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Abstract

We investigate in this work the K-sample clustering of populations issued from contamination
phenomenon. A contamination model is a two-component mixture model in which one component is
known (standard behaviour) when the second one, modelling a departure from the standard behaviour,
is unknown. When K populations from such a model are observed we propose a semiparametric
clustering methodology to detect, for coordinated diagnosis and/or best practices sharing purpose,
which populations are impacted by the same type of contamination. We prove the consistency of our
approach under the existence of true clusters and show the performances of our methodology through
an extensive Monte Carlo study. We finally apply our methodology, implemented in the admix1 R
package, to a European countries COVID-19 excess of mortality dataset for which we aim to cluster
countries similarly impacted by the pandemic over classes of age.

AMS 2000 subject classifications. Primary 62G05, 62G20; secondary 62E10.
Keywords. Admixture; Clustering; Contamination; Hypothesis Testing; Semiparametric Mixture.

1See https://CRAN.R-project.org/package=admix for more information about the package on CRAN.
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1 Introduction
Let consider the two-component mixture model with cumulative distribution function

L(x) = (1− p)G(x) + pF (x), (1)

for all x ∈ R, where G is a known cumulative distribution function and the unknown parameters are the
mixture proportion p ∈]0, 1[ along with the cumulative distribution function of the unknown component
F . This model, usually called contamination or admixture model, has been largely studied in the last
decades and is related to various applications, see Shen et al. (2018) for a good survey about this topic.
This model is of particular interest when considering generic situations distorted by an unexpected event,
such as: i) the mortality excess due to the COVID-19 crisis, see Milhaud et al. (2023); ii) the presence
of diseased tissues in microarray analysis, see McLachlan et al. (2006), iii) variables observation, such as
metallicity and radial velocity of stars, in the background of the Milky Way, see Walker et al. (2009); iv)
trees diameters modelling in presence of extra varieties, see Podlaski and Roesch (2014). In this paper,
the data of interest is made of K ≥ 2 independent samples X(i) = (X

(i)
1 , . . . , X

(i)
ni ), for i = 1, . . . , K,

which are assumed to be internally independent and identically distributed with respective cumulative
distribution function

Li(x) = (1− pi)Gi(x) + piFi(x), (2)

for all x ∈ R, where the pi’s and the Fi’s are respectively the unknown mixture proportions and the
cumulative distribution function of the unknown component associated to the ith sample. In practice,
the Gi’s are associated to a well known population, as for instance in the real-life mortality excess due
to COVID-19 application of Section 7.1, the historical national mortality profile for a given country,
when the unknown Fi’s are associated to a new subpopulation, which can be the specific mortality profile
associated to the pandemic. Generally speaking, the Fi’s represent a raising phenomena not modelled yet
which makes this model of particular interest for generic crisis or population transformation modelling.

The aim of this paper is to provide a clustering methodology to detect subgroups among the K
existing samples having possibly similar unknown, sometimes called nodular, components for obvious
coordinated diagnosis and/or best practices sharing interest, based on the type of contamination impacting
each population. To answer this original problem we will adopt a testing approach in the sense that
samples will be collected in the same group if the equality of their unknown component according to an
ad. hoc. test and a level 0 < α < 1 (to be setup) cannot be rejected. More formally, we suppose the
existence of N true clusters denoted by Gs, 1 ≤ s ≤ N ≤ K and defined by

Gs =
{
is,1 ≤ j ≤ K : Fj = Fis,1

}
, (3)

where we denote by Fis,1 the first representative of group Gs, when running increasingly through the set of
indices {1, . . . , K}, in the family of nodular components N = {Fi, i = 1, . . . , K}. For convenience we
will also denote by ns the cardinal of Gs giving the opportunity to number the elements of Gs as follows
Gs = {is,1, is,2, . . . , is,ns}. Obviously we have the following partition

{1, . . . , K} = ∪Ns=1Gs, Gs ∩ Gs′ = ∅, (1 ≤ s 6= s′ ≤ N), (4)
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with the group separation assumption given below.

(GS) There exists real-sets As,s′ ⊆ R with µ(As,s′) 6= 0 such that for all x ∈ As,s′:

Fis,1(x) 6= Fis′,1(x), (1 ≤ s 6= s′ ≤ N),

where µ denotes a reference measure on the support of the Fi’s (e.g. Lebesgue measure over R, counting
measure over N). Given the above framework our clustering strategy will consist in identifying recur-
sively over s ∈ {1, . . . , N} the first representative Fs,1 of group Gs along with the whole group itself. In
this work, similarly to Patra and Sen (2016) or Milhaud et al. (2023), we will consider situations where
the Gi’s and Fi’s distributions are: either i) absolutely continuous with respect to the Lebesgue measure,
supported over R, R+ or intervals of R; or ii) finite discrete or N-discrete distributions such as Poisson or
Binomial. All our results will be still valid in such setups provided that the Gi’s are all distinct. If certain
pairs (Gi, Gj), 1 ≤ i 6= j ≤ K, are possibly equal a distinct procedure will then be implemented, see for
details Appendix D of the Supplement in . Given the above model, we will have to answer first the basic
statistical problem

