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The dual Derrida–Retaux conjecture

by

Xinxing Chen1, Yueyun Hu2, and Zhan Shi3

Dedicated to the memory of Professor Francis Comets

Summary. We consider a recursive system (Xn) which was introduced by Col-
let et al. [10]) as a spin glass model, and later by Derrida, Hakim, and Vanni-
menus [13] and by Derrida and Retaux [14] as a simplified hierarchical renor-
malization model. The system (Xn) is expected to possess highly nontrivial
universalities at or near criticality. In the nearly supercritical regime, Derrida
and Retaux [14] conjectured that the free energy of the system decays exponen-

tially with exponent (p− pc)
− 1

2 as p ↓ pc. We study the nearly subcritical regime
(p ↑ pc) and aim at a dual version of the Derrida–Retaux conjecture; our main
result states that as n → ∞, both E(Xn) and P(Xn 6= 0) decay exponentially

with exponent (pc − p)
1
2
+o(1), where o(1) → 0 as p ↑ pc.
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2010 Mathematics Subject Classification. 60J80, 82B27.

1 Introduction

Fix an integer m ≥ 2. Let X∗
0 > 0 be a random variable taking values in {1, 2, . . .} with

P(X∗
0 ≥ 2) > 0. For any random variable X , we write LX for its law. Let X0 be a random

variable with law

LX0
= (1− p) δ0 + pLX∗

0
,
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where p ∈ [0, 1], and δ0 denotes the Dirac measure at 0.

Consider the following recurrence relation: for all n ≥ 0,

(1.1) Xn+1 = (Xn,1 + · · ·+Xn,m − 1)+,

where Xn,i, i ≥ 1, are independent copies of Xn, and x+ := max{x, 0} for all x ∈ R.

Note that the law of each random variable Xn is completely determined by the law of

X0, and that Xn is stochastically non-decreasing in p. By (1.1), we have

E(Xn+1) ≤ E(Xn,1 + · · ·+Xn,m) = mE(Xn) ;

therefore

F∞(p) := lim
n→∞

↓
E(Xn)

mn
∈ [0,∞)

exists (and is called the free energy). The following phase transition was established by

Collet et al. [10]:

Theorem A ([10]). Assume E(X∗
0 m

X∗

0 ) < ∞. Let

(1.2) pc = pc(X
∗
0 ) :=

1

1 + E{[(m− 1)X∗
0 − 1]mX∗

0 }
∈ (0, 1) .

(i) If p > pc, then F∞(p) > 0.

(ii) If p ≤ pc, then E(Xn) → 0.

Alternatively we may define pc through the free energy F∞ by letting pc := inf{p :

F∞(p) > 0}. Then the assumption E(X∗
0 m

X∗

0 ) < ∞ is equivalent to saying that pc > 0. We

also remark that under the assumption of Theorem A,

(1.3) p = pc ⇔ E(mX0) = (m− 1)E(X0m
X0).

More generally, it was proved in Collet et al. [10] that for any n ≥ 0,

(1.4) p = pc ⇔ E(mXn) = (m− 1)E(Xnm
Xn).

In the language of Collet et al. [10], the identities in (1.3) and (1.4) mean that X0 lies on

the critical manifold.

We say that the system is subcritical if p < pc, critical if p = pc, and supercritical if

p > pc.

2



The recursion (1.1) was introduced by Collet et al. [10] as a simplified version of a spin

glass model, and later by Derrida, Hakim, and Vannimenus [13] and Derrida and Retaux [14]

as a simplified hierarchical renormalization model, in order to understand the depinning

transition of a line in presence of strong disorder, see Giacomin, Lacoin, and Toninelli [16],

also Berger, Giacomin and Lacoin [3] for an infinite order transition of a copolymer model.

It was studied from the point of view of iterations of random functions (Li and Rogers [21],

Jordan [20]), and appeared as a special case in the family of max-type recursive models

analyzed in the seminal paper of Aldous and Bandyopadhyay [1]. The recursion (1.1) is also

connected to a parking scheme recently investigated by Goldschmidt and Przykucki [17],

Curien and Hénard [12], Contat and Curien [11], and Aldous et al. [2]. See [19] for an

extension to the case when m is random, and [18, 5] for an exactly solvable version in

continuous time.

We call a Derrida–Retaux system the process (Xn)n≥0 defined in (1.1). In fact, our

motivation of studying (1.1) comes from Derrida and Retaux [14] who conjectured that

(Xn)n≥0 possesses highly nontrivial universalities at or near criticality; these universality

properties are believed to hold for a general class of pinning and hierarchical renormalization

models, though none of them has been completely proved so far.

In the nearly supercritical regime, the Derrida–Retaux conjecture (see [14]) says that if

pc > 0 (and under some additional integrability conditions on X∗
0 ), then

(1.5) F∞(p) = exp
(

−
C1 + o(1)

(p− pc)1/2

)

, p ↓ pc ,

for some constant C1 ∈ (0, ∞) depending on the law of X∗
0 .

A partial answer to the conjecture (1.5) was given in [4]: Assuming E[X∗
0
3mX∗

0 ] < ∞,

we have

F∞(p) = exp
(

−
1

(p− pc)
1
2
+o(1)

)

, p ↓ pc .

In words, 1
2
was shown to be the correct exponent, in the exponential scale, for the free

energy in the nearly supercritical case.

For the critical regime p = pc, we refer to [6] for a list of open questions concerning the

behaviors of Xn, and to [7] for some recent progress. To insist on the criticality, we denote

by (Yn) the Derrida–Retaux system defined by the recurrence relation (1.1), exactly in the
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same way as for (Xn), but with

(1.6) LY0
= (1− pc) δ0 + pc LX∗

0
.

