, show existence of
Wasserstein medians and consider some basic examples. In Section 3, we discuss the stability of
the notion subject to perturbations of the sample measures and prove that the break-down point

1Tfl open data https://tfl.gov.uk/info-for/open-data-users, accessed on June 29, 2023.
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(a) Sample measures. (b) Barycenter. (c) Median.

Figure 2: Comparison between a Wasserstein barycenter and a Wasserstein median for a sample
of five measures computed with Sinkhorn (cf., Section 7) in 1000 iterations.

(a) Sample measures. (b) Wasserstein medians.

Figure 3: Some Wasserstein medians on a 420 × 420 grid computed with Douglas–Rachford up to
2000 iterations, with a final residual of about ∼ 10−7, cf., Section 7.

of the Wasserstein median problem with uniform weights is at least 1/2, i.e. to drastically corrupt
the estimation of the Wasserstein median one has to modify at least half of the sample measures.
In Section 4, we focus on the one-dimensional case and emphasize the properties of medians which
we call vertical and horizontal median selections. In Section 5, we present dual and multi-marginal
formulations of the problem. In Section 6, we use a minimal flow formulation of the Wasserstein
median problem to derive a system of Monge–Kantorovich type PDEs that characterizes medians.
We also describe an approximation by a system of p-Laplace equations. We conclude in Section 7
with a brief description of the numerical methods we implemented to obtain the various figures in
this paper and present a new one based on a Douglas–Rachford scheme on the flow formulation.
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2 Definition, existence and basic examples

Setting. Let (X , d) be a proper metric space, i.e. a metric space in which closed balls are compact.
This implies in particular that (X , d) is Polish, i.e. separable and complete. Note that (X , d)
being proper is a natural assumption to define medians by minimization of weighted sums of
distances; indeed this implies that for every integer N ≥ 1, every (x1, . . . , xN ) ∈ XN and every
λ := (λ1, . . . , λN ) in the simplex ∆N :

∆N :=
{

(λ1, . . . , λN ) ∈ RN
+ :

N∑
i=1

λi = 1
}
,

the set of medians of (x1, . . . , xN ) with weights λ, defined by

Mλ(x1, . . . , xN ) := arg min
x∈X

N∑
i=1

λid(xi, x) (1)

is a nonempty (and compact) subset of X .

Example 2.1 (Medians on the real line). For X = R equipped with the distance associated
with the absolute value, N ≥ 1, λ = (λ1, . . . , λN ) ∈ ∆N and x := (x1, . . . , xN ) ∈ RN , Mλ(x) is

the set of minimizers of the convex, piecewise affine function x 7→ f(x) :=
∑N

i=1 λi|x − xi|, this
function being right and left differentiable at each point with corresponding one-sided derivative
given by

f ′(x−) =
∑

i : xi<x

λi −
∑

i : xi≥x

λi = 2
∑

i : xi<x

λi − 1, f ′(x+) = 2
∑

i : xi≤x

λi − 1.

We see that x belongs to the median interval Mλ(x) if and only if f ′(x−) ≤ 0 ≤ f ′(x+), i.e.∑
i : xi<x

λi ≤
1

2
≤

∑
i : xi≤x

λi,

that is, Mλ(x) = [M−
λ (x),M+

λ (x)], where M−
λ (x) and M+

λ (x) stand for the lower and upper medians
respectively, which are given by:

M−
λ (x) := inf

{
y ∈ R :

∑
i : xi≤y

λi ≥
1

2

}
, M+

λ (x) := sup
{
y ∈ R :

∑
i : xi<y

λi ≤
1

2

}
. (2)

We shall use extensively properties of lower and upper medians when studying Wasserstein medians
on R in Section 4. Obviously, since f is affine in the neighbourhood of each point of R\{x1, . . . , xN},
both M−

λ (x) and M+
λ (x) belong to the sample {x1, . . . , xN}:

I±(x) := {i = 1, . . . , N : M±
λ (x) = xi} ≠ ∅. (3)

Note also both M−
λ and M+

λ are positively homogeneous and that setting e = (1, . . . , 1),

M±
λ (e) = 1, M±

λ (αx) = αM±
λ (x), for all α ∈ R+.

Of course, in general, medians are highly non-unique. For instance if N = 2k is even, λi = 1/N
and x1 < · · · < xN , the median interval is [xk, xk+1]. A mild condition guaranteeing uniqueness
i.e. M−

λ (x) = M+
λ (x) for every x is:

There is no subset I ⊂ {1, . . . , N} such that:
∑
i∈I

λi =
1

2
. (4)
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Despite non-uniqueness, both selections M+
λ and M−

λ enjoy nice properties: obviously they are
monotone in each of their argument and invariant by translation, that is, for all x ≥ y (i.e. x−y ∈
RN

+ ) we have M±
λ (x) ≥ M±

λ (y), and for α ∈ R it holds M±
λ (x+αe) = M±

λ (x) +α. This implies in
particular that for every x and y one has

M±
λ (x) + min

i=1,...,N
(yi − xi) ≤ M±

λ (y) ≤ M±
λ (x) + max

i=1,...,N
(yi − xi), (5)

so that M±
λ are Lipschitz continuous. Inequality (5) will be very useful for studying horizontal and

vertical Wasserstein median selections on the real line in Section 4. In fact, we will also need to
use a slightly refined form of (5), namely: for all x there exists ε > 0 such that for all y with
∥x− y∥∞ ≤ ε it holds

M±
λ (x) + min

i∈I±(x)
(yi − xi) ≤ M±

λ (y) ≤ M±
λ (x) + max

i∈I±(x)
(yi − xi), (6)

where we recall that I±(x) are given by (3). The proof of (6) is postponed to the appendix.

Example 2.2 (Torricelli–Fermat–Weber points). Consider now X = Rd equipped with the
distance associated with the Euclidean norm | · |, λ ∈ ∆N and (x1, . . . , xN ) ∈ XN , by definition,

x ∈ Mλ(x1, . . . , xN ) if and only if x minimizes the convex function
∑N

i=1 λi| · −xi| i.e. satisfies the
optimality condition

0 ∈
N∑
i=1

λi∂| · |(x− xi),

where ∂| · |(x− xi) is the subdifferential of the Euclidean norm at x− xi:

∂| · |(x− xi) = {p ∈ Rd : |p| ≤ 1, ⟨p, x− xi⟩ = |x− xi|} =

{
B(0, 1) if x = xi
x−xi

|x−xi| otherwise

where B(0, 1) stands for the closed unit Euclidean ball. Therefore x ∈ Mλ(x1, . . . , xN ) if and only
if there exist p1, . . . , pN such that

|pi| ≤ 1, ⟨pi, x− xi⟩ = |x− xi|, i = 1, . . . , N, and

N∑
i=1

λipi = 0. (7)

Note that for x ∈ Mλ(x1, . . . , xN ) either x = xi for some i or

N∑
i=1

λi
x− xi
|x− xi|

= 0

so that in any case x is a convex combination of x1, . . . , xN , we thus have

Mλ(x1, . . . , xN ) ⊂ co{x1, . . . , xN}.

Denote by P(X ) the set of Borel probability measures on X . Recall that on P(X ) the narrow
topology is the coarsest topology making µ ∈ P(X ) 7→

´
X fdµ continuous for every continuous

and bounded function f on X and that this topology is metrizable on P(X ) (so that there is no
need to distinguish between narrow compactness and narrow sequential compactness). We denote
by P1(X ) the set of Borel probability measures with finite first moment i.e. the set of µ ∈ P(X )
for which for some (equivalently for all) x0 ∈ X , d(x0, ·) ∈ L1(X , µ). We endow P1(X ) with the
Wasserstein distance of order one:

W1(µ, ν) := inf
γ∈Π(µ,ν)

ˆ
X 2

d(x, y)dγ(x, y),

5



where Π(µ, ν) is the set of transport plans between µ and ν i.e. the set of Borel probability measures
on X 2 with marginals µ and ν. With this choice, the metric space (P1(X ),W1) is a Polish (but
not necessarily proper) space. Let us recall the Kantorovich–Rubinstein duality formula which
expresses W1(µ, ν) as

W1(µ, ν) := sup
{ˆ

X
udµ−

ˆ
X
udν : u : X → R, 1-Lipschitz

}
, (8)

in particular, W1(µ, ν) is the dual Lipschitz semi-norm of µ − ν and the linear interpolation
µt := (1 − t)µ+ tν for t ∈ [0, 1], is obviously a geodesic between µ and ν i.e.:

W1(µt, µs) = |t− s|W1(µ, ν), for all (t, s) ∈ [0, 1]2. (9)

Note that convergence in P1(X ) for W1 implies convergence for the narrow topology but is stronger
unless X is compact. For proofs of these classical facts and more on Wasserstein distances, we
refer to the textbooks [4, 46].

Wasserstein medians. As mentioned in the introduction, on (P1(X ),W1), one can naturally
define medians in the Fréchet sense as follows. Given N ≥ 1, ν = (ν1, . . . , νN ) ∈ P1(X )N and
λ := (λ1, . . . , λN ) ∈ ∆N , consider the weighted dispersion functional

Fλ,ν(µ) :=

N∑
i=1

λiW1(νi, µ), for all µ ∈ P1(X ) (10)

then Wasserstein medians are defined as minimizers of this dispersion functional:

Definition 2.3 (Wasserstein medians). For N ≥ 1, let ν = (ν1, . . . , νN ) ∈ P1(X )N and
λ = (λ1, . . . , λN ) ∈ ∆N , defining Fλ,ν(ν) by (10), we call Wasserstein median of (ν1, . . . , νN )
with weights λ any solution of the following (convex) problem

v(λ,ν) := min
µ∈P1(X )

Fλ,ν(µ) (11)

We denote by Medλ(ν1, . . . , νN ) the set of all Wasserstein medians of ν with weights λ.

The existence of a solution of (11) follows from the direct method:

Lemma 2.4 (Existence of Wasserstein medians). Let N ≥ 1, ν = (ν1, . . . , νN ) ∈ P1(X )N

and λ ∈ ∆N , then there exists a minimizer of (11) and the set Medλ(ν1, . . . , νN ) is a convex and
narrowly compact subset of P1(X ).

Proof. The functional Fλ,ν is l.s.c. for the narrow topology (this follows at once from (8)) and by
the triangle inequality for every x0 ∈ X and every µ ∈ P1(X ) one has

W1(δx0
, µ) =

ˆ
X
d(x0, x)dµ(x) ≤ Fλ,ν(µ) + Fλ,ν(δx0

),

which implies that the first moment is uniformly bounded on sublevel sets of Fλ,ν . Since (X , d)
is proper, this implies that sublevel sets of Fλ,ν are tight hence narrowly relatively compact by
Prokhorov’s theorem. This implies nonemptiness and narrow compactness of Medλ(ν1, . . . , νN ),
convexity follows from the convexity of Fλ,ν .

Let us end this section with some simple explicit examples.
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Example 2.5 (Medians of Dirac masses). If νi = δxi
is a Dirac mass for all i = 1, . . . , N ,

then Medλ(ν1, . . . , νN ) is nothing but the set of probability measures supported on Mλ(x1, . . . , xN ).
In particular if X = R, and x1 ≤ x2 and λ = (λ1, 1 − λ1) with λ1 ∈ (0, 1), Mλ(x1, x2) = [x1, x2]
so that Medλ(δx1

, δx2
) is the set of all probability measures supported on [x1, x2].

Example 2.6 (Threshold effect). Suppose that there is J ⊂ {1, . . . , N} with
∑

j∈J λj ≥
1
2 and

ν := (ν1, . . . , νN ) with νj = ρ for j ∈ J for some ρ ∈ P1(X ). Then a Wasserstein median of ν is
given by ρ since for any ρ̃ ∈ P1(X ), denoting Jc := {1, . . . , N} \ J

N∑
i=1

λiW1(νi, ρ) =
∑
i∈Jc

λiW1(νi, ρ)

≤
N∑
i=1

λiW1(νi, ρ̃) +
∑
i∈Jc

λiW1(ρ̃, ρ) −
∑
i∈J

λiW1(νi, ρ̃)

=
N∑
i=1

λiW1(νi, ρ̃) +

(∑
i∈Jc

λi −
∑
i∈J

λi

)
︸ ︷︷ ︸

≤0

W1(ρ̃, ρ).

Note that if
∑

j∈J λj >
1
2 , this also proves that the Wasserstein median is unique and equal to ρ.

Note that this threshold effect is not specific to Wasserstein medians but holds for Fréchet medians
in any metric space.

