Moment inequalities for sums of weakly dependent random fields - Archive ouverte HAL
Article Dans Une Revue Bernoulli Année : 2024

Moment inequalities for sums of weakly dependent random fields

Résumé

We derive both Azuma-Hoeffding and Burkholder-type inequalities for partial sums over a rectangular grid of dimension $d$ of a random field satisfying a weak dependency assumption of projective type: the difference between the expectation of an element of the random field and its conditional expectation given the rest of the field at a distance more than $\delta$ is bounded, in $L^p$ distance, by a known decreasing function of $\delta$. The analysis is based on the combination of a multi-scale approximation of random sums by martingale difference sequences, and of a careful decomposition of the domain. The obtained results extend previously known bounds under comparable hypotheses, and do not use the assumption of commuting filtrations.
Fichier principal
Vignette du fichier
REVISION_bernoulli_dependentspatialsprocesses.pdf (270.73 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-04150509 , version 1 (04-07-2023)

Identifiants

Citer

Gilles Blanchard, Alexandra Carpentier, Oleksandr Zadorozhnyi. Moment inequalities for sums of weakly dependent random fields. Bernoulli, 2024, 30 (3), ⟨10.3150/23-BEJ1682⟩. ⟨hal-04150509⟩
38 Consultations
66 Téléchargements

Altmetric

Partager

More