CONTAMINATION-SOURCE BASED K-SAMPLE CLUSTERING - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2023

CONTAMINATION-SOURCE BASED K-SAMPLE CLUSTERING

Résumé

We investigate in this work the K-sample clustering of populations issued from contamination phenomenon. A contamination model is a two-component mixture model in which one component is known (standard behaviour) when the second one, modelling a departure from the standard behaviour, is unknown. When K populations from such a model are observed we propose a semiparametric clustering methodology to detect, for coordinated diagnosis and/or best practices sharing purpose, which populations are impacted by the same type of contamination. We prove the consistency of our approach under the existence of true clusters and show the performances of our methodology through an extensive Monte Carlo study. We finally apply our methodology, implemented in the admix R package, to a European countries COVID-19 excess of mortality dataset for which we aim to cluster countries similarly impacted by the pandemic over classes of age.
Fichier principal
Vignette du fichier
14-0-2023_Preprint.pdf (1.96 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Licence
Domaine public

Dates et versions

hal-04129130 , version 1 (15-06-2023)
hal-04129130 , version 2 (03-07-2024)

Licence

Domaine public

Identifiants

  • HAL Id : hal-04129130 , version 1

Citer

Xavier Milhaud, Denys Pommeret, Yahia Salhi, Pierre Vandekerkhove. CONTAMINATION-SOURCE BASED K-SAMPLE CLUSTERING. 2023. ⟨hal-04129130v1⟩

Collections

CHAIRE-DIALOG
432 Consultations
88 Téléchargements

Partager

More