Example 2.7 (Medians of two measures). If N = 2, ν1 ̸= ν2, it follows from the previous
example that when λ1 ∈ (1/2, 1) (respectively λ1 ∈ (0, 1/2)) the median of (ν1, ν2) with weights
(λ1, 1 − λ1) is ν1 (respectively ν2), when λ1 = λ2 = 1/2, by the triangle inequality any interpolate
(1 − t)ν1 + tν2, t ∈ [0, 1] belongs to Med1/2,1/2(ν1, ν2).

Example 2.8 (Medians of translated measures). Consider X = Rd endowed with the Eu-
clidean distance, µ ∈ P1(X ), (x1, . . . , xN ) ∈ XN and let νi := τvi#µ be the translation of µ
by vi (i.e. τvi#µ(A) = µ(A − vi), for every Borel subset A of Rd). We claim that whenever
x ∈ Mλ(x1, . . . , xN ) one has τx#µ ∈ Medλ(τx1#µ, . . . , τxN #µ). To see this, let (p1, . . . , pN ) satisfy
the optimality condition (7), then we first have

N∑
i=1

λiW1(τxi#, τx#µ) ≤
N∑
i=1

λi|x− xi| =

N∑
i=1

λi⟨pi, x− xi⟩ = −
N∑
i=1

λi⟨pi, xi⟩.

Let now ν ∈ P1(X ), since pi ∈ B(0, 1) the affine function ui(y) := ⟨pi, y+x−xi⟩ is 1-Lipschitz so
that by the Kantorovich–Rubinstein formula

W1(τxi#µ, ν) ≥
〈
pi,

ˆ
Rd

(y − xi + x)dν(y)
〉
−
〈
pi,

ˆ
Rd

(y + x)dµ(y)
〉

=
〈
pi,

ˆ
Rd

(y − xi)dν(y)
〉
−
〈
pi,

ˆ
Rd

ydµ(y)
〉
.

Multiplying by λi, summing and using (7), we obtain

N∑
i=1

λiW1(τxi#µ, ν) ≥ −
N∑
i=1

λi⟨pi, xi⟩ ≥
N∑
i=1

λiW1(τxi#, τx#µ)

which shows that τx#µ ∈ Medλ(τx1#µ, . . . , τxN #µ).

7



3 Stability and robustness

The stability with respect to perturbations of the sample measures is a crucial property for any
location estimator especially when the underlying space X is unbounded. This is why, in this
section, we will first investigate some stability properties of Wasserstein medians (improving the
easy narrow stability to the stability in W1-distance), note that Theorem 5.5 in [34] establishes
strong consistency results in a much more general framework. We will then show robustness to
outliers by showing that the breakdown point of Wasserstein medians on an unbounded X is at
least 1/2, the proof will be an easy adaptation of [37] revealing that the argument is in fact quite
general and actually carries over to Fréchet medians on geodesic metric spaces.

3.1 Compactness in W1 distance and stability with respect to data

Let N ≥ 1, (λ,ν) = (λ1, . . . , λN , ν1, . . . , νN ) and (λ′,ν′) = (λ′1, . . . , λ
′
N , ν

′
1, . . . , ν

′
N ) in ∆N ×

P1(X )N , an obvious consequence of the triangle inequality is the fact that for any µ ∈ P1(X ), one
has

Fλ,ν(µ) ≤ Fλ′,ν′(µ) + max
i=1,...,N

W1(νi, , ν
′
i) +

N∑
i=1

|λi − λ′i| max
i=1,...,N

W1(ν′i, µ). (12)

This pointwise inequality for the dispersions corresponding to (λ,ν) and (λ′,ν′), implies in par-
ticular that Fλ′,ν′ converges to Fλ,ν uniformly on W1 balls as

N∑
i=1

|λi − λ′i| + max
i=1,...,N

W1(νi, , ν
′
i) → 0.

Let us also observe that for every x0 ∈ X , again by the triangle inequality, one also has the moment
bound

sup
µ∈Medλ(ν)

ˆ
X
d(x0, x)dµ(x) ≤ 2 max

i=1,...,N

ˆ
X
d(x0, xi)dνi(x). (13)

Recalling the definition of v(λ,ν) from (11), (12) and (13) show that v is locally Lipschitz contin-
uous for W1. Combining the previous pointwise convergence with the narrow lower semicontinuity
of W1, (13) and the narrow compactness of measures with bounded first moments, we straightfor-
wardly get:

Lemma 3.1. Let N ≥ 1, (λ,ν) = (λ1, . . . , λN , ν1, . . . , νN ) ∈ ∆N × P1(X )N and (λn,νn)n∈N =
(λn1 , . . . , λ

n
N , ν

n
1 , . . . , ν

n
N )n∈N be a sequence in ∆N × P1(X )N such that

N∑
i=1

|λni − λi| + max
i=1,...,N

W1(νni , νi) → 0 as n→ ∞. (14)

Then, Fλn,νn Γ-converges to Fλ,ν for the narrow topology, in particular if µn ∈ Medλn(νn) for
all n ∈ N, narrow cluster points of (µn)n∈N belong to Medλ(ν).

One can improve the previous (elementary and expected) result by stability in W1 distance as
follows (for more general results of this type, we refer the reader to [34]):

Theorem 3.2 (Stronger stability of Wasserstein medians). Let N ≥ 1, (λ,ν) ∈ ∆N ×
P1(X )N , (λn,νn)n∈N be a sequence in ∆N ×P1(X )N such that (14) holds and let µn ∈ Medλn(νn)
for all n ∈ N, then (µn)n∈N admits a subsequence that converges for W1 to some µ ∈ Medλ(ν). In
particular Medλ(ν) is compact and the set-valued map (λ,ν) ∈ ∆N×P1(X )N 7→ Medλ(ν) ⊂ P1(X )
has a closed graph for the W1 distance.

8



Proof. We already know from Lemma 3.1 that (µn)n∈N has a (not relabeled) subsequence that
converges narrowly to some µ which belongs to Medλ(ν). To improve narrow to W1 convergence,
it follows from Proposition 7.1.5 of [4], that it is enough to show that (some subsequence of)
(µn)n∈N has uniformly integrable moments. More precisely, fixing x0 ∈ X and for R > 0 denoting
by B(x0, R) the open ball of radius R, we have to show that (passing to a subsequence if necessary)

lim
R→+∞

sup
n

ˆ
X\B(x0,R)

d(x0, x)dµn(x) = 0. (15)

Let γni ∈ Π(νni , µ
n) such that

´
X 2 d(xi, x)dγni (xi, x) = W1(νni , µ

n), since both sequences (νni )n∈N
and (µn)n∈N are tight so is (γni )n∈N, passing to subsequences if necessary, we may thus assume
that (γni )n∈N converges narrowly to some γi ∈ P(X × X ). Of course γi ∈ Π(νi, µ) and then

W1(νi, µ) ≤
ˆ
X 2

d(xi, x)dγi(xi, x) ≤ lim inf
n

ˆ
X 2

d(xi, x)dγni (xi, x) = lim inf
n

W1(νni , µ
n).

We deduce from Lemma 3.1 and the fact that (νni )n∈N and (µn)n∈N have uniformly bounded
moments

N∑
i=1

λiW1(νi, µ) = lim
n

N∑
i=1

λni W1(νni , µ
n) ≥

N∑
i=1

lim inf
n

λni W1(νni , µ
n) =

N∑
i=1

λi lim inf
n

W1(νni , µ
n).

Hence, for every i for which λi > 0, one has W1(νi, µ) = lim infnW1(νni , µ
n). Assuming without

loss of generality that λ1 > 0, we thus have

W1(ν1, µ) =

ˆ
X 2

d(x1, x)dγ1(x1, x) = lim inf
n

ˆ
X 2

d(x1, x)dγn1 (x1, x).

Passing to a subsequence if necessary, we may assume that the liminf of the right hand side above
is a true limit and then, using Lemma 5.1.7 of [4], we deduce that

lim
R→+∞

sup
n

ˆ
{(x1,x)∈X 2 : d(x1,x)≥R}

d(x1, x)dγn1 (x1, x) = 0. (16)

Note also that since (νn1 )n∈N converges in W1 we also have

lim
R→+∞

sup
n

ˆ
X\B(x0,R)

d(x0, x1)dνn1 (x1) = 0. (17)

Defining for R > 0 and t ≥ 0,

ΦR(t) :=

{
t if t ≥ R,

0 else,

note that ΦR is non decreasing and

ΦR(t+ s) ≤ 2
(

ΦR
2

(t) + ΦR
2

(s)
)
,

so by the triangle inequality for every (x, x1) ∈ X 2, we have

ΦR(d(x0, x)) ≤ 2
(

ΦR
2

(d(x0, x1)) + ΦR
2

(d(x1, x))
)
.

9



Integrating with respect to γn1 which has marginals νn1 and µn yieldsˆ
X\B(x0,R)

d(x0, x)dµn(x) =

ˆ
X

ΦR(d(x0, x))dµn(x) =

ˆ
X

ΦR(d(x0, x))dγn1 (x1, x)

≤ 2

ˆ
X

ΦR
2

(d(x0, x1))dνn1 (x1) + 2

ˆ
X 2

ΦR
2

(d(x1, x))dγn1 (x1, x)

= 2

ˆ
X\B(x0,

R
2 )

d(x0, x1)dνn1 (x1)

+ 2

ˆ
{(x1,x)∈X 2 : d(x1,x)≥R

2 }
d(x1, x)dγn1 (x1, x).

Then, (15) readily follows from (16) and (17).

3.2 Robustness of Wasserstein medians

In statistics, a popular robustness index is the so-called break-down point. Roughly speaking, it is
the largest fraction of the input data which could be corrupted (i.e. changed arbitrarily) without
moving the estimation too far from the original estimation for the non-corrupted data. It is well
known that the break-down point of geometric medians with uniform weights is approximately 1

2 ,
see, e.g. Theorem 2.1 and 2.2 [37], so that even corrupting about half of the data, we can stay
rather confident on the output. In this section, we prove a similar result for Wasserstein medians.
To do so, we first recall some basic facts about break-down points, starting with a definition of the
break-down point adapted to the case of a non-unique estimator.

Definition 3.3 (Break-down point). Let (X , d) be a metric space. Let N ≥ 2 and λ =
(λ1, . . . , λN ) ∈ ∆N . For a set-valued map tλ : XN → 2X with nonempty values, we define its
break-down point associated to the weights λ at x = (x1, . . . , xN ) ∈ XN by

b(tλ(x)) := min

{∑
i∈I

λi : I ⊂ {1, . . . , N}, sup
yI∈XN

yI
j=xj ∀j /∈I

{
d(y, x) : y ∈ tλ(yI), x ∈ tλ(x)

}
= +∞

}
.

We now state the main theorem for Wasserstein medians, where the reference metric space is
P1(X ) equipped with the W1 distance. The proof is a slight generalization of Theorem 2.2. in [37].

Theorem 3.4 (Break-down point of Wasserstein medians). Suppose the metric space (X , d)
is proper and unbounded. Let N ≥ 2, ν := (ν1, . . . , νN ) ∈ P1(X )N and λ := (λ1, . . . , λN ) ∈ ∆N .
Then the break-down point of Medλ(ν) is given by

b(Medλ(ν)) = min

{∑
j∈J

λj : J ⊂ {1, . . . , N},
∑
j∈J

λj ≥
1

2

}
. (18)

Proof. For future reference, let us denote by B the right hand-side of (18). Let us take ν ∈
Medλ(ν1, . . . , νN ) and I ⊂ {1, . . . , N} such that

∑
i∈I λi <

1
2 . Denote by µ := (µ1, . . . , µN ) ∈

P1(X )N a corrupted collection of ν := (ν1, . . . , νN ), i.e. such that µj = νj for all j /∈ I. Let

C := max
ρ∈Medλ(ν1,...,νN )

max
1≤i≤N

W1(ρ, νi), δ := max

{∑
j∈J

λj : J ⊂ {1, . . . , N},
∑
j∈J

λj <
1

2

}
. (19)

Let µ ∈ Medλ(µ), let us first prove by contradiction that

W1(ν, µ) ≤ 2Cδ

1 − 2δ
+ 2C.
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In order to do so, let B = B2C(ν) be the ball with center ν and radius 2C with respect to the
W1 distance. Further, let

ξ := Dist(µ,B) := inf
ρ∈B

W1(µ, ρ).

Then by the triangle inequality W1(µ, ν) ≤ ξ + 2C, so that for all j = 1, . . . , N

W1(µj , µ) ≥W1(µj , ν) −W1(ν, µ) ≥W1(µj , ν) − (ξ + 2C). (20)

Now suppose by contradiction that ξ > 2Cδ/(1− 2δ), which in particular implies that W1(µ, ν) >
2C. Using the fact that in (P1(X ),W1), line segments are geodesics (recall (9)), defining for
j = 1, . . . , N the interpolation νtj := (1 − t)νj + tµ, t ∈ [0, 1], we have

W1(νj , µ) = W1(νj , ν
t
j) +W1(νtj , µ) for t ∈ [0, 1].