It was shown in [7] that assuming the condition

(1.7) E(sX
∗

0 ) < ∞, for some s > m,

we have

E(Yn) = n−2+o(1) and P(Yn ≥ 1) = n−2+o(1), n → ∞ .

In this paper, we study the subcritical regime. Assume from now on that p ∈ (0, pc).

There should be a kind of dual phenomenon for p ↑ pc in the sense that a certain transition

should also be expected as in the Derrida–Retaux conjecture for the supercritical regime, and

with the same exponent 1
2
. More precisely, under some additional integrability conditions

on X∗
0 , we expect the existence of a constant κ(p) ∈ (0, ∞) for all p < pc such that

(1.8) E(Xn) = e−(κ(p)+o(1))n, n → ∞,

where the exponent κ(p) would satisfy

(1.9) κ(p) = (pc − p)
1
2
+o(1), p ↑ pc .

We call (1.8) and (1.9) the dual Derrida–Retaux conjecture. Roughly saying, the critical

manifold, characterised by the identity on the right-hand-side of (1.3), says that if the

initial distribution lies on the critical manifold, then the system always lies on the critical

manifold. If the initial distribution does not exactly lie on the critical manifold, but only in a

neighbourhood, with distance ε (by Collet et al. [10], this is equivalent to saying that |p−pc|

is of order ε), then for a long time, of order ε−
1
2 , the system lies in the ε-neighbourhood of

the critical manifold before drifting away definitely. This phenomenon does not depend on

the sign of p−pc; in other words, it is common for both supercritical and subcritical regimes.

The quantity of time ε−
1
2 leads to the Derrida–Retaux conjecture in the supercritical case,

and to the dual conjecture in the subcritical case. This is why we would also expect to see

the exponent 1
2
in the dual conjecture for the subcritical regime, as in the Derrida–Retaux

conjecture for the nearly supercritical regime.

Unfortunately, we have not been able to show the existence of κ(p) in (1.8). The main

result of this paper is a weaker form of (1.8) and (1.9), which confirms that the exponent 1
2

does appear in the subcritical case:
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Theorem 1.1. Assume (1.7). Let p = pc − ε with ε ∈ (0, pc).

(i) There exists some positive constant C2, independent of ε, such that

(1.10) lim sup
n→∞

1

n
logE(Xn) ≤ −C2 ε

1
2 .

(ii) We have

(1.11) lim inf
n→∞

1

n
logE(Xn) ≥ −ε

1
2
+o(1),

where o(1) denotes some quantity which tends to 0 as ε → 0.

We mention that the upper bound (1.10) holds for E(mXn) − 1 in place of E(Xn), see

Proposition 2.1, whereas the lower bound (1.11) holds for P(Xn ≥ 1) in place of E(Xn), see

Proposition 3.1.

Remark 1.2. In [4], the optimal condition for the validity of the usual Derrida–Retaux

conjecture was proved to be E((X∗
0 )

3mX∗

0 ) < ∞. For the dual conjecture, we claim that

(1.7) is optimal.

To see why (1.7) is also necessary for the validity of Theorem 1.1, we first remark that

by definition, for all n ≥ 1,

Xn ≥

mn
∑

i=1

1{X0,i≥n+1} ,

where X0,i, i ≥ 1, denote as before independent copies of X0. Then

E(Xn) ≥ mnP(X0 ≥ n + 1) = pmn P(X∗
0 ≥ n + 1).

Assume that (1.10) holds for p = pc − ε with ε ∈ (0, pc). We have, for some constant

C3 > 0 and all sufficiently large n,

E(Xn) ≤ e−C3n .

It follows that for all sufficiently large n,

P(X∗
0 ≥ n + 1) ≤

m−n

pc − ε
E(Xn) ≤

m−n

pc − ε
e−C3n .

Consequently, if (1.10) holds for ε ∈ (0, pc), then E(sX
∗

0 ) < ∞ as long as s ∈ (0, meC3).

This shows the optimality of (1.7).
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The proof of Theorem 1.1 relies on the aforementioned intuitive ideas, by using a coupling

between the subcritical system (Xn) and the critical Derrida–Retaux system (Yn) (see (1.6)).

While the upper bound (1.10) in Theorem 1.1 follows from some precise estimates on the

generating functions of Xn, the lower bound (1.11) relies on a coupling argument for the

“survival probability” P(Xn ≥ 1) for subcritical systems and the Laplace transform of the

number of open paths for critical systems. More precisely, let Nn (defined in (3.3)) denote

the number of open paths. Then for p ∈ (0, pc) and n ≥ 1,

P(Xn ≥ 1) ≥ E
[( p

pc

)Nn

1{Yn≥1}

]

;

see Theorem 3.2. Under the conditional probability P( • | Yn ≥ 1), Nn is typically of order

n2, but a small deviation result (see (3.7)) says that for as n → ∞,

P(1 ≤ Nn ≤ jn) ≥ exp
(

−
n

j1+o(1)

)

,

with o(1) denoting an expression that does not depend on n and that converges to 0 when

j → ∞. Taking j to be the integer part of ε−1/2, we obtain the lower bound (1.11).

The rest of the paper is organised as follows. The upper and lower bounds in Theorem

1.1 are proved in Sections 2 and 3, respectively. Some further remarks and questions are

presented in Section 4.

Throughout the paper, Ci, 1 ≤ i ≤ 22, denote some positive constants whose values do

not depend on p.

2 Upper bound

The proof of the upper bound in Theorem 1.1 is purely analytical, based on study of the

moment generating function of the system. By the monotonicity in p of E(Xn), it suffices to

prove the upper bound (1.10) in Theorem 1.1 for sufficiently small ε. The aim of this section

is to prove the following result.