H0 : F1 = · · · = Fk against H1 : Fi 6= Fj for some 1 ≤ i 6= j ≤ k , (5)

without assigning any specific parametric family to theFi’s. Our clustering methodology will be grounded
on the above k-sample testing problem with the k value possibly evolving from 1 to K along an algo-
rithm scheme. When k = 2 the above problem has been addressed in Milhaud et al. (2022) under
restrictive shape constraints such as the zero-symmetry of the Fi’s. More recently the two-sample test-
ing problem has been revisited by Milhaud et al. (2023), who propose the so-called IBM (Inversion-
Best Matching) testing approach requiring very relaxed identifiability and regularity conditions making,
as a consequence, this methodology much more suitable for real-life applications. Our contribution is
twofold: i) on the one hand we aim to generalize the work of Milhaud et al. (2023) to the k-sample
case, when k is greater than 2; ii) on the other hand our objective is to derive a handy clustering algo-
rithm grounded on the previous k-sample testing procedure, as described in (3)–(4). For that purpose we
develop a data-driven methodology, inspired from Schwarz (1978) or Kallenberg and Ledwina (1995),
allowing to select the most different populations pairs among all the possible pairs. More precisely we
introduce the following set of pair indices: S(k) = {(i, j) ∈ N2; 1 ≤ i < j ≤ k}. Clearly S(k) contains
d(k) = k(k−1)/2 elements that can be lexicographically ordered as follows: we denote (i, j) < (i′, j′) if
i < i′, or if i = i′ and j < j′, and we denote by rk[(i, j)] the associated rank of (i, j) in the set S(k). This
ordering will be used to sum the test statistics over all the pairs of populations, and can be considered as
the natural ordering over the elements of an upper triangle k× k matrix. For instance we have across the
first row rk[(1, 2)] = 1, rk[(1, 3)] = 2, and so on, when across the second row we have rk[(2, 3)] = k,
rk[(2, 4)] = k+1, and so on. For (i, j) ∈ S(k) we denote by Ti,j the two-sample statistic used in Milhaud
et al. (2023) to compare populations i and j, for 1 ≤ i 6= j ≤ k. For simplicity matters, we drop the
dependence on n since the statistic Ti,j stands for Tn defined in the paragraph following expression (12)
in Milhaud et al. (2023).

We can then build-up a sequence of statistics by slicing the set of index as follows: for slices s
numbered from 1 to k−1, we define couples of index delimiters (b−s , b

+
s ) =

(
1 + (s−1)k− s(s−1)

2
), sk−
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s(s+1)
2

)
with b−s+1 = b+

s + 1. This enables to define the sequence of embedded statistics Ur, the n-
dependence dropped again for simplicity matters, as follows

slice 1 : Ur =
r∑
i=1

T1,1+i, (b−1 = 1 ≤ r ≤ k − 1 = b+
1 ),

slice 2 : Ur = Uk−1 +

r−(k−1)∑
i=1

T2,2+i, (b−2 = k ≤ r ≤ 2k − 3 = b+
2 ),

... (6)

slice s : Ur = Ub+s−1
+

r−(b−s −1)∑
i=1

Ts,s+i, (b−s ≤ r ≤ b+
s ),

...
slice k − 1 : Ur = Ub+k−2

+ Tk−1,k, (r = d(k)).

By construction U1 compares the first two populations (1, 2), U2 compares simultaneously the first two
pairs of populations (1, 2) and (1, 3), and more generally Ur with r in slice of index s compares simul-
taneously the populations from 1 to s− 1 with populations of upper ranks pairwizely through Ub+s−1

and

population s with upper ranks lying in {s+ 1, . . . , s+ r − (b−s − 1)} through
∑r−(b−s −1)

i=1 Ts,s+i. Clearly,
since the test statistics Ti,j are positive, each statistic Ur is a sum of such r positive quantities and we
have with probability 1 that U1 ≤ · · · ≤ Ud(k). We then propose a penalized rule inspired from Schwarz
(1978) criteria to select the most sensitive rank r given by S(n) in expressions (8) or (9) of Section 3.1
. Under the null, we prove that the asymptotic limit distribution of our procedure coincides with the
one obtained in the two sample case given by the less penalized statistic T1,2. It is also shown that our
test statistic goes to infinity with n under the alternative. Our procedure is then adapted to construct a
data-driven clustering algorithm able to classify the populations with equal unknown components. In
order to pre-select a natural cluster to be tested by the k-sample test, we investigate the “closest” popula-
tions based on their pairwise associated (distance-based) statistics. We propose in addition a self-tuning
method for the penalization term involved in our k-sample test statistic that yields to an automated and
easy to implement clustering procedure. The only required parameter is the asymptotic test level used to
accept or not a cluster. This method is illustrated through an extensive Monte Carlo experiment including
very diverse situations and applied to a real life dataset dealing with the post COVID-19 mortality rates
across a panel of 29 European countries.

The paper is organized as follows: In Section 2 we review recent results about the two-sample case
making the paper self-contained. Section 3 is devoted to the penalized testing rule and contains the
main results of the paper. In Section 4 we develop a tuning method making our approach data-driven.
The clustering algorithm is described in Section 5. Section 6 is devoted to an extensive simulation study
covering the empirical level and power behaviour of our k-sample test procedure along with the numerical
performances of our test-based clustering method. Section 7 ends the paper with a study dealing with the
excess of mortality due to COVID-19 over a panel of European countries during the early times of the
pandemic. The proofs of our theorems and proposition are relegated in Appendix.

4



2 Mathematical background
In this section along with Section 3 we consider k, 2 ≤ k ≤ K, samples among the K original samples
still denoted for simplicity and without loss of generality X(i) = (X

(i)
1 , . . . , X

(i)
ni ), for i = 1, . . . , k. In

the spirit of Milhaud et al. (2023), we consider n = min1≤i≤k ni, and define κi ≥ 1 such that ni = κin,
for all i = 1, . . . , k. For i 6= j ∈ {1, . . . , k}, we denote θij = (pi, pj) ∈ Θi × Θj the pair of unknown
proportions associated to the ith and jth populations, respectively.

(A0) Assume that Θi is a [δ1, δ2]-type compact set satisfying 0 < δ1 < 1 < δ2, for all i = 1, . . . , k.