Since W1(ν, ν0j ) = W1(ν, νj) ≤ C and W1(ν, ν1j ) = W1(ν, µ) > 2C, there exists t̄ ∈ [0, 1] such

that W1(ν, ν t̄j) = 2C. In particular W1(ν t̄j , µ) ≥ ξ and W1(νj , ν
t̄
j) ≥ W1(ν, ν t̄j) − W1(νj , ν) =

2C −W1(νj , ν) ≥W1(νj , ν) so that

W1(νj , µ) = W1(νj , ν
t̄
j) +W1(ν t̄j , µ) ≥W1(νj , ν) + ξ. (21)

Putting together (20) and (21) yields

N∑
j=1

λjW1(µj , µ) ≥
∑
j∈I

λj(W1(µj , ν) − (ξ + 2C)) +
∑
j /∈I

λj(W1(µj , ν) + ξ)

=

N∑
j=1

λjW1(µj , ν) + ξ(
∑
j /∈I

λj −
∑
j∈I

λj) − 2C
∑
j∈I

λj

≥
N∑
j=1

λjW1(µj , ν) + ξ(1 − 2δ) − 2Cδ

>

N∑
j=1

λjW1(µj , ν),

which contradicts µ being a Wasserstein median for the corrupted collection µ. We thus have

ξ ≤ 2Cδ

1 − δ
and W1(ν, µ) ≤ ξ + 2C ≤ 2Cδ

1 − 2δ
+ 2C, (22)

and b(Medλ(ν)) > δ, yielding b(Medλ(ν)) ≥ B. To obtain the exact value of the breakdown point,
take now J ⊂ {1, . . . , N} with

∑
j∈J λj ≥ 1

2 and consider a sequence (xn)n∈N in X such that
d(xn, x0) → +∞ as n → ∞. Then, by using the sequence of corrupted collections defined by
µn := (µn

1 , . . . , µ
n
N ) with µn

j = δxn for j ∈ J and µn
k = νk for k /∈ J we have δxn ∈ Medλ(µn) as

we have observed in Example 2.6 and

W1(δxn , ν) ≥ d(xn, x0) −W1(δx0 , ν) → +∞ as n→ ∞,

implying b(Medλ(ν)) ≤ B and concluding the proof.

Note that in the case of uniform weights, i.e. with λ := (1/N, . . . , 1/N), (18) turns into the
classical estimate b(Medλ(ν)) =

⌊
N+1
2

⌋
/N . Let us finally emphasize that the proof of Theorem

3.4 actually works for Fréchet medians on any geodesic metric space.
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4 One dimensional Wasserstein medians

In this section, we study the case of Wasserstein medians on X = R with distance d induced by
the absolute value. Since the Wasserstein distance of order 1 is equal to the L1 distance between
cumulative or quantile distribution functions, the problem becomes more explicit. This will in
particular enable us to find different explicit constructions of Wasserstein medians. In this section
for all ν ∈ P1(R) we denote by Fν its associated cumulative distribution function (cdf), which is
defined by Fν(x) = ν((−∞, x]) for all x ∈ R. We also denote by Qν : [0, 1] → R̄ its pseudo-inverse
or quantile distribution function (qdf), which is defined by

Qν(t) := inf{x ∈ R : Fν(x) ≥ t}.

Denoting by L the Lebesgue measure on [0, 1], it is well-known that one recovers ν from its qdf Qν

through Qν#L = ν, that is Qν is the monotone transport between L and ν. We first recall that
in one dimension, both maps ν ∈ P1(R) 7→ Fν and ν ∈ P1(R) 7→ Qν map isometrically, for the L1

distance, the Wasserstein space (P1(R),W1) to the set of cdf’s of probabilities in P1(R) (i.e. the
set of nondecreasing, right-continuous function F : R → [0, 1] such that (1 − F ) ∈ L1((0,+∞)),
F ∈ L1((−∞, 0)), F (+∞) = 1 and F (−∞) = 0) and the set of qdf’s (i.e. the set of L1((0, 1),L)
non-decreasing left-continuous functions) respectively. More precisely, for (µ, ν) ∈ P1(R)2 we have
the following convenient expressions for the 1-Wasserstein distance between µ and ν (see Theorem
2.9 in [46]):

W1(µ, ν) =

ˆ 1

0

|Qν(t) −Qµ(t)|dt = ∥Qν −Qµ∥L1([0,1]) (23)

=

ˆ
R
|Fµ(x) − Fν(x)|dx = ∥Fν − Fµ∥L1(R). (24)

This enables us to reformulate the Wasserstein median problem as

min (11) = min
ν∈P1(R)

ˆ
R

N∑
i=1

λi|Fν(t) − Fνi
(t)|dt (25)

= min
ν∈P1(R)

ˆ 1

0

N∑
i=1

λi|Qν(t) −Qνi
(t)|dt, (26)

which will be referred as vertical (25) and horizontal (26) formulations. The terminology will
become clear in the sequel. Note that, in this way, the problem is equivalent to performing a
proper selection of a weighted median of all cumulative or quantile distribution functions, the
lower and upper median maps M+

λ and M−
λ defined in (2) in Example 2 and their regularity

properties will be particularly useful in this setting.

Proposition 4.1. Let λ ∈ ∆N , ν := (ν1, . . . , νN ) ∈ P1(R)N and ν ∈ P1(R), then the following
statements are equivalent

1. ν ∈ Medλ(ν),

2. Fν(x) ∈ Mλ(Fν1
(x), . . . , FνN

(x)) for all x ∈ R,

3. Qν(t) ∈ Mλ(Qν1
(t), . . . , QνN

(t)) for all t ∈ [0, 1].

In particular, if (4) holds, there exists a unique Wasserstein median.
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Proof. The fact that 2 implies 1 obviously follows from the definition of Mλ and the expression
in (24) for the Wasserstein distance. Assume now that ν ∈ Medλ(ν), then we should have for
a.e. x ∈ R,

M−
λ (Fν1

(x), . . . , FνN
(x)) ≤ Fν(x) ≤ M+

λ (Fν1
(x), . . . , FνN

(x)). (27)

Hence for x ∈ R, there exists a sequence εn > 0, εn → 0 such that the previous inequality holds at
x+ εn, by the right continuity of Fν , (Fν1

(·), . . . , FνN
(·)) at x and the continuity of M±

λ , we easily
get that (27) actually holds at x hence everywhere, proving the equivalence between 1 and 2. The
equivalence between 1 and 3 follows the same lines (using left-continuity of qdf’s).

This suggests to define

F−(x) := M−
λ (Fν1(x), . . . , FνN

(x)), F+(x) := M+
λ (Fν1(x), . . . , FνN

(x)), for all x ∈ R,

as well as for θ ∈ [0, 1],

Fθ(x) := (1 − θ)F−(x) + θF+(x), for all x ∈ R. (28)

Thanks to the properties of M+
λ and M−

λ we saw in Example 2 and the fact that the Fνi
’s are the

cdf’s of probability measures with finite first moments, F+ and F− are also the cdf’s of measures
with finite first moments and then so is Fθ. Thanks to Proposition 4.1, Fθ is the cdf of νθ which
belongs to the set of Wasserstein medians Medλ(ν), we call these measures νθ a vertical median
selections:

Definition 4.2 (Vertical median selections). For every θ ∈ [0, 1], the measure νθ whose cdf
is Fθ given by (28) is called the vertical median selection of ν with weights λ and interpolation
parameter θ and simply denoted VMedλ(θ,ν).

Let us also define

Q−(t) := M−
λ (Qν1(t), . . . , QνN

(t)), Q+(t) := M+
λ (Qν1(x), . . . , QνN

(t)), for all t ∈ (0, 1),

as well as for θ ∈ [0, 1],

Qθ(t) := (1 − θ)Q−(t) + θQ+(t), for all t ∈ (0, 1). (29)

It is easy to see that Qθ is nondecreasing, left-continuous and in L1((0, 1),L); it is therefore the
qdf of a median µθ ∈ Medλ(ν) which we call an horizontal median selection:

Definition 4.3 (Horizontal median selections). For every θ ∈ [0, 1], the measure µθ whose qdf
is Qθ given by (28) is called the horizontal median selection of ν with weights λ and interpolation
parameter θ and simply denoted HMedλ(θ,ν).

A first nice feature of both vertical and horizontal median selections is that it selects medians
in a Lipschitz continuous way with respect to the sample measures:

Lemma 4.4. Let λ ∈ ∆N , ν = (ν1, . . . , νN ) ∈ P1(R)N , ν̃ = (ν̃1, . . . , ν̃N ) ∈ P1(R)N , θ ∈ [0, 1]
then

W1(VMedλ(θ,ν),VMedλ(θ, ν̃)) ≤
N∑
i=1

W1(νi, ν̃i), (30)

and

W1(HMedλ(θ,ν),HMedλ(θ, ν̃)) ≤
N∑
i=1

W1(νi, ν̃i). (31)
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Figure 4: Comparison between different Wasserstein median selections. In the second line we
displayed the corresponding cumulative distribution functions.

Proof. From (5), we have for every x ∈ R:

|M±
λ (Fν1

(x), . . . , FνN
(x)) −M±

λ (Fν̃1
(x), . . . , Fν̃N

(x))|

≤ max
i=1,...,N

|Fνi(x) − Fν̃i
(x)| ≤

N∑
i=1

|Fνi(x) − Fν̃i
(x)|.

Integrating and recalling the cdf expression (24) for the Wasserstein distance, we readily get (30)
for θ = 0 and θ = 1, the general case θ ∈ [0, 1] follows by the triangle inequality. The proof of (31)
is similar using the expression of W1 in terms of quantiles as in (23).

One may wonder whether some medians inherit properties of the sample measures and in
particular whether samples consisting of probabilities with an Lp density with respect to the
Lebesgue measure have medians with the same property. As we will shortly see, vertical and
horizontal medians will enable us to answer these questions by the positive.

Lemma 4.5. Let λ ∈ ∆N , ν = (ν1, . . . , νN ) ∈ P1(R)N , θ ∈ [0, 1], and νθ := VMedλ(θ,ν),
µθ := HMedλ(θ,ν), then

1. if ν1, . . . , νN are atomless, then so are νθ and µθ,

2. if ν1, . . . , νN have connected supports, then so does µθ.

Proof. Recall that for a probability measure, being atomless is equivalent to having a continuous
cdf as well as to having a strictly increasing qdf, see, e.g., Proposition 1 in [27]. Let us denote by
Fθ the cdf (see (28)) of νθ and by Qθ the qdf of µθ (see (29)). If ν1, . . . , νN are atomless then Fθ

is continuous by continuity of Fνi
so that νθ is atomless. On the other hand, (5) entails

Qθ(t) −Qθ(s) ≥ min
1≤i≤N

(Qνi
(t) −Qνi

(s)), for all (t, s) ∈ (0, 1)2,

so that Qθ is strictly increasing whenever each Qνi
is. Let us assume now that ν1, . . . , νN have

connected supports then each Qνi
is continuous and so is Qθ. Thus, µθ has a connected support

(again by Proposition 1 in [27]).

Considering absolute continuity of medians, we first discuss the easier case of vertical selections:

Theorem 4.6 (Vertical selections: absolute continuity). Let λ ∈ ∆N , ν = (ν1, . . . , νN ) ∈
P1(R)N , θ ∈ [0, 1], and νθ := VMedλ(θ,ν). If ν1, . . . , νN are all absolutely continuous (with respect
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to the Lebesgue measure on R) with densities f1, . . . , fN ∈ L1(R) then νθ is absolutely continuous
with a density fνθ ∈ L1(R) which satisfies

min
1≤i≤N

fi ≤ fνθ ≤ max
1≤i≤N

fi, a.e. on R. (32)

In particular, if, for some p ∈ [1,∞], fi ∈ Lp(R) for i = 1, . . . , N , then fνθ ∈ Lp(R) and

∥ min
1≤i≤N

fi∥Lp(R) ≤ ∥fνθ∥Lp(R) ≤ ∥ max
1≤i≤N

fi∥Lp(R) ≤
N∑
i=1

∥fi∥Lp(R). (33)

Proof. Let x ∈ R and h ≥ 0, it follows from (5) and the definition of the cdf Fθ that

0 ≤ Fθ(x+ h) − Fθ(x) ≤ max
1≤i≤N

{Fνi(x+ h) − Fνi(x)} = max
1≤i≤N

ˆ x+h

x

fi ≤
ˆ x+h

x

max
1≤i≤N

fi,

which yields absolute continuity of Fθ, i.e. νθ is absolutely continuous with respect to Lebesgue’s
measure, and the upper bound in (32). In a similar fashion,

Fθ(x+ h) − Fθ(x) ≥
ˆ x+h

x

min
1≤i≤N

fi,

which shows shows the lower bound in (32) and concludes the proof.