Proposition 2.1. Under (1.7), there exist a positive constant C2 and a sufficiently small

ε0 ∈ (0, pc
2
) such that for all p = pc − ε with ε ∈ (0, ε0), there exists some s0 > m such that

(2.1) lim sup
n→∞

1

n
log

(

E(sXn
0 )− 1

)

≤ −C2 ε
1/2.
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We note that s0 in (2.1) can be chosen such that s0 −m is of order ε1/2 as ε → 0.

Since E(Xn) ≤
1

m−1
(E(mXn)−1) ≤ 1

m−1
(E(sXn

0 )−1), the upper bound (1.10) in Theorem

1.1 will follow immediately from (2.1).

The rest of the section is devoted to the proof of Proposition 2.1. For the sake of

clarity, the proof is divided into two parts. The first part collects some known estimates of

the moment generating function for subcritical systems, followed by the second part which

contains the proof of Proposition 2.1.

2.1 Preliminaries on the moment generating function

For any n ≥ 0, we write

(2.2) Hn(s) := E(sXn) .

In order to insist on the criticality, we write

Gn(s) := E(sYn) ,

where (Yn) denotes as before the critical Derrida–Retaux system. We first list some known

facts about critical systems.

Fact 2.2. (The moment generating function at criticality). Assume E(X∗
0
3mX∗

0 ) <

∞. We have

sup
n≥0

Gn(m) ≤ m
1

m−1 ,(2.3)

C4 n
2 ≤

n−1
∏

i=0

Gi(m)m−1 ≤ C5 n
2, ∀n ≥ 1,(2.4)

for some positive constants C4 and C5.

Fact 2.2 borrows from [10] in case m = 2. For general m ≥ 2, see [6, Lemma 3] for (2.3)

and [6, Propositions 1 and 2] for (2.4).

We consider from now on the subcritical regime p ∈ (0, pc). Plainly Xn is stochastically

smaller than Yn for all n ≥ 0. In particular, Hn(s) ≤ Gn(s) for any s ∈ [0, m].
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Define

(2.5) δn := Hn(m)−m(m− 1)H ′
n(m), n ≥ 0.

Note that δn = E[(1 − (m − 1)Xn)m
Xn ] ≤ P(Xn = 0) ≤ 1. We shall see that δn is in fact

nonnegative.

Let ε := pc − p > 0. From E(mY0) = (m− 1)E(Y0m
Y0) (see (1.4)), we deduce that

(2.6) δ0 = C6 ε,

where C6 = E[((m− 1)X∗
0 − 1)mX∗

0 ] + 1.

Lemma 2.3. (The subcritical moment generating function). Suppose E(X∗
0
3mX∗

0 ) <

∞ and p ∈ (0, pc). Then for all n ≥ 1,

δn = δ0

n−1
∏

i=0

Hi(m)m−1 ∈ (0, 1],(2.7)

∞
∏

i=0

Hi(m)m−1 ≤
1

δ0
,(2.8)

δn ≤ C5 n
2δ0,(2.9)

C7E(X
3
nm

Xn) ≤
n−1
∏

i=0

Hi(m)m−1,(2.10)

where C5 is as in (2.4), and C7 is some positive constant, independent of p.

Proof. The idea of the proof, based on the iteration of a suitable combination of the gener-

ating function Hn and its derivatives (up to the third derivative), goes back to [10, 14] and

has already been explored in [6, 8]; in particular, (2.10) is essentially Lemma 1 of [8]. We

give here the details for the sake of completeness. Let s ∈ [0, m] and n ≥ 0. By (1.1),

Hn+1(s) =
1

s
Hn(s)

m + (1−
1

s
)Hn(0)

m.

Taking the derivative with respect to s gives that

H ′
n+1(s) =

m

s
H ′

n(s)Hn(s)
m−1 −

1

s2
Hn(s)

m +
1

s2
Hn(0)

m ,
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from which it follows that

(s− 1)sH ′
n+1(s)−Hn+1(s) = [m(s− 1)H ′

n(s)−Hn(s)]Hn(s)
m−1 ,

Taking s = m, the identity reads:

δn+1 = δnHn(m)m−1 ,

which yields the equality in (2.7). Recall that δ0 > 0 for p < pc. Thus δn > 0. Since we have

already observed that δn ≤ 1, this yields (2.7). Letting n → ∞ gives (2.8), whereas (2.9) is

a consequence of (2.4) because Hi(m) ≤ Gi(m) for any i ≥ 0.

To show (2.10), further differentiations lead to

H ′′
n+1(s) +

2

s
H ′

n+1(s) =
m

s
H ′′

n(s)Hn(s)
m−1 +

m(m− 1)

s
H ′

n(s)
2Hn(s)

m−2,(2.11)

sH ′′′
n+1(s) + 3H ′′

n+1(s) = mH ′′′
n (s)Hn(s)

m−1 + 3m(m− 1)H ′
n(s)H

′′
n(s)Hn(s)

m−2

+m(m− 1)(m− 2)H ′
n(s)

3Hn(s)
m−3.(2.12)

Define for all n ≥ 0,

Dn(m) := (m− 1)(mH ′′′
n (m) + 3H ′′

n(m)) + (m− 2)(H ′′
n(m) +

2

m
H ′

n(m)).

Taking s = m in (2.11) and (2.12), we get that

Dn+1(m) = Hn(m)m−1Dn(m)− 3(m− 1)δnH
′′
n(m)Hn(m)m−2

−
m− 2

m
H ′

n(m)Hn(m)m−3[2Hn(m)2 −m2(m− 1)2H ′
n(m)2 −m(m− 1)H ′

n(m)Hn(m)].

Note that Hn(m) > m(m − 1)H ′
n(m), so the [· · · ] term, 2Hn(m)2 − m2(m − 1)2H ′

n(m)2 −

m(m−1)H ′
n(m)Hn(m), is greater than Hn(m)2−m(m−1)H ′

n(m)Hn(m) = Hn(m)δn, which

is positive. Therefore, for all n ≥ 0,

Dn+1(m) ≤ Hn(m)m−1Dn(m).