Similarly to Milhaud et al. (2023), we notice that the unknown component associated with sample i can
be recovered under the correct parameter pi by using, for all x ∈ R, the following inversion formula

Fi(x, Li, pi) =
Li(x)− (1− pi)Gi(x)

pi
, (i = 1, . . . , k).

To compare populations i and j we define the sub-(i, j) testing problem

H0(i, j) : Fi = Fj against H1(i, j) : Fi 6= Fj ,

and consider the following discrepancy measure and its empirical counterpart

d[i, j](θij) =

∫
R

(
Fi(x, Li, pi)− Fj(x, Lj, pj)

)2

dH(x)

dn[i, j](θij) =

∫
R

(
Fi(x, L̂i, pi)− Fj(x, L̂j, pj)

)2

dH(x),

for θij = (pi, pj) fixed in Θij = Θi ×Θj , where H is a positive measure over R that allows to weight the
square of the difference between Fi and Fj along the real line, and L̂i denotes the empirical cdf associated
to the sample X(i). In practice we choose for H a uniform distribution when the support of the Li’s is
bounded or a probability distribution having a density supported by R in the unbounded case, see also
Appendix F of the Supplement in Milhaud et al. (2023) for further discussion about the choice of H . In
the discrete case we simply choose for H the counting measure over the observations support.

We introduce now two assumptions connected to the identifiability and definite positiveness of the
d-Hessian matrix. These assumptions are based on a cross-model identifiability condition inspired from
the identifiability Theorem 1 in Teicher (1963).

(A1) Under H0(i, j) (Fi = Fj = Fij), there exists at least three points (x1[i, j], x2[i, j], x3[i, j]) ∈ R3

such that

det

Gi(x1[i, j]) Gj(x1[i, j]) Fij(x1[i, j])
Gi(x2[i, j]) Gj(x2[i, j]) Fij(x2[i, j])
Gi(x3[i, j]) Gj(x3[i, j]) Fij(x3[i, j])

 6= 0.
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(A2) Under H1(i, j) (Fi 6= Fj) , there exists at least four points (x1[i, j], x2[i, j], x3[i, j], x4[i, j]) ∈ R4

such that

det


Gi(x1[i, j]) Gj(x1[i, j]) Fi(x1[i, j]) Fj(x1[i, j])
Gi(x2[i, j]) Gj(x2[i, j]) Fi(x2[i, j]) Fj(x2[i, j])
Gi(x3[i, j]) Gj(x3[i, j]) Fi(x3[i, j]) Fj(x3[i, j])
Gi(x4[i, j]) Gj(x4[i, j]) Fi(x4[i, j]) Fj(x4[i, j])

 6= 0.

The above pairwise-model conditions are stated and discussed in Milhaud et al. (2023).
For all i 6= j ∈ {1, . . . , k} we consider

θ̂ij = arg min
θij∈Θij

dn[i, j](θij),

which is the estimated pair of parameters (pi, pj) that makes the unknown components Fi and Fj look
the more similar according to the d discrepancy measure, which is then basically evaluated by

dn[i, j](θ̂ij) =

∫
R

(
Fi(x, L̂i, p̂i)− Fj(x, L̂j, p̂j)

)2

dH(x).

Remark 1. As described in Milhaud et al. (2023), under H0(i, j), θ̂ij → θ∗ij = (p∗i , p
∗
j) almost surely,

with d(θ∗ij) = 0, where p∗i and p∗j are respectively the true value of the proportions involved in the X(i)

and X(j) models, see expression (2). In contrast under H1(i, j), θ̂ij→θcij = (pci , p
c
j) almost surely, a local

minima of θ 7→ d(θ) with d(θcij) > 0 and generally θcij 6= θ∗ij .

We recall here the main result of Milhaud et al. (Theorem 2, 2023) that we use to construct our
k-sample test. For (i, j) ∈ S(k) we consider

Ti,j = ndn[i, j](θ̂ij), (7)

the estimator of the n-discrepancy measure between population i and j, where θ̂ij = (p̂i, p̂j).

Lemma 1. Assume that (A1-2) hold.

i) Then under H0(i, j), the statistic Ti,j = U0
n(i, j) converges in distribution towards U0(i, j), as

n → +∞ , where the limiting random variable U0(i, j) is fully identified (closed form stochastic
integral) and tabulated.

ii) Then under H1(i, j), the statistic Ti,j = U1
n(i, j) + V 1

n (i, j), where U1
n(i, j) converges in distribution

towards U1(i, j), as n → +∞, where the limiting random variable U1(i, j) is fully identified and
tabulated when V 1

n (i, j) = λ[i, j]× n+ oa.s.(n) is a drift term, where

λ[i, j] =

∫
R

(
Fi(x, Li, p

c
i)− Fj(x, Lj, pcj)

)2
dH(x) > 0.
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Remark 2. In order to get our n-asymptotic results, we need to slightly adapt the matrices involved in
the identification of the final covariance matrix ΣW [i, j] = Mi,j(θ

c
ij, ·)Σi,jMi,j(θ

c
ij, ·)T , 1 ≤ i < j ≤ k,

of Theorem 2 in Milhaud et al. (2023). In the k-sample setup involving multiple ni-sample sizes, we must
define

Σi,j(x, y) =

[
Σi(x, y) 03×3

03×3 Σj(x, y)

]
, and Mi,j(θ

c
ij, ·) = Li,j(·, θcij) J−1

i,j (θcij) Ci,j,

where, since n1/2 = (κin)1/2κ
−1/2
i = n

1/2
i κ

−1/2
i , i = 1, . . . , K, we can denote ζi = κ

−1/2
i and get

Ci,j =


−ζi 0 0 0 −ζj 0
0 −ζi 0 −ζj 0 0
0 0 1 0 0 0
0 0 0 0 0 1

 , Ji,j(θ) =

[
d̈[i, j](θ) 02×2

02×2 Id2×2

]
,

and

Li,j(·, θ) =

 1 0 0 0
0 1 0 0

−Li(·)−Gi(·)
p2i

Lj(·)−Gj(·)
p2j

ζi
pi
− ζj
pj

 .
This way any sample size departures between samples can be automatically handled.