In particular, in dimension one, vertical medians automatically select medians which inherit inte-
grability properties of the sample measures, with simple explicit pointwise bounds.

Let us now turn our attention to the case horizontal selections which is slightly more involved.

Theorem 4.7 (Horizontal selections: absolute continuity). Let λ ∈ ∆N , ν = (ν1, . . . , νN ) ∈
P1(R)N , θ ∈ [0, 1], and µθ := HMedλ(θ,ν). If ν1, . . . , νN are all absolutely continuous (with respect
to the Lebesgue measure on R) with densities f1, . . . , fN ∈ L1(R) then:

• µ0 and µ1 are absolutely continuous with densities fµ0 , fµ1 which satisfy

min
1≤i≤N

fi ≤ min(fµ0 , fµ1) ≤ max(fµ0 , fµ1) ≤ max
1≤i≤N

fi, a.e. on R, (34)

• for every θ ∈ [0, 1], µθ is absolutely continuous, we denote its density fµθ ,

• if, for some p ∈ [1,∞], fi ∈ Lp(R) for i = 1, . . . , N , then fµθ ∈ Lp(R) and

∥fµθ∥Lp(R) ≤ ∥ max
1≤i≤N

fi∥Lp(R) ≤
N∑
i=1

∥fi∥Lp(R). (35)

Proof. We shall proceed in three steps.
Step 1: Let us show (34), under the extra assumption that each fi satisfies

fi ∈ L∞(R),
1

fi
∈ L∞

loc(R). (36)

Recall that by construction

µ0 := Q−
#L, µ

1 := Q+
#L with Q± := M±

λ (Qν1
, . . . , QνN

),
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and (36) ensures that each Fνi
is Lipschitz (with Lipschitz constant ∥fi∥L∞(R)) with inverse Qνi

,
which is locally Lipschitz on (0, 1), with Q′

νi
satisfying

fi(Qνi
)Q′

νi
= 1, hence Q′

νi
≥ 1

M
with M := max

j
∥fj∥L∞(R) a.e. on (0, 1). (37)

Hence, Q± are locally Lipschitz on (0, 1), and it follows from (5) that for 0 < t < s < 1, one has

Q±(s) −Q±(t) ≥ 1

M
(s− t),

which implies that Q− = Qµ0 and Q+ = Qµ1 have M -Lipschitz inverses which are the cdf’s Fµ0

and Fµ1 . Thus, µ0 and µ1 are absolutely continuous with bounded positive densities fµ0 , fµ1 , and

fµ0(Qµ0)Q′
µ0 = 1, fµ1(Qµ1)Q′

µ1 = 1 a.e. on (0, 1). (38)

Using (6), we also have for 0 < t < s < 1 with |t− s| small enough

max
i∈I−(t)

(Qνi(s) −Qνi(t)) ≥ Qµ0(s) −Qµ0(t) ≥ min
i∈I−(t)

(Qνi(s) −Qνi(t)),

where I−(t) := {i : Q−(t) = Qνi(t)}. If we choose t a point where all qdf’s Qµ0 , Qνi
are

differentiable and the change of variable formulas (37) and (38) hold dividing the previous inequality
by (s− t) and letting s→ t+ yields

max
i∈I−(t)

Q′
νi

(t) = max
i∈I−(t)

1

fi(Qµ0(t))
≥ Q′

µ0(t) =
1

fµ0(Qµ0(t))

≥ min
i∈I−(t)

Q′
νi

(t) = min
i∈I−(t)

1

fi(Qµ0(t)),

so that
min

1≤i≤N
fi(Qµ0(t)) ≤ fµ0(Qµ0(t)) ≤ max

1≤i≤N
fi(Qµ0(t)) for a.e. t ∈ (0, 1).

But since µ0 = Qµ0
#
L has a positive and bounded density, it has the same null sets as L hence

the previous inequality can be simply reformulated as

min
1≤i≤N

fi ≤ fµ0 ≤ max
1≤i≤N

fi a.e. on R.

The fact that fµ1 obeys the same inequality can be proved in a similar way using (6) for M+
λ

instead of M−
λ , we thus have shown (34) under (36). Note also that the Lp bound (35) follows for

θ ∈ {0, 1}.

Step 2: Again assuming (36), let us show absolute continuity of µθ and the Lp bound (35)
for θ ∈ (0, 1). We shall proceed by a displacement convexity argument which is reminiscent of
McCann’s seminal work [39]. Let us recall that Fµ0 is Lipschitz with locally Lipschitz inverse Q−

so that Fµ0
#
µ0 = L and

µθ = ((1 − θ)Q− + θQ+)#L = ((1 − θ)Q− + θQ+)#(Fµ0
#
µ0) = ((1 − θ)id + θT )#µ

0,

where T := Q+ ◦ Fµ0 is the monotone transport from µ0 to µ1 so that µθ is the displacement
interpolation between µ0 and µ1 as defined by McCann in [39] (in the more general and involved
multi-dimensional setting). Since the (locally Lipschitz) map (1−θ)id+θT has a Lipschitz inverse
and µ0 is absolutely continuous, µθ is absolutely continuous, we then denote by fµθ its density.
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Recalling that the qdf of µθ, Qθ = (1−θ)Q− +Q+ is locally Lipschitz, differentiable with a strictly
positive derivative a.e. and we have the change of variable formula:

fµθ (Qθ)Q′
θ = 1 a.e.

Let V : R → R with V (0) = 0 be convex, then the function α > 0 7→ Φ(α) := αV (α−1) is convex
as well and then we have

ˆ
R
V (fµθ (x))dx =

ˆ 1

0

V

(
1

Qθ
′(t)

)
Qθ

′(t)dt =

ˆ 1

0

Φ((1 − θ)Q′
µ0(t) + θQ′

µ1(t)))dt

≤ (1 − θ)

ˆ 1

0

Φ(Q′
µ0(t))dt+ θ

ˆ 1

0

Φ(Q′
µ1(t))dt

= (1 − θ)

ˆ
R
V (fµ0(x))dx+ θ

ˆ
R
V (fµ1(x))dx.

Taking V (α) = |α|p, recalling (34) we in particular get

ˆ
R

(fµθ (x))pdx ≤ (1 − θ)

ˆ
R

(fµ0(x))pdx+ θ

ˆ
R

(fµ1(x))pdx ≤ ∥ max
1≤i≤N

fi∥pLp(R),

which gives (35).

Step 3: general case by Lemma 4.4. To get rid of the extra assumption (36), let g be the
density of a standard Gaussian measure and for ε > 0 set

fεi :=
min((1 − ε)fi + εg, ε−1)´
R min((1 − ε)fi + εg, ε−1)

.

Applying the previous steps to µθ
ε := HMedλ(θ, fε1 , . . . , f

ε
N ), we get

min
1≤i≤N

fεi ≤ min(fµ0
ε
, fµ1

ε
) ≤ max(fµ0

ε
, fµ1

ε
) ≤ max

1≤i≤N
fεi ,

and for every θ ∈ [0, 1],
∥fµθ

ε
∥Lp(R) ≤ ∥ max

1≤i≤N
fεi ∥Lp(R).

Since fεi converges to fi in Lp and µθ
ε converges to µθ in Wasserstein distance thanks to Lemma

4.4, we can pass to the limit ε→ 0+ in these bounds, obtaining (34) and (35).

Remark 4.8. For Wasserstein barycenters (in any dimension), the fact that one sample measure
with positive weight is Lp implies that the barycenter is Lp as well (see [1]). For Wasserstein
medians in one dimension, we really need all sample measures to be Lp to find an Lp median. To
see this, recall that the median of ν1 := δx with weight 2/3 and any probability ν2 ∈ P1(R) (with the
smoothest density one can think of) with weight 1/3 is δx. Note also that due to the fact that M±

λ

are Lipschitz but nonsmooth, vertical and horizontal median selections of sample measures with
smooth (or Sobolev) densities do not have a continuous density in general.

5 Multi-marginal and dual formulations

5.1 Multi-marginal formulation

Given the proper metric space (X , d), λ ∈ ∆N and ν = (ν1, . . . , νN ) ∈ P1(X )N , the Wasserstein
median problem (11) is, like the Wasserstein barycenter problem, a special instance of the matching
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for teams problem [16] and, as such, admits linear reformulations which take the form of multi-
marginal optimal transport problems. Let us now recall this reformulation in the Wasserstein
median context. For x := (x, x1, . . . , xN ) ∈ XN+1, let us define:

fλ(x, x1, . . . , xN ) :=

N∑
i=1

λid(xi, x), cλ(x1, . . . , xN ) := min
y∈X

fλ(y, x1, . . . , xN ), (39)

and the projections:

π0(x) = x, πj(x) = xj , 1 ≤ j ≤ N, π0,j(x) = (x, xj), π1,...,N (x) = (x1, . . . , xN ).

We denote by Π(ν1, . . . , νN ) the set of Borel probability measures on XN having νi as i-th marginal
and the linear multi-marginal problems

inf

{ˆ
XN+1

fλdθ : θ ∈ P1(XN+1), π1,...,N#θ ∈ Π(ν1, . . . , νN )

}
, (40)

and

inf
γ∈Π(ν1,...,νN )

ˆ
XN

cλdγ. (41)

Since (X , d) is Polish, it follows from the disintegration theorem (see paragraph 5.3 in [4]) that if
θ is admissible for (40) it can be disintegrated with respect to its marginal γ := π1,...,N#θ as

θ = θx1,...,xN ⊗ γ,

for a Borel family of conditional probability measures θx1,...,xN on X . For fixed marginal γ :=
π1,...,N#θ, minimizing with respect to the conditional probability θx1,...,xN the integral of fλ ob-

viously amounts to choose it supported on Mλ(x1, . . . , xN ) so that it is easy to see that (40)
and (41) are equivalent in the sense that they have the same value and that θ solves (40) if
and only if γ := π1,...,N#θ solves (41) and θ is supported by the set of (x, x1, . . . , xN ) such that

x ∈ Mλ(x1, . . . , xN ). The fact that Π(ν1, . . . , νN ) is tight and the properness of (X , d) ensure
that the infimum in both (40) and (41) is attained. The connection with the Wasserstein median
problem (11) and its solutions Medλ(ν) is summarized by:

Theorem 5.1. The following hold:

1. min (11) = min (40) = min (41).

2. If ν ∈ Medλ(ν) i.e. ν solves (11), then, there exists θ solving (40) such that ν = π0#θ and,
conversely, if θ solves (40), then π0#θ ∈ Medλ(ν).

3. If θ solves (40) and ν = π0#θ, then for every j such that λj > 0, γj := π0,j#θ is an optimal
transport plan between ν and νj.

4. If mλ : XN → X is a Borel selection of Mλ and γ solves (41), then (mλ)#γ ∈ Medλ(ν).

5. ν ∈ Medλ(ν) if and only if there exists γ solving (41) and a Borel family of probability
measures θx1,...,xN such that θx1,...,xN is supported on Mλ(x1, . . . , xN ) for γ-a.e. (x1, . . . , xN )
and ν = π0#(θx1,...,xN ⊗ γ).

The proof of similar results can be found in [16] and therefore omitted. Even though [16]
consider a compact setting (with general costs), the same proof easily adapts to the present setting
of a proper metric space with the distance as cost. Note that, as in [16], one can deduce from
a Wasserstein median ν ∈ Medλ(ν) a solution of (40) with first marginal ν as follows: let γi be
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an optimal plan between ν and νi disintegrated with respect to ν as γi = ν ⊗ γxi and define θ by
gluing i.e.:

ˆ
X
ϕ(x, x1, . . . , xN )dθ(x, x1, . . . , xN ) :=

ˆ
X

(ˆ
XN

ϕ(x, x1, . . . , xN )dγx1 (x1) . . . dγxN (xN )
)

dν(x)

for every ϕ ∈ Cb(XN+1). Then, θ solves (40) and by construction π0#θ = ν. Note that pushing
forward by a selection of Mλ a solution of the multi-marginal (41) as in 3 above corresponds
to special medians for which, using the notation of 4, θx1,...,xN = δmλ(x1,...,xN ) is a Dirac mass.
Since Mλ is in general not single-valued, not all medians are of this form. Consider for instance
X = [−1, 1] equipped with the usual Euclidean distance and let ν1 = δ−1/2 and ν2 = δ1/2 with
uniform weights. Then Medλ(ν1, ν2) is the set of all probability measures supported on [−1/2, 1/2]
whereas 3 only selects Dirac masses.