Iterating the inequality gives that

Dn(m) ≤ D0(m)

n−1
∏

i=0

Hi(m)m−1, ∀n ≥ 1.
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By definition, Dn(m) ≥ m(m− 1)H ′′′
n (m); thus

m(m− 1)H ′′′
n (m) ≤ D0(m)

n−1
∏

i=0

Hi(m)m−1.

Note that for any k ≥ 0, k3mk ≤ 9
2
k(k − 1)(k − 2)mk + 8m2 1{k≤2}, it follows that

E(X3
nm

Xn) ≤
9

2
m3H ′′′

n (m) + 8m2 ≤ (
9m2

2(m− 1)
D0(m) + 8m2)

n−1
∏

i=0

Hi(m)m−1.

SinceX0 is stochastically smaller than Y0, we have D0(m) ≤ (m−1)(mG′′′
0 (m)+3G′′

0(m))+

(m − 2)(G′′
0(m) + 2

m
G′

0(m)) =: DY
0 (m). This yields (2.10) with C7 := ( 9m2

2(m−1)
DY

0 (m) +

8m2)−1.

Fact 2.4. ([7, Lemma 4.5]) Let p ∈ (0, 1). If there exist t > m, θ ∈ (0, 1) and an integer

M ≥ 0 such that m
t
[E(tXM )]m−1 ≤ θ, then

(2.13) E(tXn) ≤ 1 + (t−m)θn−M , ∀n ≥ M.

Fact 2.5. ([8, Corollary 1]) Under (1.7), there exist positive constants C8 and C9 such

that for all sufficiently large integer n,4

(2.14) E(Y 2
n s

Yn) ≤ C8 n, s := m+
C9

n
.

A fortiori, for all p ∈ (0, pc],

(2.15) E(X2
ns

Xn) ≤ C8 n, ∀ s ∈ [m, m+
C9

n
].

2.2 Proof of Proposition 2.1

Write, as before, Hn(s) := E(sXn), n ≥ 0, for the moment generating function of Xn.

4Strictly speaking, we first consider a truncating version of (Xn): For any integer L ≥ 1, let Z0 =
Z0(L) := X0 1{X0≤L} and (Zn) be the associated Derrida–Retaux system. As explained in Section 3 of [8],
we may apply [8, Corollary 1] to (Zn) and get (2.14) for ZM in place of XM , and with positive constants C8

and C9 that are independent of L. Then we let L → ∞ and obtain (2.14).
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Lemma 2.6. Suppose E(X∗
0
3mX∗

0 ) < ∞. There exist constants C10 > 0 and C11 > 0, such

that for p = pc − ε with ε ∈ (0, pc
2
) and 1 ≤ n ≤ C10 ε

− 1
2 ,

n−1
∏

i=0

Hi(m)m−1 ≥ C11 n
2.

Proof of Lemma 2.6. Write bn =
∏n−1

i=0 Hi(m)m−1. Note that 1 ≤ Hi(m) ≤ Gi(m) ≤ m
1

m−1

(see (2.3)). Let C12 > 0 (whose value depends only on m) be such that (1+x)
m−1

2 −1 ≥ C12 x

for x ∈ [0, m
1

m−1 − 1]. Then

b
1
2

n+1 − b
1
2
n = b

1
2
n (Hn(m)

m−1
2 − 1) ≥ C12 b

1
2
n (Hn(m)− 1).

For the term on the right-hand side, we note that bn ≥ C7E(X
3
nm

Xn) by (2.10), and that

Hn(m) − 1 ≥ (1 − 1
m
)E(mXn1{Xn≥1}). Since E(X3

nm
Xn) [E(mXn1{Xn≥1})]

2 ≥ [E(Xnm
Xn)]3

(Hölder’s inequality), it follows that

b
1
2
n (Hn(m)− 1) ≥ C

1
2

7 (1−
1

m
) [E(X3

nm
Xn)]

1
2E(mXn1{Xn≥1})

≥ C
1
2

7 (1−
1

m
) [E(Xnm

Xn)]
3
2 .

Consequently, for all n ≥ 1 and with C13 := C12C
1
2

7 (1− 1
m
),

b
1
2

n+1 − b
1
2
n ≥ C13 [E(Xnm

Xn)]
3
2 .

By definition, δn = Hn(m) − m(m − 1)H ′
n(m), thus E(Xnm

Xn) = Hn(m)−δn
m−1

≥ 1−δn
m−1

. Since

δn ≤ C5 n
2δ0 = C5C6 n

2ε (see (2.9) for the inequality, and (2.6) for the equality), we have

δn ≤ 1
2
for n ≤ (2C5C6ε)

− 1
2 . Therefore,

E(Xnm
Xn) ≥

1− 1
2

m− 1
=

1

2(m− 1)
, ∀ 1 ≤ n ≤ (2C5C6ε)

− 1
2 .

As such, for all 1 ≤ n ≤ (2C5C6ε)
−1/2, we have b

1/2
n+1 − b

1/2
n ≥ C13

[2(m−1)]3/2
, which implies that

b
1/2
n+1 ≥

C13

[2(m−1)]3/2
n+ 1. The lemma follows immediately.

