Principal eigenvalues for the fractional p-Laplacian with unbounded sign-changing weights - Archive ouverte HAL Access content directly
Journal Articles Electronic Journal of Differential Equations Year : 2023

Principal eigenvalues for the fractional p-Laplacian with unbounded sign-changing weights

Abstract

Let \(\Omega\) be a bounded regular domain of \( \mathbb{R}^N\), \(N\geqslant 1\), \(p\in (1,+\infty)\), and \( s\in (0,1) \). We consider the eigenvalue problem $$\displaylines{ (-\Delta_p)^s u + V|u|^{p-2}u= \lambda m(x)|u|^{p-2}u \quad\hbox{in } \Omega \cr u=0 \quad \hbox{in } \mathbb{R}^N \setminus \Omega, }$$ where the potential V and the weight m are possibly unbounded and are sign-changing. After establishing the boundedness and regularity of weak solutions, we prove that this problem admits principal eigenvalues under certain conditions. We also show that when such eigenvalues exist, they are simple and isolated in the spectrum of the operator.
Fichier principal
Vignette du fichier
asso-cuesta-doumate-leadipdf.pdf (461.52 Ko) Télécharger le fichier
Origin : Files produced by the author(s)

Dates and versions

hal-04134172 , version 1 (20-06-2023)

Identifiers

Cite

Oumarou Asso, Jonas Tele Doumate, Liamidi Leadi, Mabel Cuesta. Principal eigenvalues for the fractional p-Laplacian with unbounded sign-changing weights. Electronic Journal of Differential Equations, 2023, 2023 (38), pp.1-29. ⟨10.58997/ejde.2023.38⟩. ⟨hal-04134172⟩
31 View
63 Download

Altmetric

Share

Gmail Facebook X LinkedIn More