Let us now give an application of Theorem 5.1:

Corollary 5.2 (Moment bounds). Let X = Rd be equipped with the Euclidean distance. If all the
sample measures are supported on a closed convex subset K ⊂ Rd, then every Wasserstein median
ν ∈ Medλ(ν) is supported on K as well. Moreover, if V : Rd → R+ is quasiconvex (i.e. {V ≤ t} is
convex for every t ≥ 0) then ˆ

Rd

V dν ≤
N∑
i=1

ˆ
Rd

V dνi.

In particular, for any p ∈ (0,+∞) we have the following bound on the p-moments of ν:

ˆ
Rd

|x|pdν ≤
N∑
i=1

ˆ
Rd

|x|pdνi. (42)

Proof. We know from point 4 of Theorem 5.1, that there exists γ ∈ Π(ν1, . . . νN ) and a family of
probability θx1,...,xN supported by Mλ(x1, . . . , xN ) such that for every continuous and bounded (or
more generally Borel) function f : Rd → R one has

ˆ
Rd

f(x)dν(x) =

ˆ
(Rd)N

(ˆ
Rd

f(x)dθx1,...,xN (x)
)

dγ(x1, . . . , xN ),

but since θx1,...,xN is supported by Mλ(x1, . . . , xN ) ⊂ co{x1, . . . , xN} (as we have seen in Example
2), if all the νi’s are supported by the closed convex set K then so is θx1,...,xN for γ-a.e. (x1, . . . , xN )
and then ν(K) = 1. Likewise, if V is nonnegative and quasiconvex, then for θx1,...,xN a.e. x we
have

V (x) ≤ max
1≤i≤N

V (xi) ≤
N∑
i=1

V (xi),

and integrating this inequality with respect to θx1,...,xN first and then with respect to γ in
Π(ν1, . . . , νN ) we obtain the announced moment bounds.

A counterexample to linear L∞ density bounds in several dimensions. We have seen
in Theorems 4.6 and 4.7 that when X = R, and the sample measures have densities uniformly
bounded by some M , vertical and horizontal median selections enable to find Wasserstein medians
with a density which is bounded by the same bound M . In other words, in dimension one, it
is possible to have a linear control on the L∞ norm of some well-chosen Wasserstein median in
terms of L∞ bounds of the sample measures. The situation seems to be more intricate in higher
dimensions. The following example shows that a linear L∞-bound cannot hold in two dimensions.
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ℓ

εν1 ν3

ν2

ν4
Sample measures

Maximal support of Wasserstein medians

Figure 5: Counterexample to linear L∞ bounds in dimension two. The support of the four given
uniformly distributed measures are indicated in gray. The support of any Wasserstein median is
contained in the green area. Confer Example 5.3 for further details.

Example 5.3. For 0 < ε < 1 let ν1 be a uniform measure supported on the rectangle [−1 −
ℓ,−1] × [− ε

2 ,
ε
2 ] and let ν2, ν3 and ν4 be obtained by successive rotations by 90◦ of ν1 as in Figure

5. Consider uniform weights λi = 1
4 , for i = 1, . . . , 4, and let ν ∈ Medλ(ν1, . . . , ν4). We know from

Theorem 5.1 that one can write ν := π0#θ where πi#θ = νi for i = 1, . . . , 4 and x is a geometric
median of (x1, . . . , x4) for θ-a.e. (x, x1, . . . , x4). Now note that, with this construction, four points
xi ∈ spt νi always form a convex quadrilateral, and as shown in Theorem 1 in [43], their unique
median is the intersection of the two segments [x1, x3] and [x2, x4]. In particular such geometric
medians belong to the square [− ε

2 ,
ε
2 ]2, which therefore supports any ν ∈ Medλ(ν1, . . . , ν4). This

shows that the L∞ norm of ν is at least ε−2: it cannot be bounded from above uniformly in ε by a
multiple of maxi=1,...,4 ∥νi∥L∞ = ℓ−1ε−1.

5.2 Dual Formulation

To introduce a dual formulation à la Kantorovich of (11), we fix a point x0 ∈ X and define the
spaces

Y0 :=

{
f ∈ C(X ) : lim

d(x,x0)→∞

f(x)

1 + d(x, x0)
= 0

}
, Yb :=

{
f ∈ C(X ) : sup

x∈X

|f(x)|
1 + d(x, x0)

<∞
}
.

Note that these spaces are independent of the choice of x0 and that the dual of Y0 may be identified
with the space of signed measures with finite first moment

(Y0)∗ = {µ ∈ M(X ) : (1 + d(x, x0))µ ∈ M(X )} .

We will also assume here without loss of generality that all the weights λi are strictly positive in
the Wasserstein median problem (11) and define for λ > 0:

Lipλ(X ) := {v : X → R, |v(x) − v(y)| ≤ λd(x, y), for all (x, y) ∈ X 2}.

Setting ci := λid, the ci-transform of a function u : X → R, denoted uci , is by definition given by

uci(x) := inf
y∈X

{λid(x, y) − u(y)}, for all x ∈ X ,
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note that, by the triangle inequality uci is either everywhere −∞ or a λi-Lipschitz function. It is
also a classical fact (see, e.g. Proposition 3.1 in [46]) that u ∈ Lipλi

(X ) if and only if uci = −u.
Following [1], let us now consider the concave maximization problem

sup

{ N∑
i=1

ˆ
X
ucii dνi : ui ∈ Y0,

N∑
i=1

ui = 0

}
, (43)

and its relaxed version

sup

{ N∑
i=1

ˆ
X
ucii dνi : ui ∈ Yb,

N∑
i=1

ui = 0

}
. (44)

By definition of the ci-transform, it is easy to check the weak duality relation

min (11) ≥ sup (44) ≥ sup (43).

Using convex duality by proceeding exactly as in the proof of Propositions 2.2 and 2.3 in [1]
for the Wasserstein barycenter case, one can show that (11) is the dual of (43) and that strong
duality holds i.e.: min (11) = sup (44) = sup (43). It will be convenient in the sequel to consider
yet another formulation of (44):

sup

{ N∑
i=1

ˆ
X
uidνi : ui ∈ Lipλi

(X ), i = 1, . . . , N,

N∑
i=1

ui ≤ 0

}
. (45)

Proposition 5.4 (Lipschitz formulation of the dual problem). Let (ν1, . . . , νN ) ∈ P1(X )N

and λ := (λ1, . . . , λN ) ∈ ∆N with each λi strictly positive. Then we have

min (11) = sup (44) = max (45), (46)

where we have written max (45) to emphasize that the supremum in (45) is attained.

Proof. Recall that min (11) = sup (44).

Step 1: sup (44) ≥ sup (45). Let (u1, . . . , uN ) be admissible for (45), take ψ = (ψ1, . . . , ψN ),
with ψi = −ui for all i = 1, . . . , N − 1 and ψN = u1 + · · · + uN . Since Lipschitz functions belong
to Yb, ψ is admissible for (44) and we have:

N∑
i=1

ˆ
X
uidνi =

N−1∑
i=1

ˆ
X

(−ψi)dνi +

ˆ
X
uNdνN .

For i = 1, . . . , N − 1, since ψi ∈ Lipλi
(X ), we have −ψi = ψci

i . Moreover, ψN = u1 + · · ·+ uN−1 ≤
−uN , hence ψcN

N ≥ uN , yielding

N∑
i=1

ˆ
X
uidνi ≤

N∑
i=1

ˆ
X
ψci
i dνi ≤ sup (44).

Step 2: sup (45) ≥ sup (44). Let ψ = (ψ1, . . . , ψN ) be admissible for (44). Consider u =
(u1, . . . , uN ) = (ψc1

1 , . . . , ψ
cN
N ). By construction, each ui is λi-Lipschitz and to see that u is

admissible for (45) we observe that for every x ∈ X :

N∑
i=1

ui(x) =

N∑
i=1

ψci
i (x) =

N∑
i=1

inf
y
{λid(x, y) − ψi(y)} ≤ −

N∑
i=1

ψi(x) = 0,
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and, then,
N∑
i=1

ˆ
X
ψci
i dνi =

N∑
i=1

ˆ
X
uidνi ≤ sup (45).

Step 3: the supremum is attained in sup (45). We note that both constraints and the objective
function in (45) are unchanged when one replaces ui by ui + αi where the αi’s are constant that
sum to 0, we may therefore restrict the maximization in sup (45) to the smaller admissible set of
potentials (u1, . . . , uN ) such that

ui ∈ Lipλi
(X ),

N∑
i=1

ui ≤ 0, and

ˆ
X
uidνi = 0, for i = 1, . . . , N − 1. (47)

Since this set contains (0, . . . , 0) we can reduce it even further this set by considering only potentials
for which the objective is positive: ˆ

X
uNdνN ≥ 0. (48)

If we denote by K the set of potentials that satisfy (47) and (48), we observe that if (u1, . . . , uN ) ∈
K then for i = 1, . . . , N − 1 and x ∈ X , since ui is λi-Lipschitz, one has

ui(x) ≤
ˆ
X
uidνi + λi

ˆ
X
d(x, y)dνi(y) ≤ λid(x, x0) +mi, mi := λi

ˆ
X
d(x0, y)dνi(y).

Reasoning in a similar way for −ui, we get bounds with linear growth, namely |ui| ≤ λid(·, x0)+mi

for i = 1, . . . , N − 1. Since uN ≤ −
∑N

i=1 ui we get a similar upper bound with linear growth for
uN , and, for a lower bound, we use (48) which, together with the fact that uN is λN -Lipschitz
gives

uN ≥ −λNd(·, x0) − λN

ˆ
X
d(x0, y)dνN (y).

Let us now take a maximizing sequence in K for (45). The above linear bounds and Ascoli–Arzelà’s
theorem guarantee that this sequence converges locally uniformly to some u, and again by these
linear bounds, the fact that νi ∈ P1(X ) for all i = 1, . . . , N , and Lebesgue’s dominated convergence
theorem, one deduces that u ∈ K and u actually solves (45).

We may derive from the primal-dual relations between (11) and (45) a characterization of
Wasserstein medians in terms of Kantorovich potentials

Theorem 5.5 (Optimality conditions for Wasserstein medians). Let ν = (ν1, . . . , νN ) ∈
P1(X )N , λ = (λ1, . . . , λN ) ∈ ∆N with λi > 0 and let ν ∈ P1(X ). Then ν ∈ Medλ(ν) if and only
if there exist ψ1, . . . , ψN such that

1. for i = 1, . . . , N , ψi ∈ Lip1(X ) is a Kantorovich potential between νi and ν, i.e.

W1(νi, ν) =

ˆ
X
ψidνi −

ˆ
X
ψidν,

2. there holds
N∑
i=1

λiψi ≤ 0 on X , and

N∑
i=1

λiψi = 0 on spt(ν).
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Proof. It follows from the duality result of proposition 5.4 that ν ∈ Medλ(ν) if and only if there
exists (u1, . . . , uN ) admissible for (45) such that

N∑
i=1

λiW1(νi, ν) =

N∑
i=1

ˆ
X
uidνi (49)

(in which case (u1, . . . , uN ) automatically solves (45)). Setting ψi = ui/λi we thus have ψi ∈
Lip1(X ) and

∑N
i=1 λiψi ≤ 0 on X . By the Kantorovich–Rubinstein duality formula (8), we have

W1(νi, ν) ≥
ˆ
X
ψidνi −

ˆ
X
ψidν. (50)

Multiplying by λi summing and using the fact that ν is a nonnegative measure and
∑N

i=1 λiψi ≤ 0
thus yields

N∑
i=1

λiW1(νi, ν) ≥
N∑
i=1

λi

ˆ
X
ψidνi −

N∑
i=1

λi

ˆ
X
ψidν

≥
N∑
i=1

λi

ˆ
X
ψidνi =

N∑
i=1

ˆ
X
uidνi,

so that (49) holds if and only if each inequality (50) is an equality, i.e. ψi is a Kantorovich potential
between νi and ν and ˆ

X

( N∑
i=1

λiψi

)
dν = 0,

i.e.
∑N

i=1 λiψi = 0 on spt(ν) since each ψi is continuous.

6 Beckmann minimal flow formulation

In this section, we consider the Wasserstein median problem on a convex compact subset Ω of Rd,
with non empty interior (which is not really restrictive) equipped with the Euclidean distance. In
this setting, we will see that, taking advantage of the so-called Beckmann’s minimal flow formula-
tion of Monge’s problem, one can derive a system of PDEs that characterize Wasserstein medians.
We are given λ ∈ ∆N with λi > 0 for all i = 1, . . . , N , and ν = (ν1, . . . , νN ) ∈ P(Ω)N , we know
from Corollary 5.2 that any measure in Medλ(ν) is supported on Ω.