Lemma 2.7. Assume (1.7). For any sufficiently small ε0 > 0, there exist positive constants

C14, C15, C16 and C17 such that for any p = pc − ε with ε ∈ (0, ε0), we can find some an

integer M ∈ [C14 ε
− 1

2 , C15 ε
− 1

2 ] and some s∗ ∈ (m, m+ C16

M
] such that

m

s∗
HM(s∗)

m−1 < 1− C17 ε
1
2 .
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Proof. Let ε0 ∈ (0, pc
2
) be small (how small will be determined later) and ε ∈ (0, ε0). By

Lemma 2.6, we have5

(2.16)

C10ε
−

1
2 −1

∏

i=0

Hi(m)m−1 ≥ C11 (C10ε
− 1

2 − 1)2 ≥
C18

ε
,

where C18 := 1
4
C11C

2
10; here appears the first constraint on ε0: ε0 is sufficiently small such

that C10 ε
− 1

2

0 ≥ 2 and that C11 (C10ε
− 1

2 − 1)2 ≥ C18

ε
for ε ∈ (0, ε0). By (2.8), we have

∏∞
i=0Hi(m)m−1 ≤ 1

δ0
which is 1

C6 ε
(see (2.6)). Thus

∞
∏

i=C10ε
−

1
2

Hi(m)m−1 ≤
1

C6C18
;

in other words,

(2.17)
∞
∏

i=C10ε
−

1
2

Hi(m) ≤
( 1

C6C18

)
1

m−1 =: C19 .

Let λ > 0 be a small constant whose value will be given later. Let C15 := C10 e
2C19

λ . We

have
C15ε

−
1
2

∏

i=C10ε
−

1
2

(1 +
λ

i
) ≥

C15ε
−

1
2

∑

i=C10ε
−

1
2

λ

i
≥ λ log

C15

C10
= 2C19.

Compared with (2.17), it follows that there exists M ∈ [C10ε
− 1

2 , C15ε
− 1

2 ] ∩ Z such that

(2.18) HM(m) < 1 +
λ

M
.

On the other hand, since M ≥ C10ε
− 1

2 , we have

M−1
∏

i=0

Hi(m)m−1 ≥

C10ε
−

1
2 −1

∏

i=0

Hi(m)m−1 ≥
C18

ε
,

the second inequality being from (2.16). Since HM(m) − m(m − 1)H ′
M(m) = δM , which

equals δ0
∏M−1

i=0 Hi(m)m−1 (see (2.7)), and δ0 = C6 ε (see (2.6)), it follows that

HM(m)−m(m− 1)H ′
M(m) ≥ C6 ε

C18

ε
= C6C18 = 2C20,

5For notational brevity, we write C10 ε
− 1

2 instead of ⌊C10 ε
− 1

2 ⌋. Similar simplifications apply elsewhere.
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with C20 :=
C6 C18

2
.

By assumption (1.7), there exists some s1 > m, independent of p, such that E(sX0

1 ) < ∞.

Since HM −m(m−1)H ′
M is C∞ on [0, s1), we can apply the mean-value theorem to see that

for all s ∈ (m, s1), there exists u ∈ [m, s] such that

HM(s)−m(m− 1)H ′
M(s)

= HM(m)−m(m− 1)H ′
M(m) + (s−m)[H ′

M(u)−m(m− 1)H ′′
M(u)]

≥ 2C20 − (s−m)m(m− 1)H ′′
M(u).(2.19)

Let C21 := min{ C20

m(m−1)C8
, C9,

s1−m
2

} (where C8 and C9 are the positive constants in Fact

2.5). We apply (2.19) to s = s∗ := m + C21

M
∈ (m, s1); then (s∗ − m)m(m − 1)H ′′

M(u) ≤
C21

M
m(m− 1)C8M (by (2.15)), so that

(2.20) HM(s∗)−m(m− 1)H ′
M(s∗) ≥ 2C20 − C8C21m(m− 1) ≥ C20 .

On the other hand, by the convexity of HM(·),

H ′
M(s∗) ≥

HM(s∗)−HM(m)

s∗ −m
=

M

C21

(HM(s∗)−HM(m)) ≥
M

C21

(HM(s∗)− 1−
λ

M
),

where the last inequality follows from (2.18). Going back to (2.20), we obtain that

HM(s∗) ≥ C20 +m(m− 1)
M

C21

(HM(s∗)− 1−
λ

M
).

Let C22 := m(m−1)
C21

. We impose a new constraint on ε0: C10ε
− 1

2

0 > 1
C22

. Then C22M > 1 as

long as ε ∈ (0, ε0). We get that

HM(s∗)− 1 ≤
1− C20 + λC22

C22M − 1
.

Now, we choose λ := C20

2C22
; thus

m

s∗
HM(s∗)

m−1 =
HM(s∗)

m−1

1 + C21

mM

≤
1

1 + C21

mM

(

1 +
1− 1

2
C20

C22M − 1

)m−1

.

We further require that ε0 is small enough so that 1

1+
C21
mM

(1 +
1− 1

2
C20

C22M−1
)m−1 ≤ 1 − C20C21

3mM
for

all M ≥ C10ε
− 1

2 with ε ∈ (0, ε0). [This is possible because −C21

m
+

(1− 1
2
C20)(m−1)

C22
< −C20C21

3m
.]

Consequently, for ε ∈ (0, ε0),

m

s∗
HM(s∗)

m−1 ≤ 1−
C20C21

3mM
≤ 1− C17 ε

1
2 ,

13



where C17 :=
C20C21

3mC10
. This yields Lemma 2.7.

We now have all the ingredients for the proof of Proposition 2.1.

Proof of Proposition 2.1. By Lemma 2.7, there exist ε0 > 0 and C17 > 0 such that for

p = pc−ε with ε ∈ (0, ε0), there exist s∗ > m and an integer M satisfying m
s∗
[E(sXM

∗ )]m−1 <

1−C17 ε
1
2 . So we are entitled to apply Fact 2.4 to t := s∗ and θ := 1−C17 ε

1
2 to see that for

all integer n ≥ M ,

E(sXn
∗ ) ≤ 1 + (s∗ −m)(1− C17 ε

1
2 )n−M ≤ 1 + (s∗ −m)e−(n−M)C17 ε

1
2
.