3 The k-sample test

3.1 Main results
Let us remind that we aim to test condition (5) based on the observation of any k samples, X(i) =

(X
(i)
1 , . . . , X

(i)
ni ), i = 1, . . . , k, picked from the original K-sample.

To solve this problem we propose to generalize the two-sample case by considering series of embed-
ded statistics defined by (7), each new of them including a new pair of populations to be compared. To
choose automatically the appropriate number of pairs of populations we introduce the following penal-
ization procedure, in the spirit of the Schwarz (1978) criteria procedure. The principle of the penalized
rule consist in selecting the rank s for which the penalized statistic Us is the greatest. We introduce more
specifically a sensitive rank defined by

S(n) = min

arg max
1≤r≤d(k)

Ur − r ∑
(i,j)∈S(k)

`n(i, j)I{rk(i,j)=r}

 , (8)

where `n(i, j) is a penalty term, and Irk(i,j)=r is 1 if rk(i, j) = r and 0 otherwise, indicating that we
consider only the pair (i, j) associated to the order r. In the sequel we consider a penalty term independent
from the population, i.e. `n(i, j) = `n for all i, j = 1, . . . , k. Finally, the data driven selection can simply
be rewritten as

S(n) = min

{
arg max

1≤r≤d(k)
{Ur − r`n}

}
, (9)
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each statistic Ur being penalized by `n and by the number r, as a scale factor, of pairs of populations in it,
according to the standard parcimony principle introduced by Schwarz (1978). In this sense, the sensitive
rank S(n) will select automatically the rank associated to the most significant group of Ti,j’s statistics
incorporated cumulatively in US(n), see slicing scheme (6). We assume now that

(B) `n = nε, with 0 < ε < 1.

Since under the null each test statistic is a OP (1) when `n → +∞ as shown in Lemma 1, it is
expected that only the first statistic will be kept. The following result shows that under the null as defined
in Problem (5), the penalty effectively allows to select the first element of S(k) asymptotically.

Theorem 3. Assume that (A1-2) and (B) hold. Under H0, S(n) converges in probability towards 1, as
n→ +∞.

Theorem 4. Assume that (A1-2) and (B) hold. Under H0, US(n) converges in distribution towards
U0(1, 2) given in Lemma 1, as n→ +∞.

Then our data driven test statistic is
Ũn = US(n). (10)

From Theorem 4, the asymptotic distribution of Ũn under H0 is exactly the null limit distribution studied
in the two sample case and given in Lemma 1. We can use a tabulation of the random variable U0(1, 2)
which corresponds to a parametrized closed form stochastic integral, see Theorem 2 in Milhaud et al.
(2023), that can be easily and consistently sampled, see Section 5 in Milhaud et al. (2023). By considering
an empirical sample based (1−α)-quantile, denoted q̂1−α, of the stochastic integral we decide to consider
the following H0-rejection rule

Ũn ≥ q̂1−α ⇒ H0 is rejected. (11)

3.2 Alternatives
We consider the following series of alternative hypothesis

H1(1) : F1 6= F2,

H1(r) : Fi = Fj for rk(i, j) < r and Fi 6= Fj for rk(i, j) = r,

with 1 < r ≤ d(k). The hypothesis H1(r) means that the ith and jth populations such that rk(i, j) = r
are the first (in the S(k) ordering sense) with different unknown components.

Theorem 5. Assume that (A1-2) and (B) hold. Under H1(r), S(n) converges in probability towards r,
as n→ +∞, and Ũn goes to +∞ in probability, that is, P(Ũn < ξ)→ 0 for all ξ > 0.

4 Real world and finite samples: test statistic tuning
Experiments show that using (11) with small samples often leads to unsatisfactory results. We thus
present here additional tools to improve the quality of our testing procedure in cases where the asymptotic
regime is clearly not achieved.
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4.1 About the penalty term `n

Since all our results are asymptotic we can replace Assumption (B) by

`n(C) = Cnε, with 0 < ε < 1,

where C > 0 is any positive constant that will be used as a tuning parameter to adjust the test level (type-I
error). The choice of ε is important for small and moderate sample sizes. Indeed a value ε close to 1 will
favour a smaller S(n) value and a smaller value of the test statistic, with a lower rejection rate, while a
value close to 0 will clearly empower the test. In fact, in the latter case, the divergence of Ũn is less likely
to be compensated by the penalty term. The limit case ε = 0 coincides with a constant penalty which is
the Akaike procedure, see Akaike (1974). Following Inglot and Ledwina (2006), we propose a rule to
select ε based on the data itself. To introduce this rule, consider first the two-sample case. One can write

F1(x, L̂1, p̂1)− F2(x, L̂2, p̂2) = (F1(x, L̂1, p̂1)− F1(x, L1, p
c
1))

−(F2(x, L̂2, p̂2)− F2(x, L2, p
c
2))

+(F1(x, L1, p
c
1)− F2(x, L2, p

c
2))

= A(x)−B(x) + C(x),

where θc = (pc1, p
c
2) is the minimizer of the contrast d(·), see expression (10) and (11) in Milhaud et

al. (2023), with the property (pc1, p
c
2) equal to the true value of the proportion parameters θ∗ = (p∗1, p

