ParamNet: A Multi-Layer Parametric Network for Joint Channel Estimation and Symbol Detection - Archive ouverte HAL
Communication Dans Un Congrès Année : 2022

ParamNet: A Multi-Layer Parametric Network for Joint Channel Estimation and Symbol Detection

Résumé

This paper proposes a parametric-based network architecture for joint channel estimation and data detection in communications systems with hardware impairments. This architecture is composed of a data-augmented layer, a custom soft thresholding function, and several linear layers modeling the effect of channel effects and hardware impairments. In the proposed network, the soft thresholding function softly constrains the detected data to be within the considered constellation. The latter depends only on one one parameter that is optimized during training. The benefit of the proposed approach is illustrated through a communications chain corrupted by multiple impairments and noises.
Fichier principal
Vignette du fichier
EUSIPCO2022-final.pdf (428.03 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-04145035 , version 1 (28-06-2023)

Identifiants

Citer

Vincent Choqueuse, Alexandru Frunza, Adel Belouchrani, Stéphane Azou, Pascal Morel. ParamNet: A Multi-Layer Parametric Network for Joint Channel Estimation and Symbol Detection. 2022 30th European Signal Processing Conference (EUSIPCO), Aug 2022, Belgrade, Serbia. pp.1616-1620, ⟨10.23919/EUSIPCO55093.2022.9909961⟩. ⟨hal-04145035⟩
32 Consultations
48 Téléchargements

Altmetric

Partager

More