Therefore,

lim sup
n→∞

1

n
log

(

E(sXn
∗ )− 1

)

≤ −C17 ε
1
2 ,

which yields the desired inequality (2.1).

3 Lower bound

The lower bound in Theorem 1.1 will be a straightforward consequence of the following

result.

Proposition 3.1. Assume (1.7). We have, for p = pc − ε and ε ∈ (0, pc),

lim inf
n→∞

1

n
logP(Xn ≥ 1) ≥ −ε

1
2
+o(1),

where o(1) goes to 0 as ε → 0.

The rest of the section is devoted to the proof of Proposition 3.1.

While the proof of the upper bound in Theorem 1.1 presented in Section 2 was purely

analytic, the proof of its lower bound is probabilistic. It requires a simple hierarchical

representation of the system, together with the notion of open paths in the system. The

main ingredient in the proof of Proposition 3.1 is a coupling inequality (Theorem 3.2 below),

connecting P(Xn ≥ 1) (with p < pc) to the Laplace transform of the number of open paths

when the system is critical. For the sake of clarity, the coupling inequality and the proof of

Proposition 3.1 are presented in distinct parts.
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3.1 A coupling for subcritical and critical systems

Recall (1.6): LY0
= (1− pc) δ0 + pc LX∗

0
. We are going to construct a coupling for recursive

systems (Xn) and (Yn) in the same probability space such that Xn ≤ Yn a.s. for all n ≥ 0,

where LX0
= (1− p) δ0 + pLX∗

0
with p := pc − ε, ε ∈ (0, pc). We use a natural hierarchical

representation of Derrida–Retaux systems, as in [10], [14], or [7].

Let T be a (reversed) infinite m-ary tree. For any vertex v of T, let |v| denote the

generation of v (so |v| = 0 if the vertex v is in the initial generation). We define a family

of random variables (X(v), Y (v), v ∈ T) as follows. Let Y (v), for v ∈ T with |v| = 0, be

i.i.d. having the law of Y0. Let Z0 be a Bernoulli random variable with P(Z0 = 1) = 1− ε
pc

and P(Z0 = 0) = ε
pc
. Let Z(v), |v| = 0, be independent copies of Z0, and independent of

(Y (v), |v| = 0). Define X(v) := Y (v)Z(v) for |v| = 0, so that X(v) is distributed as X0 for

|v| = 0.

For any v ∈ T with |v| ≥ 1, we write v(1), . . ., v(m) for the m parents of v in generation

|v| − 1, and define recursively

X(v) := (X(v(1)) + · · ·+X(v(m))− 1)+ ,(3.1)

Y (v) := (Y (v(1)) + · · ·+ Y (v(m))− 1)+ .(3.2)

As such, X(v) and Y (v) are well-defined for all v ∈ T.

For n ≥ 0, let en denote the first lexicographic vertex in the n-th generation of T. Let

Tn denote the (reversed) subtree formed by all the ancestors (including en itself) of en in the

first n generations. See Figure 1 below for an example. By definition, X(en) ≤ Y (en) a.s.

for all n ≥ 0, and (X(en), n ≥ 0) (resp. (Y (en), n ≥ 0)) has the same law as (Xn, n ≥ 0)

(resp: (Yn, n ≥ 0)).

For v ∈ T with |v| = 0 and integer n ≥ 0, we write vn for the unique descendant of v

in generation n, and call (v = v0, v1, v2, . . . , vn) the path in T from v to vn (or: leading to

vn).
6

For any u ∈ T, let u∗ be the unique child of u. Denote by bro(u) the set of the “brothers”

of u, i.e., the parents of u∗ that are not u. Let

ξ(u) :=
∑

y∈bro(u)

Y (y).

6Degenerate case: when |v| = 0, the path from v to v is reduced to the singleton v.
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Figure 1: Two paths e0, ..., e4 and v0, ..., v4 with v3 = e3 and v4 = e4.

The path (v = v0, v1, v2, . . . , vn) is called open (for the critical system (Yn)) if

Y (v) + ξ(v0) + ξ(v1) + · · ·+ ξ(vi) ≥ i+ 1, ∀ 0 ≤ i ≤ n− 1.

Define for any u in the tree T,

(3.3) N(u) := number of open paths from the initial generation to u.

In other words, if n := |u|, then

N(u) :=
∑

v∈T: |v|=0, vn=u

1{(v = v0, v1, v2, . . . , vn = u) is open} .

Let Nn := N(en) and Yn := Y (en), Xn = X(en) for any n ≥ 0.7 See Figure 2 for an

example.

The following result connects P(Xn ≥ 1) for subcritical systems to the Laplace transform

of Nn for critical systems (Yn). Recall that E(X
∗
0 m

X∗

0 ) < ∞ means pc > 0 (see Theorem A

in the introduction).

Theorem 3.2. Assume E(X∗
0 m

X∗

0 ) < ∞. We have, for p ∈ (0, pc) and n ≥ 1,

(3.4) P(Xn ≥ 1) ≥ E
[( p

pc

)Nn

1{Yn≥1}

]

.

7The number of open paths can obviously be defined for any system. In this paper, however, we make
use of the number of open paths only for critical systems; this is the reason for which it is defined only for
(Yn).
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Figure 2: Open paths from the initial generation to e4 are marked in bold (and coloured
in red), with N4 = 4 and Y4 = 1.

Proof of Theorem 3.2. Let Nn be the set of vertices v with |v| = 0 such that vn = en and

that the path (v = v0, v1, v2, . . . , vn = en) is open. So Nn is exactly the cardinality of Nn.

Since (Z(v), |v| = 0) and (Y (v), |v| = 0) are independent, and P(Z(v) = 1) = p
pc

for any

|v| = 0, it follows that

P
(

⋂

v∈Nn

{Z(v) = 1}
∣

∣

∣
Nn, Yn

)

=
( p

pc

)Nn

.