∗
2)

, under H0 which makes C(x) = 0, for all x ∈ R, under the null. For all x ∈ R, a straightforward
expansion of A(x) is

A(x) =
1

pc1

(
L̂1(x)− L1(x)

)
+

1

pc1p̂1

(p̂1 − pc1)
(
L̂1(x)−G1(x)

)
,

where (pc1, p̂1) ∈ [δ1, δ2]2, see Assumption (A0) about the parametric space to which the proportion
parameters belong, and L̂1, respectively G1, are cdfs which difference in modulus is bounded by 1. We
then obtain

sup
x∈R

(
n1/2|A(x)|

)
≤ 1

δ1

sup
x∈R

(
n1/2

∣∣∣L̂1(x)− L1(x)
∣∣∣)+

1

δ2
1

∣∣n1/2 (p̂1 − pc1)
∣∣

= A1 + A2.

By the law of the iterated logarithm for empirical processes, see Shorack and Wellner (1986), we have
A1 = OP ((log log(n))1/2) and by Theorem 1 of Milhaud et al. (2023), which establishes the cen-
tral limit theorem of p̂1 towards pc1, we have that A2 = oP ((log log(n))1/2). Similarly we obtain
supx∈R(n1/2|B(x)|) = OP ((log log(n))1/2). It follows that under the null we have

sup
x∈R

(
n1/2

∣∣∣F1(x, L̂1, p̂1)− F2(x, L̂2, p̂2)
∣∣∣) ≤ γ sup

x∈R

(
n1/2|A(x)|

)
+ sup

x∈R

(
n1/2|B(x)|

)
= OP

(
(log log(n))1/2

)
.

Under H1(1) there exists at least a real x such that C(x) 6= 0. In that case we have for all γ > 0 and for
all positive sequence bn such that bn → +∞

P
(

sup
x∈R

(bn|C(x)|) ≤ γ

)
→ 0.
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In particular, choosing bn = n1/2(log(n))−1, it follows that under H1(1) we have

P
(

sup
x∈R

(
n1/2

∣∣∣F1(x, L̂1, p̂1)− F2(x, L̂2, p̂2)
∣∣∣) ≤ γ log(n)

)
→ 0,

as n→ +∞, while this probability goes to 1 under H0. To generalize this principle to the k-sample case
we can consider

Si,j = sup
x∈R

(
n1/2

∣∣∣Fi(x, L̂i, p̂i)− Fj(x, L̂j, p̂j)∣∣∣) . (12)

Therefore, the expected conclusion is that small values of maxi,j Si,j , overs (i, j) ∈ S(k), indicate that
the unknown distributions over the considered k-sample is close to the null hypothesis while large values
indicate an H1(r)-type alternative. To take into account this information we set

In(γ) = I{ max
(i,j)∈S(k)

Si,j ≤ γ log(n)}, (13)

for some positive constant γ > 0. Under the null, from the above computations we can see that Si,j =
OP (1) for all (i, j) ∈ S(k). Under H1(r) as seen previously P (Si,j ≤ γ log(n)) → 0 for rk(i, j) = r.
We can deduce, as n→ +∞, the convergence in probability{

In(γ)→ 1 , under H0,
In(γ)→ 0 , under H1(r).

(14)

We then define a new penalty term by

`n(C, γ) = C (In(γ) nε0 + (1− In(γ))nε1) , (15)

where ε0 ≈ 1 and ε1 is small enough in order to keep acceptable test levels even in the case of a wrong
In(γ) selection, privileging respectively the null or the alternative. The corresponding new selection rule
is

S̃(n) = min

{
arg max

1≤r≤d(k)
{Ur − r`n(C, γ)}

}
. (16)

In practice we have obtained very good performances with the following values ε0 = 0.99 and ε1 = 0.75.
At this stage, it now remains to explain how to pick appropriate tuning parameters C and γ. To do this
we will use the information given both by (14) and by Theorem 3.

4.2 Data-driven choice for the parameter γ based on (14)

Assume that we want to test the equality of k populations. From (14)–(15), a small value of γ yields a
smaller penalty and then a more powerful test. But at the same time we want under the null

In(γ) = 1, (17)

which is more likely achieved for large values of γ. Thus to optimize the power of the test we search
for the smallest γ which guarantees (17) under H0. For this we create a dummy H0-setup as follows:
by splitting a population in two we obtain two identical sub-populations. Since such sub-populations
are identically distributed the γ associated to their test statistic should satisfy (17). And to optimize the
power we choose the smaller γ satisfying this equality. We repeat this procedure b times and we obtain
Algorithm 1.

10



Algorithm 1: Tuning of the parameter γ.
1 for i = 1, · · · , k do
2 Trick: split randomly the ith sample X(i) into two subpopulations, namely X(i,1) and X(i,2), of

equal size ni/2. Compute
q∗i = supx∈R

(
(ni/2)1/2

∣∣∣Fi,1(x, L̂i,1, p̂i,1)− Fi,2(x, L̂i,2, p̂i,2)
∣∣∣), where the index i, j refers

to the subpopulation X(i,j). /* spirit of (12) */

3 Repeat b times steps 2 and 3 to get b subpopulations under the null, and b values of q∗i for each
sample X(i). Write q̄∗i the mean of the q∗i over the b repetitions.

4 Now, we have obtained k mean values for q∗i , i = 1, ...., k. Since all q∗i are obtained under the null,
based on (13) and (14) we estimate γ: γ̂ = max1≤i≤k(q̄

∗
i / log(ni/2)).