6.1 The Beckmann problem

We denote by M(Ω,Rd) the set of vector valued measures on Ω. For such a measure σ, we denote
by |σ| ∈ M+(Ω) its total variation measure and recall that one can write dσ = σ̂d|σ| for some
Borel map σ̂ such that |σ̂| = 1, |σ|-a.e.; for every test-function ϕ ∈ C(Ω,Rd), one can therefore
write ˆ

Ω

ϕ · dσ =

ˆ
Ω

ϕ(x) · σ̂(x) d|σ|(x).

Let us denote by Mdiv(Ω,Rd) the set of vector valued measures σ whose divergence ∇ · σ is
a finite measure, where ∇ · σ is defined in the sense of distributions. Given i = 1, . . . , N and
ν ∈ P(Ω), a vector-valued measure σi ∈ Mdiv(Ω,Rd) is an admissible flow between νi and ν if it
solves

∇ · σi + νi = ν
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in the weak sense, i.e. ˆ
Ω

∇ϕ · dσi =

ˆ
Ω

ϕ d(νi − ν), for all ϕ ∈ C1(Ω).

Beckmann’s formulation of the optimal transport problem with distance cost between νi and ν
consists in finding an admissible flow with minimal total variation, it thus reads

inf
σi∈Mdiv(Ω,Rd)

{|σi|(Ω) : ∇ · σi + νi = ν} (51)

where |σi|(Ω) denotes the total variation of σi. This problem was introduced by Beckmann in the
1950’s [7] and its connections with the optimal transport problem W1(ν, νi) is well-known, as we
shall recall now, referring the reader to [46] and [3] for detailed statements and proofs. First of all,
let us recall that the value of (51) coincides with the Wasserstein distance W1(ν, νi) so recalling the
Kantorovich–Rubinstein formula, we have (and we write min and max on purpose to emphasize
the existence of solutions):

W1(νi, ν) = min
σi∈Mdiv(Ω,Rd)

{|σi|(Ω) : ∇ · σi + νi = ν} = max
ui∈Lip1(Ω)

ˆ
Ω

ui d(νi − ν). (52)

Following the seminal work of [11, 12], the sharp connection between optimal flows, i.e. solutions
of (51) and Kantorovich potentials is captured by the Monge–Kantorovich PDE system which we
now recall.

Definition 6.1 (Monge–Kantorovich PDE). A pair (ui, ρi) ∈ Lip1(Ω) × M+(Ω) solves the
Monge–Kantorovich system between νi and ν:

∇ · (ρi∇ρi
ui) + νi = ν, |∇ρi

ui| = 1 ρi-a.e. (53)

if there exists (uεi )ε>0 ∈ C1(Ω) ∩ Lip1(Ω) converging uniformly to ui as ε → 0, such that ∇uεi
converges in L2(ρi) to some σ̂i (so that |σ̂i| ≤ 1) and

∇ · (ρiσ̂i) + νi = ν, |σ̂i| = 1 ρi-a.e.. (54)

Assume that (ui, ρi) ∈ Lip1(Ω)×M+(Ω) solves the Monge–Kantorovich system between νi and
ν, and let (uεi )ε>0 ∈ C1(Ω) ∩ Lip1(Ω) converge uniformly to ui as ε → 0, and be such that ∇uεi
converges in L2(ρi) to some σ̂i which satisfies (54), then using the fact that σi := ρiσ̂i is admissible
for (51) we deduce from (52) and (54):

W1(νi, ν) ≥
ˆ
Ω

ui d(νi − ν) = lim
ε→0

ˆ
Ω

uεi d(νi − ν) = lim
ε→0

ˆ
Ω

∇uεi · σ̂i dρi

=

ˆ
Ω

|σ̂i|2 dρi = ρi(Ω) = |σi|(Ω) ≥W1(νi, ν)

which proves that ui is a Kantorovich potential and σi := ρiσ̂i is an optimal flow:

W1(νi, ν) =

ˆ
Ω

ui d(νi − ν) = |σi|(Ω).

This also enables one to define unambiguously the L2(ρi)-limit of ∇vεi for any any approximation2

of ui by C1(Ω)∩ Lip1(Ω), indeed if (vεi )ε>0 is a sequence of such approximations, using again (54),
we have:

∥∇vεi − σ̂i∥2L2(ρi)
≤ 2|σi|(Ω) − 2

ˆ
Ω

∇vεi · σ̂idρi = 2W1(νi, ν) − 2

ˆ
Ω

vεi d(νi − ν) → 0 as ε→ 0.

2Note that such approximations can easily be performed by first extending ui to a 1-Lipschitz function to the
whole of Rd and then mollifying by convolution this extension.
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In other words, in definition 6.1, the direction σ̂i ∈ L2(ρi) only depends on ρi and ui and not on
the approximation of ui and it is legitimate to set ∇ρi

ui = σ̂i and to call it the tangential gradient
of ui with respect to ρi (and justify a posteriori the notation ∇ρi

ui). We have seen that solutions
of the Monge–Kantorovich system yield optimal flows and optimal potentials, but the converse is
easy to check. Indeed, let ui ∈ Lip1(Ω) and σi ∈ Mdiv(Ω,Rd) be such that

W1(νi, ν) =

ˆ
Ω

ui d(νi − ν) = |σi|(Ω)

setting ρi := |σi| and σ̂i such that |σ̂i| = 1 ρi-a.e. and dσi = σ̂idρi, then (54) holds and if (uεi )ε>0

is a sequence of C1 ∩ Lip1 approximations of ui then

∥∇uεi − σ̂i∥2L2(ρi)
≤ 2|σi|(Ω) − 2

ˆ
Ω

∇uεi · σ̂idρi = 2W1(νi, ν) − 2

ˆ
Ω

uεid(νi − ν) → 0 as ε→ 0

so that (ui, ρi) solves the Monge–Kantorovich system (53) which therefore fully characterizes the
primal-dual extremality relations in (52).

Note that if ρi is absolutely continuous with respect to the Lebesgue measure ρi ∈ L1(Ω),
then whenever ui ∈ Lip1(Ω), ρi∇ui belongs to L1(Ω) so ∇ · (ρi∇ui) is well defined in the sense of
distributions and (53) simplifies to

∇ · (ρi∇ui) + νi = ν, |∇ui| = 1 ρi-a.e. (55)

In Monge–Kantorovich theory, ρi = |σi| where σi is an optimal flow is called the transport
density and the study of integral estimates for transport densities has been the object of an
intensive stream of research [21–23,25,45]. In particular, if νi is absolutely continuous with respect
to the Lebesgue measure (and ν is an arbitrary probability measure) then the solution σi of (51)
is unique (Theorem 4.14 and Corollary 4.15 in [46]) and absolutely continuous as well (Theorem
4.16 in [46]) so that the transport density ρi is in L1 and the Monge–Kantorovich PDE can be
understood as in (55) without using the notion of tangential gradient. Higher integrability results
can be found in Theorem 4.20 in [46].

The connection between optimal flows, transport densities and optimal plans, is also well-
known, namely given γi ∈ Π(ν, νi) optimal i.e. such that W1(νi, ν) =

´
Ω×Ω

|x−xi|dγi(x, xi), define
the vector valued measure σγi by

ˆ
Ω

ϕ · dσγi
=

ˆ
Ω×Ω

ˆ 1

0

ϕ(x+ t(xi − x)) · (xi − x) dt dγi(x, xi), for all ϕ ∈ C(Ω,Rd). (56)

Then, ∇·σγi +νi = ν and σγi is an optimal flow i.e. solves (51), moreover (see Theorem 4.13 in [46]),
any σi solving (51) is of the form σγi for some optimal plan γi. We also refer to in [46] and [3] for
more on the subject and in particular connections between optimal flows and the directions of the
so-called transport rays.

6.2 A system of PDEs for Wasserstein medians

We now rewrite the Wasserstein median problem (11) in terms of a multi-flow minimization:

inf
(σ1,...,σN ,ν)∈Mdiv(Ω,Rd)N×P(Ω)

{ N∑
j=1

λj |σj |(Ω) : ∇ · σj + νj = ν, j = 1, . . . , N

}
, (57)

and observe that ν solves (11) if and only if there exist (σ1, . . . , σN ) ∈ Mdiv(Ω,Rd)N such that
(σ1, . . . , σN , ν) solves (57). Since we have assumed λi > 0 we can perform the change of unknown
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(a) Superimposition of Wasserstein median,
transport densities, and sample measures.

(b) Zoom of the red
square in (a), the
arrows represent the
transport flow in the
corresponding point.

Figure 6: An approximate Wasserstein median (blue) of three sample measures (black) and the
three approximately optimal transport densities (in gray) computed via Douglas–Rachford, with
step-size τ = 10−1 and relaxation parameters θk = 1 for all k ∈ N, on a 420× 420 grid. The figure
shows the results after 10000 iteration, with a residual of 7 · 10−8.

ui → ui/λi in (45) and rewrite it as

sup

{ N∑
i=1

λi

ˆ
Ω

uidνi : ui ∈ Lip1(Ω), i = 1, . . . , N,

N∑
i=1

λiui ≤ 0

}
. (58)

We may deduce from what we have recalled in the previous paragraph, a characterization of
Wasserstein medians as well as optimal flows in (57) and optimal potentials in (58) by a system of
PDEs of Monge–Kantorovich type. Note that if a median ν ∈ Medλ(ν1, . . . , νN ) was known, the
problem of finding the corresponding optimal flows would be decoupled into N Monge–Kantorovich
PDEs in the sense of definition 6.1, but to determine ν, we should take into account the obstacle
constraint

∑N
i=1 λiui ≤ 0 from (58) and the optimality condition from Theorem 5.5 that requires∑N

i=1 λiui to vanish on the support of ν. All this can be summarized as:

Theorem 6.2 (A Monge–Kantorovich system of PDEs for medians). Let ν ∈ P(Ω)
then ν ∈ Medλ(ν1, . . . , νN ) if and only if there exist (u1, . . . , uN ) ∈ Lip1(Ω)N and (ρ1, . . . , ρN ) ∈
M+(Ω)N such that, for i = 1, . . . , N

∇ · (ρi∇ρi
ui) + νi = ν, |∇ρi

ui| = 1 ρi-a.e., (59)

coupled with the obstacle conditions

N∑
i=1

λiui ≤ 0 on Ω,

N∑
i=1

λiui = 0 on spt(ν) (60)

Moreover in this case (u1, . . . , uN ) solves (58) and (ρ1∇ρ1
u1, . . . , ρN∇ρN

uN , ν) solves (57).
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Remark 6.3 (d = 1, Ω is an interval). In dimension 1, one can integrate the equation ∇·σi+νi =
ν and in this case, (57) appears as the vertical formulation of the median problem (25). One can
therefore interpret (57) in higher dimensions as a multidimensional extension of (25).

Remark 6.4 (Case of absolutely continuous sample measures). If νi is in L
1(Ω), then the

corresponding optimal flow σi and transport density ρi are also in L1(Ω) (even though medians
need not be absolutely continuous) and one can replace the tangential gradient ∇ρi

ui by ∇ui in the
Monge–Kantorovich PDE (59).

Remark 6.5 (Connection with the multi-marginal formulation). If θ solves the multi-
marginal problem (40), then we know that ν := π0#θ is a median and we can recover the corre-
sponding flows as in (56) i.e. by defining:

ˆ
Ω

ϕ · dσθ
i =

ˆ
ΩN+1

ˆ 1

0

ϕ(x+ t(xi − x)) · (xi − x) dt dθ(x, x1, . . . , xN ), for all ϕ ∈ C(Ω,Rd),

with this construction (σθ
1 , . . . , σ

θ
N , π0#θ) is a solution of (57). In fact, invoking Theorem 4.13

in [46], any solution of (57) can be obtained in this way from an optimal multi marginal plan θ.

6.3 Approximation by a system of p-Laplace equations

We shall now see how to approximate a median, as well as dual potentials and Beckmann flows by a
single system of p-Laplace equations (with p large as in the seminal work of Evans and Gangbo [28],
also see [38] for a similar strategy for a matching problem involving two sample measures). Given
ε > 0, we are given an exponent pε ≥ 2d, and assume these exponents satisfy

lim
ε→0+

pε = +∞. (61)

We then consider the functional, Jε defined for u = (u1, . . . , uN ) ∈W 1,pε(Ω)N by

Jε(u) :=
1

pε

N∑
i=1

ˆ
Ω

|∇ui|pε +
1

2ε

ˆ
Ω

( N∑
j=1

λjuj

)2
+
−

N∑
i=1

λi

ˆ
Ω

uidνi,

observing that Jε(u) = Jε(u+ α) if αi’s are constants that sum to 0, we can add the normalizing
constraint ˆ

Ω

ui = 0, i = 1, . . . , N − 1. (62)

With this normalization at hand we can prove the following.

