Principal eigenvalues for the fractional p-Laplacian with unbounded sign-changing weights - Archive ouverte HAL
Article Dans Une Revue Electronic Journal of Differential Equations Année : 2023

Principal eigenvalues for the fractional p-Laplacian with unbounded sign-changing weights

Résumé

Let \(\Omega\) be a bounded regular domain of \( \mathbb{R}^N\), \(N\geqslant 1\), \(p\in (1,+\infty)\), and \( s\in (0,1) \). We consider the eigenvalue problem $$\displaylines{ (-\Delta_p)^s u + V|u|^{p-2}u= \lambda m(x)|u|^{p-2}u \quad\hbox{in } \Omega \cr u=0 \quad \hbox{in } \mathbb{R}^N \setminus \Omega, }$$ where the potential V and the weight m are possibly unbounded and are sign-changing. After establishing the boundedness and regularity of weak solutions, we prove that this problem admits principal eigenvalues under certain conditions. We also show that when such eigenvalues exist, they are simple and isolated in the spectrum of the operator.
Fichier principal
Vignette du fichier
asso-cuesta-doumate-leadipdf.pdf (461.52 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-04134172 , version 1 (20-06-2023)

Identifiants

Citer

Oumarou Asso, Jonas Tele Doumate, Liamidi Leadi, Mabel Cuesta. Principal eigenvalues for the fractional p-Laplacian with unbounded sign-changing weights. Electronic Journal of Differential Equations, 2023, 2023 (38), pp.1-29. ⟨10.58997/ejde.2023.38⟩. ⟨hal-04134172⟩
63 Consultations
135 Téléchargements

Altmetric

Partager

More