4.3 Data-driven choice for the parameter C based on Theorem 3
While the tuning of γ is based on the property (14), the tuning of the parameter C will use the result
given by Theorem 3. From (15), a smaller value of C coincides with a smaller penalty yielding a larger
test statistic and finally a larger power. Moreover, from Theorem 3 under the null we would expect

S̃(n) = 1. (18)

We then exploit this property, choosing the larger C such that (18) is satisfied. In this way we can split
a population into k′ sub-populations, creating an artificial null hypothesis for which we modify C to get
(18). The simplest choice of k′ is k′ = 3, which gives d(k′) = 3 and seems to tune correctly the test
procedure described in Algorithm 2.

Algorithm 2: Tuning of the parameter C.
1 for i = 1, · · · , k do
2 Trick : split randomly the ith sample X(i) into k′ subpopulations, of equal size ni/k

′ . We
obtain k new k′-sample problems under the null.

3 for j = 1, ..., d(k′) do
4 Compute U i

j , where i refers to the ith population and j plays the role of r in (6).

5 Choose Ci such that U i
1 − Ci(ni/k

′)ε0 > U i
j − jCi(ni/k

′)ε0 , for j = 1, . . . , d(k′).
/* Choose Ci such that S(n) = 1 in every case */

6 Equivalently, we have Ci = maxj

(
U i
j − U i

1

(j − 1)(ni/k
′)ε0

)
, for j = 1, . . . , d(k′).

7 Finally, choose Ĉ = miniC
i.

In a nutschell, we first tune γ and C, which allows to deduce `n in (15). Hence, we get the order S(n)
through Equation (9). Finally, the test statistic given by Equation (10) is used in the test procedure (11).

Remark 6. The trick used here, consisting in splitting one given sample into several (at least two) sub-
samples, leads to a dummy H0-framework. However, this framework is clearly different from the real-life

11



situation where Fi would be equal to Fj considering two different samples. In particular, the known
component Gi of the ith contamination model should be different from Gj in full generality. Instead,
the trick causes Gi = Gj , in addition to the fact that the observations originally come from the same
sample. This makes the estimation process and thus the testing procedure slightly different, see Appendix
D of the Supplement in Milhaud et al. (2023). It is therefore important to check whether this artificial
procedure does not strongly affect the choice of parameters γ and C, as compared to the parameters that
would be selected by the tuning process in a real-life situation under the null. In this spirit, we repeat
100 times the following simulation scheme under H0: (i) simulate 4 samples (populations) following
contamination/admixture models, (ii) use Algorithms 1 and 2 to get the distributions of γ and C under
the dummy H0 setting, (iii) still consider Algorithms 1 and 2 in a simplified version (delete step 2 and
consider the samples themselves in the process, since we are under the null) to get the distributions of
γ and C (without the trick). Finally, compare the obtained distributions. Keeping in mind that this was
tested in many other frameworks, Figure 1 shows that our tuning process embedding the trick remains
consistent. Indeed, despite that the distributions of the parameters γ and C are slightly different, they
look similar with the same mode.
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Figure 1: Distributions of selected tuning parameters obtained from Algorithms 1 and 2 over 100 repeti-
tions, under the dummy H0 framework and the true one.

5 Clustering strategy
In the sequel we propose to adapt the previous test procedure to obtain a data-driven method to cluster
K populations into N subgroups characterized by a common unknown nodular component. The novelty
here lies in the fact that we will be able to cluster unlabeled behaviours presenting similar distributions,
contrary to classical existing clustering strategies that are based on directly/fully observed phenomenons.
Moreover it is worth to notice that the number N of clusters is not assumed at the beginning of the
procedure but is automatically deduced at the end of a run.
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Assume that we observe K independent samples X(i) = (X
(i)
1 , . . . , X

(i)
n1 ), i = 1, . . . , K, made sepa-

rately of independent and identically distributed observations.
To build the first cluster we consider the two closest populations in terms of the statistics Ti,j , i 6=

j ∈ {1, · · · , K}. Two populations are thus proposed to be merged to create the first group G1. We test
their equality according to the testing procedure (11) to confirm the construction of such a cluster. We
continue to add populations to the group until the test rejects equality. Once this first cluster G1 is fully
identified: close the cluster, remove clustered samples from the initial collection of samples, and create a
new cluster G2. Then look for still unclustered neighboors from the last studied sample that led to reject
H0. Again we select the biggest collection of samples, among the remaining pool, that is tested to share
a common unknown component with the latter. This creates our second cluster. One can iterate this
several times until every sample is associated with a cluster. Algorithm 3 describes our so-called KCMC
(K-sample Contamination Model Clustering) algorithmic clustering strategy, with S = {1, . . . , K} the
set of population indices, c the cluster id and Sc the members of cluster c. The procedure stops when
all populations are merged or when all populations have been considered by the algorithm. Note that
since the first two populations selected are the closest, if the test rejects their equality then the algorithm
stops and returns as many clusters as populations. The procedure is straightforward since the parameters
γ and C are data-driven (up to the prior choice of b and k′, see Section 4.2 and Algorithms 1 and 2).
Furthermore, we deduce from Theorem 5 the following property.

Proposition 1. With a probability that tends to 1 as n → +∞, the number N∗ of groups detected by
Algorithm 3 satisfies 1 ≤ N ≤ N∗ ≤ K, where N denotes the true unknown number of groups.

From Proposition 1 we know that the number of clusters obtained from the KCMC algorithm is
potentially greater than N . Moreover, from Theorem 5, asymptotically all distributions of each clusters

Algorithm 3: K-sample Contamination Model Clustering (KCMC).
1 Initialization: create the first cluster to be filled, i.e. c = 1. By convention, S0 = ∅.
2 Select (x, y) = argmin{ndn[i, j](θ̂ij); i 6= j ∈ S \

⋃c
m=1 Sm−1}.