By definition, if Z(v) = 1 for all v ∈ Nn, then Xn = Yn. Consequently,

P(Xn ≥ 1) ≥ P
(

Yn ≥ 1,
⋂

v∈Nn

{Z(v) = 1}
)

= E
[( p

pc

)Nn

1{Yn≥1}

]

,

as desired.

The following fact, which relies solely on the critical system (Yn), will be useful in proving

Proposition 3.1.

Fact 3.3 ([7]). Assume (1.7). We have

(3.5) P(Nn ≥ 1) = n−2+o(1), n → ∞.

Fix any λ > 0 and ̺ > 0. For all sufficiently large n,

(3.6) P(Yn ≥ ℓ+ 1, Nn ≤ n2+̺) ≥ n−(2+̺) m−ℓ, ∀ℓ ∈ [0, λn].
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See [7, Theorem 1.2 and Remark 2.4] for (3.5), whereas (3.6) is a straightforward conse-

quence of [7, Proposition 5.1 and (5.13)].

3.2 Proof of Proposition 3.1

The main ingredient in the proof of Proposition 3.1 is the following deviation result for Nn,

the number of open paths of the critical system (Yn).

Lemma 3.4. Assume (1.7). We have, for j → ∞,

(3.7) lim inf
n→∞

1

n
logP

(

Yn ≥
n

j
, Nn ≤ jn

)

≥ −
1

j1+o(1)
,

with o(1) → 0 as j → ∞.

Remark 3.5. The correct rate in (3.7) should be −O(1)
j
. Note that P(Yn ≥ n

j
, Nn ≤ jn) ≤

P(Yn ≥ n
j
) ≤ m

−n
j E(mYn), and E(mYn) → 1 as n → ∞ (see [6, Theorem 3]), we obtain

an upper bound for the probability term in (3.7): lim supn→∞
1
n
logP(Yn ≥ n

j
, Nn ≤ jn) ≤

− logm
j

. It would be interesting to study the small deviation probabilities of Nn conditioned

on survival: P(Nn ≤ αn | Yn ≥ 1) for αn → ∞ and αn = o(n2).

Proof of Lemma 3.4. The proof is based on an explicit construction of an event contained

in {Yn ≥ n
j
, Nn ≤ j n}. Let ̺ ∈ (0, 1). By (3.6), there exists j0 ≥ 1 such that for all j ≥ j0,

(3.8) P
(

Yj ≥ j + 3, Nj ≤ j2+̺
)

≥ m−(j+2)j−(2+̺).

Fix j ≥ j0. For all n > mj, let ℓ = ℓ(n, j) ≥ 1 be the smallest integer such that n ≤

j+ ℓ+ jmℓ. Then n > j+ ℓ−1+ jmℓ−1, and ℓ ∼ logn
logm

as n → ∞. Let r = r(n, ℓ) := ⌈n−j−ℓ
j

⌉

be the smallest integer satisfying r ≥ n−j−ℓ
j

. Then mℓ−1 ≤ r ≤ mℓ.

We use the hierarchical construction presented in Section 3.1. Recall (3.2), (3.3), and the

fact that for any |v| = j, (Y (v), N(v)) is distributed as (Yj, Nj). By definition,

Yj+ℓ := Y (ej+ℓ) ≥
∑

|v|=j, v∈Tj+ℓ

Y (v)−

ℓ−1
∑

k=0

mk ≥
∑

v∈Fr

Y (v)−

ℓ−1
∑

k=0

mk,

where {|v| = j, v ∈ Tj+ℓ} is the set of ancestors of ej+ℓ at generation j (so its cardinality

equals mℓ), and Fr denotes the first r ancestors (in the lexicographic order) in this set.
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Let F c
r := {|v| = j, v ∈ Tj+ℓ} \Fr. On the event ∩v∈Fr{Y (v) ≥ j + 3}, we have Yj+ℓ ≥

(j + 3)r − mℓ−1
m−1

≥ (j + 1)r as mℓ−1
m−1

≤ 2mℓ−1 ≤ 2r.

On the other hand, Nj+ℓ := N(ej+ℓ) ≤
∑

|v|=j, v∈Tj+ℓ
N(v), so if N(v) ≤ j2+̺ for all v ∈ Fr

and N(v) = 0 for all v ∈ F c
r , then Nj+ℓ ≤ r j2+̺ ≤ mℓj2+̺. Consequently,

P
(

Yj+ℓ ≥ (j + 1)r, Nj+ℓ ≤ mℓj2+̺
)

≥ P
(

⋂

v∈Fr

{Y (v) ≥ j + 3, N(v) ≤ j2+̺} ,
⋂

v∈Fc
r

{N(v) = 0}
)

= P
(

Yj ≥ j + 3, Nj ≤ j2+̺
)r

P
(

Nj = 0
)mℓ−r

≥ m−(j+2)r j−(2+̺)r P
(

Nj = 0
)mℓ−r

,

where the last inequality follows from (3.8). By (3.5), P
(

Nj = 0
)

≥ e−j−2+̺
for all j ≥ j0

(we may eventually enlarge the value of j0 if needed), so P
(

Nj = 0
)mℓ−r

≥ P
(

Nj = 0
)mℓ

≥

e−mℓj−2+̺
. Thus we have proved that

(3.9) P
(

Yj+ℓ ≥ (j + 1)r, Nj+ℓ ≤ mℓj2+̺
)

≥ m−jr j−(2+̺)r e−mℓj−2+̺

.

