The dual Derrida--Retaux conjecture - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2023

The dual Derrida--Retaux conjecture

Résumé

We consider a recursive system $(X_n)$ which was introduced by Collet et al. [10] as a spin glass model, and later by Derrida, Hakim, and Vannimenus [13] and by Derrida and Retaux [14] as a simplified hierarchical renormalization model. The system $(X_n)$ is expected to possess highly nontrivial universalities at or near criticality. In the nearly supercritical regime, Derrida and Retaux [14] conjectured that the free energy of the system decays exponentially with exponent $(p-p_c)^{-\frac12}$ as $p \downarrow p_c$. We study the nearly subcritical regime ($p \uparrow p_c$) and aim at a dual version of the Derrida--Retaux conjecture; our main result states that as $n \to \infty$, both $\E(X_n)$ and $\P(X_n\neq 0)$ decay exponentially with exponent $(p_c-p)^{\frac12 +o(1)}$, where $o(1) \to 0$ as $p \uparrow p_c$.
Fichier principal
Vignette du fichier
dualDRarXiv.pdf (264.54 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-04133340 , version 1 (19-06-2023)

Identifiants

Citer

Xinxing Chen, Yueyun Hu, Zhan Shi. The dual Derrida--Retaux conjecture. 2023. ⟨hal-04133340⟩
26 Consultations
37 Téléchargements

Altmetric

Partager

More