3 Test H0 between x and y (two-sample test). /* using (11) */

4 . if H0 is not rejected then
5 S1 = {x, y} /* fill in the first cluster */

6 else
7 S1 = {x}, Sc+1 = {y} and then c = c+ 1 /* close, open new one */

8 while S \
⋃c
m=1 Sm 6= ∅ do

/* seek unclustered neighboors, select the closest one */

9 Select u = argminj{ndn[i, j](θ̂ij); i ∈ Sc, j ∈ S \
⋃c
m=1 Sm}

10 Test H0 the simultaneous equality of all the Fj , j ∈ Sc :
11 if H0 not rejected then
12 put Sc = Sc

⋃
{u}

13 else
14 Sc+1 = {u} and c = c+ 1

13



are equal. Thus the only possible error is that a real group has been splitted into several other groups,
which can happen because we have an asymptotic test level α = 5%, see testing rule (11). This parameter
clearly reflects the threshold for accepting the creation of a group. One way to check the stability of the
clusters is to change this threshold, for example by decreasing α to see if the groups merge then. We
illustrate this point in our real world application, see Section 7. The tuning strategy of Sections 4.1
and 4.3 allows us to achieve very good performances across our simulation study. In particular the
detected number N∗ of clusters often does not exceed the actual number N .

6 Simulation study
All our numerical experiments were performed thanks to the admix R package developed and imple-
mented for estimation, test and clustering of populations coming from admixture models. To begin with,
we test the influence of the number of populations under consideration, to see whether this affects the
quality of our k-sample testing procedure. For this purpose, we let k vary from 2 to 10. The populations
are drawn from different distributions supported by various types of real-sets. We provide here the results
for distributions supported over R (Gaussian mixtures), but simulations were extended to other supports
such as N (Poisson mixtures) or R+ (Gamma mixtures) with very similar conclusions. The proportions of
the unknown components are fixed all along the simulation scheme for easier comparisons. To evaluate
the empirical level (and power) of the k-sample test, we use a Monte-Carlo approach where each of the
B experiments is performed in the same way. We also make the sample size vary to illustrate the asymp-
totic properties of our results. Unless otherwise stated, all our simulations were performed with fixed
values ε0 = 0.99 and ε1 = 0.75 in (15) and (16) (meaning that we use the tuning process described in
Sections 4.1 and 4.3). As expected, the tuning process reveals to be decisive to improve the power of the
test, but has no real influence under the null. This is in line with common sense, since tuning parameters
γ and C are estimated under the null. Once the quality of the k-sample test will be validated, we will
derive extra simulations to assess the performance of our clustering algorithm itself.

6.1 Empirical level of our k-sample testing procedure
We draw k populations from two-component Gaussian mixtures, where the k simulated known compo-
nents are distributed according different Gaussian distributions. On the contrary, those k populations
share the same unknown component distribution (namely a standard normal distribution). For each sim-
ulation being part of the Monte-Carlo procedure, we implement the following steps: (i) generate the k
populations, each one following an admixture model; (ii) perform the k-sample test; (iii) retrieve which
penalty rule (similarly which ε, either ε0 or ε1) and which rank S̃(n) have been chosen, as well as the
p-value of the test. We repeat this simulation scheme B = 100 times in order to estimate the empirical
level of our test procedure (11). Table 1 reports the parameters involved in each simulated population for
three different sample sizes (about 400, 1000 and 3000 observations), as well as the results related to the
main indicators showing how efficient our procedure is. More comprehensively, Table 1 stores in its last
four columns how often the right penalty rule (15) has been chosen (in percent), the 90%-percentile of
the distribution of the selected order S̃(n) (16), the mean of the 100 p-values obtained when testing, and
finally the empirical level of the test.
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Table 1: k-sample test (Gaussian mixtures). Reported S̃(n) corresponds to the 90%-percentile of the
distribution of S̃(n) over the 100 experiments, and p-val is the average of obtained p-values

Samples
i 1 2 3 4 5 6 7 8 9 10
pi 0.3 0.8 0.6 0.4 0.9 0.2 0.4 0.15 0.7 0.5 Pen. Emp.
Gi N (2, 0.7) N (4, 1.1) N (3, 0.8) N (−1, 0.3) N (−3, 0.2) N (−5, 0.4) N (3.5, 0.1) N (−4, 0.7) N (−2.5, 1) N (1.5, 0.3) rule

S̃(n)
p- level

ni 347 449 308 382 426 372 440 447 474 424 (%) value (10−2)
F1 F2 F3 F4 F5 F6 F7 F8 F9 F10

k=2 N (0, 1) N (0, 1) 100 1 0.53 5
k=4 N (0, 1) N (0, 1) N (0, 1) N (0, 1) 98 1 0.74 3
k=6 N (0, 1) N (0, 1) N (0, 1) N (0, 1) N (0, 1) N (0, 1) 96 1 0.76 4
k=8 N (0, 1) N (0, 1) N (0, 1) N (0, 1) N (0, 1) N (0, 1) N (0, 1) N (0, 1) 92 1 0.83 6
k=10 N (0, 1) N (0, 1) N (0, 1) N (0, 1) N (0, 1) N (0, 1) N (0, 1) N (0, 1) N (0, 1) N (0, 1) 95 1 0.9 5
ni 1011 1027 1077 1019 903 942 971 1065 1071 1068