Proposition 6.6. Let ε > 0, pε > d, then

inf
u∈W 1,pε (Ω)N

Jε(u)

admits a unique solution which satisfies the normalization (62).

Proof. Existence. First note that for i = 1, . . . , N − 1, ui ∈W 1,pε(Ω) with
´
Ω
ui = 0, using

successively Poincaré–Wirtinger’s, Morrey’s and Young’s inequalities, we haveˆ
Ω

|∇ui|pε − λi

ˆ
Ω

uidνi

≥ Cε

2
∥ui∥pε

W 1,pε (Ω) − λi∥ui∥L∞(Ω)

≥ Cε

4
∥ui∥pε

W 1,pε (Ω) + C ′
ε∥ui∥

pε

L∞(Ω) −
δ

pε
∥ui∥pε

L∞(Ω) −
1

δ
q
pε q

(λi)
q,
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where Cε, C
′
ε > 0 are constants (independent of ui), δ > 0 and q = pε

pε−1 the conjugate exponent.

To treat the N -th component, let uN ∈W 1,pε(Ω) and define aN :=
ffl
Ω
uNdx, then similarly as

beforeˆ
Ω

|∇uN |pε − λN

ˆ
Ω

uNdνN

≥ Cε

2
∥uN − aN∥pε

W 1,pε (Ω) − λN∥uN − aN∥L∞(Ω) − λNaN

≥ Cε

4
∥uN − aN∥pε

W 1,pε (Ω) + C ′
ε∥uN − aN∥pε

L∞(Ω) −
δ

pε
∥uN − aN∥pε

L∞(Ω) −
1

δ
q
pε q

(λN )q − λNaN .

By choosing δ > 0 small enough, we obtain altogether

Jε(u) ≥ Cε

4

N−1∑
i=1

∥ui∥pε

W 1,pε (Ω) +
Cε

4
∥uN − aN∥pε

W 1,pε (Ω) + C − λNaN +
1

2ε

ˆ
Ω

( N∑
j=1

λjuj

)2
+
, (63)

where C is a constant only depending on pε, λi (i = 1, . . . , N) and C ′
ε.

Now let (un)n∈N = (un1 , . . . , u
n
N )n∈N ∈

(
W 1,pε(Ω)N

)N
be a minimizing sequence of Jε satifying

our normalization. In order to conclude that (un)n∈N is bounded in W 1,pε(Ω), it is enough to
find an upper bound on anN =

ffl
Ω
unNdx. Assume by contradiction, that (up to a not relabeled

subsequence) anN → +∞ as n→ ∞, then, by (63) there are constants K, C̃ε > 0 (independent of
n) such that for i = 1, . . . , N − 1(

K + λNa
n
N

C̃ε

) 1
pε

≥ ∥uni ∥L∞(Ω), and

(
K + λNa

n
N

C̃ε

) 1
pε

≥ ∥unN − anN∥L∞(Ω), (64)

for all n ∈ N. But then, denoting Kn
ε :=

(
K+λNan

N

C̃ε

) 1
pε

1

2ε

ˆ
Ω

( N∑
j=1

λjuj

)2
+
− λNa

n
N

≥ 1

2ε

ˆ
Ω

(λNa
n
N −Kn

ε )
2
+ − λNa

n
N

≥ 1

2ε

ˆ
Ω

(λNa
n
N (1 − o(1)))

2
+ − λNa

n
N → +∞ as n→ ∞,

contradicting (un)n∈N being a minimizing sequence. This implies that (anN )n∈N is bounded hence
(unN )n∈N is bounded in W 1,pε(Ω). Since (uni )n∈N is bounded in W 1,pε(Ω) for i = 1, . . . , N , it has
a subsequence that converges weakly in W 1,pε(Ω), by the weak lower semi continuity of Jε, the
weak limit of this subsequence is indeed a minimizer of Jε.

Uniqueness. Let u, ū be minimizers of Jε. Then by strict convexity of | · |pε and ·2 we have

∇ui = ∇ūi Ld-a.e. for i = 1, . . . , N,( N∑
j=1

λjuj

)2
+

=
( N∑

j=1

λj ūj

)2
+

Ld-a.e.

By the normalization (62) we then get ui = ūi for i = 1, . . . , N − 1, and there is cN ∈ R such that
uN = ūN + cN . But then

0 = Jε(u) − Jε(ū) = λN

ˆ
Ω

uNdνN − λN

ˆ
Ω

(uN − cN )dνN = λNcN ,

which is only possible if cN = 0.
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The unique minimizer of Jε under the normalization (62), uε = (uε1, . . . , u
ε
N ) is characterized

by the system of PDEs

−∇ ·
(
|∇uεi |pε−2∇uεi

)
+ λi

(∑N
j=1 λju

ε
j

ε

)
+

= λiνi, i = 1, . . . , N (65)

with Neumann boundary conditions, in the weak sense which means that, for every i and every
φ ∈W 1,pε(Ω), one has

ˆ
Ω

|∇uεi |pε−2∇uεi · ∇φ+ λi

ˆ
Ω

(∑N
j=1 λju

ε
j

ε

)
+
φ = λi

ˆ
Ω

φdνi,

of course, supplemented by the normalization (62). To shorten notations and for further use, let
us define

σε
i :=

|∇uεi |pε−2∇uεi
λi

, νε :=
1

ε

( N∑
j=1

λju
ε
j

)
+
. (66)

So that the optimality system (65) can be rewritten as

−∇ · σε
i + νε = νi, i = 1, . . . , N. (67)

In particular (testing the N -th equation against a constant) νε which is a nonnegative continuous
(at least 1/2-Hölder when pε ≥ 2d) function, is a probability density on Ω.

Then we have, the following convergence result:

Proposition 6.7. Up to extracting a vanishing (not explicitly written) sequence εn → 0 as n→ ∞,
one may assume that

• (uε)ε>0 converges uniformly to some u = (u1, . . . , uN ) which is a vector of optimal dual
potentials, i.e. solves (58)¡,

• for each i, (σε
i )ε>0 converges weakly ∗ to some vector-valued measure σi, (νε)ε>0 converges

weakly ∗ to some probability measure ν and (σ1, . . . , σN , ν) solves the Beckmann problem
(57). In particular, ν is a Wasserstein median.

Proof. Step 1: bounds on uε. Multiplying (65) by uεi first yields

∥∇uεi∥
pε

Lpε + λi

ˆ
Ω

uεiν
ε = λi

ˆ
Ω

uεidνi, i = 1, . . . , N. (68)

Summing over i we thus get

N∑
i=1

∥∇uεi∥
pε

Lpε +
1

ε

ˆ
Ω

( N∑
j=1

λju
ε
j

)2
+

=

N∑
i=1

λi

ˆ
Ω

uεidνi. (69)

By Morrey’s and Hölder’s inequalities, pε ≥ 2d and the fact that uεi has zero mean for i =
1, . . . , N − 1, we have for positive constant C and C ′ depending only on Ω (but possibly changing
from one line to another)

∥uεi∥∞ ≤ C∥∇uεi∥L2d ≤ C|Ω|
1
2d−

1
pε ∥∇uεi∥Lpε ≤ C ′∥∇uεi∥Lpε ,

which together with (68) and the fact that both νε and νi are probability measures gives

max
i=1,...,N−1

∥uεi∥∞ ≤ C, max
i=1,...,N−1

∥∇uεi∥
pε

Lpε ≤ C. (70)
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Let us now get similar bounds on uεN , using (68) with i = N and using the fact that νε and νi are
probability measures and then again Morrey’s inequality (applied to uN −

ffl
Ω
uN ), we get

∥∇uεN∥pε

Lpε = λN

ˆ
(uεN − min

Ω
uεN )(νi − νε) ≤ λNoscΩ(uεN ) ≤ C∥∇uεN∥Lpε ,

which gives
∥∇uεN∥pε

Lpε ≤ C, oscΩ(uεN ) ≤ C.

With (70) and (69) and the bound on oscΩ(uεN ), we thus get taking C ′ ≥
∑N−1

i=1 λiu
ε
i

0 ≤ 1

ε

ˆ
Ω

(λN max
Ω

uεN − C ′)2+ ≤ C + λN

ˆ
uεNνN ≤ C + λN max

Ω
uεN

from which one readily deduces that maxΩ u
ε
N is bounded uniformly in ε, hence (uεN )ε>0 is bounded

in L∞ because of the bound on oscΩ(uεN ). Finally, we have shown that

max
i=1,...,N

∥uεi∥∞ ≤ C, max
i=1,...,N

∥∇uεi∥
pε

Lpε ≤ C, (71)

which implies also C0, 12 bounds so extracting a vanishing (not explicitly written) sequence εn → 0
as n → ∞, thanks to Ascoli–Arzelá’s theorem, one may assume that (uε)ε>0 converges uniformly
to some u with u ∈ W 1,q(Ω) for every q ∈ (1,+∞). And since (∇uε)ε>0 is bounded in every
Lq, we may also assume that for every q ∈ (1,+∞), (∇uε)ε>0 converges weakly to ∇u in Lq(Ω).
Of course, we may also assume that (νε)ε>0 converges weakly ∗ to some probability measure ν
and that the (bounded in L1, thanks to (71) and the definition of σε

i ) sequence (σε
i )ε>0 converges

weakly ∗ to some vector-valued measure σi.

Step 2: u satisfies the constraints of the dual. By (69) and (71), we have

ˆ
Ω

( N∑
j=1

λju
ε
j

)2
+
≤ Cε.

so that, letting ε→ 0+, we get
N∑
j=1

λjuj ≤ 0.

Let us now prove that each ui is 1-Lipschitz as a consequence of (71) and (61). First fix q and let
ε be small enough so that pε ≥ q, then

∥∇uεi∥Lq ≤ |Ω|
1
q−

1
pε C

1
pε .

So letting ε→ 0, we get with (61)

∥∇ui∥Lq ≤ |Ω|
1
q , for all q ∈ (1,+∞).

So letting now q → +∞ we obtain
∥∇ui∥L∞ ≤ 1

which implies that each ui is 1-Lipschitz by convexity of Ω.

Step 3: optimality of the limits. We already know that ν is a probability measure. Passing
to the limit in (67), we get

−∇ · σi + ν = νi, i = 1, . . . , N,
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which is the constraint in Beckmann problem (57). Since u is admissible in the dual, to conclude,
by weak duality, it is enough to show that

N∑
i=1

λi|σi|(Ω) ≤
N∑
i=1

λi

ˆ
Ω

uidνi. (72)

First observe that (69) entails

N∑
i=1

λi

ˆ
uεidνi ≥

N∑
i=1

ˆ
Ω

|∇uεi |pε =

N∑
i=1

ˆ
Ω

|λiσε
i |

pε
pε−1 .

Note then that, by Hölder’s inequality we have

ˆ
Ω

|σε
i |

pε
pε−1 ≥ ∥σε

i ∥
pε

pε−1

L1 |Ω|−
1

pε−1

so that

lim inf
ε→0+

ˆ
Ω

|σε
i |

pε
pε−1 ≥ lim inf

ε→0+
∥σε

i ∥L1∥σε
i ∥

1
pε−1

L1 ≥ lim inf
ε→0+

∥σε
i ∥L1 ≥ |σi|(Ω)

where the second inequality is obtained by distinguishing the (obvious) case where (after a suitable
extraction) (σε

i )ε>0 converges strongly to 0 in L1 and the case where ∥σε
i ∥L1 remains bounded away

from 0 and the last inequality follows from the weak ∗ convergence of (σε
i )ε>0 to σi. We thus get

N∑
i=1

λi

ˆ
Ω

uiνi = lim inf
ε→0+

N∑
i=1

λi

ˆ
Ω

uεiνi ≥ lim inf
ε→0+

N∑
i=1

λ
pε

pε−1

i

ˆ
Ω

|σε
i |

pε
pε−1 ≥

N∑
i=1

λi|σi|(Ω),

which proves (72) and ends the proof.

7 Numerics

In this section, we briefly mention the numerical methods we employed to generate the figures
in the paper and present a new one based on a Douglas–Rachford scheme for the multi-flow
formulation (57). All the experiments are performed in Python on a Intel(R) Core(TM) i5-5200U
CPU @ 2.20GHz and 8 Gb of RAM and are available for reproducibility at https://github.com/
TraDE-OPT/wasserstein-medians.