Now we deal with (Yn, Nn). At generation j+ ℓ, we have a family (Y (u), N(u))|u|=j+ℓ of

mn−(j+ℓ) i.i.d. copies of (Yj+ℓ, Nj+ℓ). For |u| = j + ℓ with u ∈ Tn, let [u, en) be the path in

Tn from u to en (including u but excluding en); let

Au :=
{

Y (u) ≥ (j + 1)r, N(u) ≤ mℓj2+̺
}

∩
⋂

w∈[u, en), v∈bro(w)

{N(v) = 0}.

On Au, we have Yn := Y (en) = Y (u)− (n− j− ℓ) ≥ (j+1)r− (n− j− ℓ) ≥ r (the argument

shows that Y (w) > 0, a fortiori N(w) > 0, for all w ∈ [u, en]: this property is going to be

used in the next paragraph), and Nn := N(en) = N(u) ≤ mℓj2+̺. Therefore,

P(Yn ≥ r, Nn ≤ mℓj2+̺) ≥ P
(

⋃

u∈Tn: |u|=j+ℓ

Au

)

.

The events Au have the same probability. We claim that they are also disjoint. Indeed, if

Au is realized for some u, then for all other u′ ∈ Tn with |u′| = j+ ℓ, there exists w ∈ [u, en)

and w′ ∈ [u′, en) such that w′ ∈ bro(w). Thus N(w′) = 0 by definition of Au. This implies

that Au′ is not realized (we have seen in the previous paragraph that on the event Au′ , we
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would have N(w′) > 0 for all w′ ∈ [u′, en]). We have thus proved that the events Au are

disjoint. Consequently,

P
(

⋃

u∈Tn: |u|=j+ℓ

Au

)

= mn−(j+ℓ)P(Aej+ℓ
) ,

which implies that

P(Yn ≥ r, Nn ≤ mℓj2+̺) ≥ mn−(j+ℓ)P(Aej+ℓ
) .

We observe that

P(Aej+ℓ
) = P

(

Yj+ℓ ≥ (j + 1)r,Nj+ℓ ≤ mℓj2+̺
)

n−1
∏

i=j+ℓ

P(Ni = 0)m−1 .

Consider the two probability expressions on the right-hand side. The first probability expres-

sion is at least m−jr j−(2+̺)r e−mℓj−2+̺
(see (3.9)), whereas P(Ni = 0) ≥ e−i−2+̺

(see (3.5)).

Therefore,

P(Yn ≥ r, Nn ≤ mℓj2+̺) ≥ mn−(j+ℓ)−jr j−(2+̺)r e−mℓj−2+̺
n−1
∏

i=j+ℓ

e−(m−1)i−2+̺

.

By the definition of r, we have n − (j + ℓ) − jr ≥ −j, and j−(2+̺)r ≥ e−(2+̺)mℓ log j ≥

e−(2+̺)nm log j
j . Note that mℓj−2+̺ ≤ nmj−3+̺ and r ≥ n

2j
for all large n, we get that

P
(

Yn ≥
n

2j
, 1 ≤ Nn ≤ nmj1+̺

)

≥ e−3mn log j
j ,

for all large n. This proves Lemma 3.4 as ̺ can be arbitrarily small.

We have now all the ingredients for the proof of Proposition 3.1.

Proof of Proposition 3.1. By Theorem 3.2, for p = pc − ε with ε ∈ (0, pc),

P(Xn ≥ 1) ≥ E
[

(1− p−1
c ε)Nn 1{Yn≥1, Nn≤ε−1/2n}

]

≥ (1− p−1
c ε)ε

−1/2nP(Yn ≥ 1, Nn ≤ ε−1/2n),

which by (3.7) is larger than (1 − p−1
c ε)ε

−1/2n exp(−nε
1
2
+o(1)) for all large n, with o(1) → 0

as ε → 0. This yields Proposition 3.1.
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4 Further remarks and questions

We present some comments and questions to indicate a few important differences between

the dual Derrida–Retaux conjecture studied in this paper and the (usual) Derrida–Retaux

conjecture.

4.1 Existence of the limit

It was explained in the introduction that part of the dual Derrida–Retaux conjecture was

the existence of the constant

κ(p) := lim
n→∞

1

n
logE(Xn),

for p ∈ (0, pc). We have not been able to prove the existence of the limit. For the (usual)

Derrida–Retaux conjecture, the existence of the free energy

F∞(p) := lim
n→∞

E(Xn)

mn
,

is straightforward; indeed, we have seen in the introduction that n 7→ E(Xn)
mn is non-increasing.

Problem 4.1. Prove, under some suitable integrability assumption on the law of X∗
0 , the

existence of the limit

κ(p) := lim
n→∞

1

n
logE(Xn),

for all p ∈ (0, pc).

4.2 “Mixing time”

In the introduction, we explained the heuristics leading to the dual conjecture: if the initial

distribution lies in an ε-neighbourhood of the critical manifold (meaning that |p− pc| is of

order ε), then for a long time, of order ε−1/2, the system lies in the ε-neighbourhood of the

critical manifold before drifting away definitely. This phenomenon does not depend on the

sign of p− pc, and is common for both supercritical and subcritical regimes.

As such, the time (of order ε−1/2) during which the system lies in the ε-neighbourhood

of the critical manifold before drifting away definitely plays a crucial role in both super-

critical and subcritical regimes. In the supercritical regime, this time can be defined as the
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smallest integer n such that E(Xn) exceeds 3 (or any real number greater than m1/(m−1));

the heuristics described in the previous paragraph can be made rigorous in a weaker form,

which led to a proof of a weaker version of the Derrida–Retaux conjecture in [4]. In the

subcritical regime, however, it is not clear how to define rigorously a quantity playing the

role of this particular time (a kind of “mixing time” necessary for a Markov chain to reach

the stationary phase, except that here, it is the time necessary for the system to drift away),

through the study of which one could prove the dual conjecture.

Problem 4.2. Define and study an appropriate “mixing time” for the subcritical regime.
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