7.1 Sorting, Linear Programming, Sinkhorn

Recall from Section 4, that in the one dimensional case, the Wasserstein median problem admits
an almost-closed form solution, which can be computed directly with simple sorting procedures.
We implemented these well-known schemes to generate Figure 1. Here we rather focus on the case
X ⊂ R2, which is more relevant e.g. for imaging.

Wasserstein median problems on a fixed grid of size n = p2 for a sample of size N can be tackled
either via Linear Programming methods, taking advantage of the minimum-cost flow nature of the
problem [5], or via Sinkhorn-like methods on an entropy-regularized finite dimensional variant of
(40) [19], see also [9, 20]. The latter represents the most popular approach. We employed the
Sinkhorn method to generate Figure 2. Despite their well-known advantages, Sinkhorn algorithm
and entropic regularization methods can lead to severe computational issues, such as blurred
outputs, important numerical instabilities, and memory issues to store the so-called kernel matrix
[47]. It is worth mentioning that several efforts have been made to develop Sinkhorn-like methods
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that address these limitations, including log-space tricks for stability [9], de-biased variants for
blurring artifacts [32], and truncation strategies for memory and speed improvements [47].

In the next paragraph, we present a new approach which targets (57) and benefits from low
memory requirements, fast convergence behaviour, and produces non-blurred approximate medi-
ans. Note, however, that this is approach, well-suited for Wasserstein medians, cannot be easily
generalized to approximate Wasserstein barycenters .

7.2 Douglas–Rachford on the Beckmann formulation.

Given a square domain Ω, and N ≥ 2 measures (ν1, . . . , νN ) ∈ P(Ω)N , consider the Beckmann
minimal flow formulation of the Wasserstein median problem (57). To discretize (57), we introduce
the square grid Gh := {hi : i = 1, . . . , p}2 with step-length h := 1/p, and the discrete spaces
Mh := {µ : G → R} and Sh := {σ : G → R2}. Note that Mh and Sh are finite dimensional
vector spaces which can be identified with Rn and Rn×2, respectively, where n := p2. Thus, we
often treat elements in Mh and Sh as vectors. We consider the usual discretization of the gradient
∇h : Mh → Sh defined via forward differences with homogeneous Neumann boundary conditions
as in [17, Section 6.1]. The discrete divergence operator, which we denote by divh = −∇∗

h, is the
opposite adjoint of ∇h, with respect to the scalar products ⟨·, ·⟩Mh

and ⟨·, ·⟩Sh
(i.e. the usual ℓ2

scalar products on Rn and Rn×2, respectively). Now, let

Fh :=
{

(σ1, . . . ,σN , ν) ∈ SN
h ×Mh : divhσk + νk = ν for all k = 1, . . . , N

}
,

where (ν1, . . . , νN ) ∈ MN
h are suitable (not renamed) discretizations of ν1, . . . , νN on the grid Gh.

With this notation, let us consider the discretized version of (57):

min
(σ1,...,σN ,ν)∈Fh

N∑
k=1

λk∥σk∥1,2 + I∆(ν) (73)

Where ∆ is the unit simplex, and ∥·∥1,2 is the ℓ1,2 norm on Sh, also known as group-Lasso penalty,
which is defined for all σ ∈ Sh by ∥σ∥1,2 :=

∑n
i=1 ∥σ(xi)∥, where ∥ · ∥ is the usual ℓ2 norm on Rn.

To solve (73), we apply a Douglas–Rachford method to

min
(σ1,...,σN ,ν)∈SN

h ×Mh

N∑
k=1

λk∥σk∥1,2 + I∆(ν)︸ ︷︷ ︸
:=g1(σ1,...,σN ,ν)

+ IFh
(σ1, . . . ,σN , ν)︸ ︷︷ ︸

:=g2(σ1,...,σN ,ν)

.

The Douglas–Rachford method [24, 36] is an instance of the proximal point algorithm [13, 26],
which can be employed to solve a minimization problem consisting of the sum of two convex lower
semicontinuous functions which are accessible through evaluation of their proximity operators.
In our case, the proximity operator of g1, which is separable, consists in a projection onto the
unit simplex, denoted by P∆, for the discrete measure ν and on the application of the proximity
operator of the group-Lasso penalty, denoted by Shrinkτ , where τ > 0, on each component σi,
which can be computed in closed form [18].

The proximity operator of g2, i.e. the projection onto the affine subspace Fh, is more delicate.
Recall from optimality conditions that, formally, the projection onto the solution set of a linear
system of the form Ax = b is given, for all y, by Py = y −A∗ξ where ξ is any element that solves
AA∗ξ = Ay − b. In our case, we have b = −[ν1, . . . , νN ]T and the linear operators A and AA∗ can
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be written in block form as

A :=

divh −I
. . .

...
divh −I

 , AA∗ =


−∆h + I I · · · I

I
. . .

...
... I
I I · · · −∆h + I

 , (74)

where ∆h : Mh → Mh is the discrete Laplacian operator, namely ∆h = divh∇h.

Proposition 7.1. Let σ = (σ1, . . . ,σN ) ∈ SN
h and ν ∈ Mh ∩ ∆, and let ∇h : Mh → Sh be the

discrete gradient operator defined via forward differences with homogeneous Neumann boundary
conditions. Then the projection (σ̃, ν̃) of (σ, ν) onto Fh is given by

σ̃i := σi + ∇hξi, ν̃ := ν + ξ1 + · · · + ξN ,

where ξi := ξ′i − (I − 1
N ∆h)−1

(
1

N

N∑
j=1

ξ′j

)
and ξ′i is any solution to

−∆hξ
′
i = divhσi + νi − ν for all i = 1, . . . , N. (75)

Proof. First, let i = 1, . . . , N , let 1 ∈ Mh be constantly equal to 1, and note that, by definition of
the scalar products, since νi, ν ∈ ∆ and ker∇h = span{1}, we get

⟨divhσi + νi − ν,1⟩Mh
= ⟨divhσi,1⟩Mh

= −⟨σi,∇h1⟩Sh
= 0.

Hence, divhσi + νi − ν ∈ (ker∇h)⊥ = (ker ∆h)⊥ = Im ∆h for all i = 1, . . . , N , and, thus, (75)
actually admits a solution. From optimality conditions, we only need to show that A(σ̃, ν̃) = b
and that ξ := (ξ1, . . . , ξN ) solves AA∗ξ = A(σ, ν) − b where A and AA∗ are defined in (74). Let

us start with the latter. Denoting ξ̄′ := 1
N

∑N
i=1 ξ

′
i, we have for all i = 1, . . . , N that

−∆hξi + ξ1 + · · · + ξN = −∆hξ
′
i + ∆h

(
I − 1

N ∆h

)−1
ξ̄′ +Nξ̄′ −N

(
I − 1

N ∆h

)−1
ξ̄′

= divhσi + νi − ν +Nξ̄′ −N
(
I − 1

N ∆h

) (
I − 1

N ∆h

)−1
ξ̄′

= divhσi + νi − ν.

Hence AA∗ξ = A(σ, ν) − b. Regarding A(σ̃, ν̃) = b, we have

divhσ̃i + νi = divhσi + ∆hξi + νi = divhσi + ∆hξ
′
i − ∆h

(
I − 1

N ∆h

)−1
ξ̄′ + νi

= ν − ∆h

(
I − 1

N ∆h

)−1
ξ̄′ = ν +Nξ̄′ −N

(
I − 1

N ∆h

)−1
ξ̄′ = ν̃,

which concludes the proof.

Proposition 7.1 allows us to implement a Douglas–Rachford scheme on (73), which we summa-
rize in Algorithm 1. Note that, in Algorithm 1, we are required to solve two sparse (elliptic) linear
systems, which we tackle with generic sparse linear solvers provided by standard Python libraries.
However, one should put adequate care when trying to solve the first Laplacian system. Indeed, if
the projection onto the simplex is not computed sufficiently well, the right-hand side can lie out of
the range of the Laplacian. For this reason, in our numerical implementation, we smoothed out all
possible numerical errors with a further projection of the right-hand side onto the set of discrete
measures with a total mass equal to one.

The computational cost required to solve the aforementioned linear systems is overall balanced
with a very fast iteration-wise convergence behaviour. Remarkably, there is no need to store dense
n × n matrices. This makes the proposed method suitable for highly large-scale instances, see
e.g. Figures 3 and 6.
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Convergence. The Douglas–Rachford splitting method benefits from robust convergence guar-
antees, without any condition neither on the starting point nor on the step-size τ > 0 [13, 36]. In
particular, we have that if (σk

q )k∈N, (νk)k∈N, (ηk)k∈N and (µk)k∈N are the sequences generated by

Algorithm 1, then for each q = 1, . . . , N , we have σk
q → σ∗

q and νk → ν∗ and (σ∗
1, . . . ,σ

∗
N , ν

∗) solves

(73). As a stopping criterion, we measure the residual rk :=
∑N

q=1 ∥ηk+1
q −ηk

q∥2Sh
+∥µk+1−µk∥2Mh

,

which is guaranteed to converge to zero with a o(k−1) worst-case rate, and we stop the iterations
as soon as the residual drops below a prescribed tolerance.

Comments. Note that to solve (73), we also implemented the Primal Dual Hybrid Gradient
method by Chambolle and Pock, with different step-size selection strategies, such as backtracking
and adaptive schemes [30], and several different fixed step-sizes choices, which, however, always
provided very slow behaviours, and therefore, we chose not to discuss it further. Note that for
OT-like problems, the Douglas–Rachford splitting method has been employed first in its dual
formulation (ADMM) in [41], then in [8] and more recently in [14]. Its extension to the Wasserstein
median case proposed in the present paper has been surprisingly overlooked.
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Appendix

Proof of (6). Of course, if all the xi’s are equal I±(x) = {1, . . . , N} and (6) is nothing else than
(5). We may therefore assume that

∆ := min{|xi − xj | : xi ̸= xj} > 0.

Data: A collection of discrete probability measures ν1, . . . , νN ∈ Mh, a step-size τ > 0
and relaxation parameters (θk)k∈N in [0, 2) such that

∑∞
k=0 θk(2 − θk) = +∞

Result: ν∗ = limk→+∞ νk, σ∗
q = limk→+∞ σ

k
q for q = 1, . . . , N solution to (73)

Initialize: η0
1, . . . ,η

0
N ∈ Sh and µ0 ∈ Mh ∩ ∆

while not convergent do
σk+1

q = Shrinkτ

(
ηk
q

)
for all q = 1, . . . , N

νk+1 = P∆(µk)
for q = 1, . . . , N do

Solve: −∆hξ
′
q = divh(2σk+1

q − ηk
q ) + νq − 2νk+1 + µk

ξq = ξ′q −
(
I − 1

N ∆h

)−1
(

1
N

∑N
j=1 ξ

′
j

)
end

ηk+1
q = (1 − θk)ηk

q + θk
(
σk+1

q + ∇hξq
)

for all q = 1, . . . , N

µk+1 = (1 − θk)µk + θk
(
νk+1 + ξ1 + · · · + ξN

)
end

Algorithm 1: Douglas–Rachford for the Wasserstein median problem
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Then, setting

δ+i := max
k

{yk − xk : xk = xi}, δ−i := min
k

{yk − xk : xk = xi},

and δ± := (δ±1 , . . . , δ
±
N ) we have x+ δ+ ≥ y ≥ x+ δ− and then by monotonicity

M±
λ (x+ δ+) ≥ M±

λ (y) ≥ M±
λ (x+ δ−),

but if we choose y close enough to x, namely such that

max
i,j

|δ±i − δ±j | ≤ ∆

2

this, together with the definition of ∆, implies that the components of x and x+ δ± are ordered
in the same way, i.e. xj < xi if and only if xj + δ±j < xi + δ±i . Thus, for i ∈ I+(x), xi = M+

λ (x)
and ∑

j : xj+δ−j <xi+δ−i

λj =
∑

j : xj<xi

λj ≤
1

2
,

so that
M+

λ (y) ≥ M+
λ (x+ δ−) ≥ xi + δ−i ≥ M+

λ (x) + min
k∈I+(x)

(yk − xk).

In a similar way for i ∈ I−(x), xi = M−
λ (x) and∑

j : xj+δ−j ≤xi+δ−i

λj =
∑

j : xj≤xi

λj ≥
1

2
,

so that
M−

λ (y) ≥ M−
λ (x+ δ−) ≥ xi + δ−i ≥ M−

λ (x) + min
k∈I−(x)

(yk − xk).

This proves the rightmost inequalites in (6). The proof of the leftmost inequalities in (6) is similar
and thus omitted.
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