F1 F2 F3 F4 F5 F6 F7 F8 F9 F10

k=2 N (0, 1) N (0, 1) 100 1 0.4 7
k=4 N (0, 1) N (0, 1) N (0, 1) N (0, 1) 100 1 0.77 2
k=6 N (0, 1) N (0, 1) N (0, 1) N (0, 1) N (0, 1) N (0, 1) 100 1 0.8 4
k=8 N (0, 1) N (0, 1) N (0, 1) N (0, 1) N (0, 1) N (0, 1) N (0, 1) N (0, 1) 87 1 0.8 8
k=10 N (0, 1) N (0, 1) N (0, 1) N (0, 1) N (0, 1) N (0, 1) N (0, 1) N (0, 1) N (0, 1) N (0, 1) 86 1 0.83 6
ni 3187 2847 3189 3175 3042 2989 3184 2868 2998 3193

F1 F2 F3 F4 F5 F6 F7 F8 F9 F10

k=2 N (0, 1) N (0, 1) 100 1 0.48 6
k=4 N (0, 1) N (0, 1) N (0, 1) N (0, 1) 100 1 0.71 3
k=6 N (0, 1) N (0, 1) N (0, 1) N (0, 1) N (0, 1) N (0, 1) 98 1 0.78 4
k=8 N (0, 1) N (0, 1) N (0, 1) N (0, 1) N (0, 1) N (0, 1) N (0, 1) N (0, 1) 93 1 0.81 6
k=10 N (0, 1) N (0, 1) N (0, 1) N (0, 1) N (0, 1) N (0, 1) N (0, 1) N (0, 1) N (0, 1) N (0, 1) 94 1 0.92 3

Given that the selected sample-based quantile considered in (11) was fixed as the 95%-percentile of
the tabulated distribution, it is expected that the empirical level of the test (last column) stays close to 5%.
Looking at the results, our test procedure looks to be globally efficient. Most of time, the right penalty
rule and the right testing rank have been selected. Indeed, in more than 90 of the 100 experiments, the
selected order S̃(n) has the correct value (equal to 1, since we are under H0). Moreover, the number k
of populations involved in the k-sample test does not seem to impact our testing procedure. Even when
some populations have overlapping components, the quality of the test remains satisfactory. Also, the
same simulations were performed without using the tuning process, with almost no impact on test levels.
In that latter case, we have set ε = 0.87 for the penalty given by Assumption (B) in (9), as this value lies
exactly in the middle of [ε1, ε0] = [0.75, 0.99]. Setting ε to way lower values led to seriously deteriorate
the test levels in finite samples applications, which validates the need to keep a strong penalty under
the null. Of course, this global picture may change depending on the chosen parameters to conduct the
simulation study. For instance, much higher variances for the mixture components would clearly affect
our results.

Remark 7. We observed higher empirical levels when the population to test is strongly under-represented.
If the product nipi is low, say around 30, the estimation of the mixture weight pi deteriorates. This spreads
out to the computation of supremum in (12), which mechanically increases and leads to the wrong choice
in the penalization rule, i.e. taking ε1 instead of ε0.

6.2 Empirical power
Now, we aim to study the power of our testing strategy, that is to say how our k-sample test performs
in detecting that (at least) two of the k populations have different unknown component distributions.
For ease of comparisons, we keep the same known component distributions and unknown component
proportions as previously. The different parameters involved in Gaussian mixtures are stored in Table 2,

15



Table 2: k-sample test under the alternative H1, with emphasis on different settings when K = 10.
Interpretation of the last four columns is identical to Table 1 (n.a. stands for not applicable)

Samples
i 1 2 3 4 5 6 7 8 9 10
pi 0.3 0.8 0.6 0.4 0.9 0.2 0.4 0.15 0.7 0.5 Pen. Emp. power
Gi N (2, 0.7) N (4, 1.1) N (3, 0.8) N (−1, 0.3) N (−3, 0.2) N (−5, 0.4) N (3.5, 0.1) N (−4, 0.7) N (−2.5, 1) N (1.5, 0.3) rule

S̃(n)
p- Tune/NoTune

ni 347 449 308 382 426 372 440 447 474 424 (%) value (10−2)
F1 F2 F3 F4 F5 F6 F7 F8 F9 F10

k=2 N (0, 1) N (0.3, 1) n.a. 1 0.24 n.a. / 36
k=4 N (0, 1) N (1, 1) N (0.3, 1) N (0, 1) 15 6 0.46 20 / 11
k=7 N (0, 1) N (0, 1) N (1, 1) N (0, 1) N (0, 1) N (0.5, 1) N (0, 1) 30 21 0.7 26 / 3
k=10 N (0, 1) N (0, 1) N (0, 1) N (0, 1) N (0, 1) N (0, 1) N (0.5, 0.5) N (0, 1) N (0, 1) N (0, 1) 30 1 0.8 7 / 1
k=10 N (0, 1) N (−0.5, 1) N (0.3, 0.5) N (0, 1) N (0, 1) N (0.7, 0.7) N (0, 1) N (0, 1) N (0, 1) N (−0.2, 1) 25 1 0.72 9 / 1
k=10 N (0, 1) N (−0.5, 1) N (0.3, 0.5) N (0, 1) N (1, 1) N (0.7, 0.7) N (0, 1) N (−0.4, 1) N (0.9, 3) N (−0.2, 1) 70 45 0.26 63 / 2
ni 1011 1027 1077 1019 903 942 971 1065 1071 1068

F1 F2 F3 F4 F5 F6 F7 F8 F9 F10

k=2 N (0, 1) N (0.3, 1) n.a. 1 0.09 n.a. / 74
k=4 N (0, 1) N (1, 1) N (0.3, 1) N (0, 1) 41 6 0.22 50 / 18
k=7 N (0, 1) N (0, 1) N (1, 1) N (0, 1) N (0, 1) N (0.5, 1) N (0, 1) 95 21 0.04 95 / 1
k=10 N (0, 1) N (0, 1) N (0, 1) N (0, 1) N (0, 1) N (0, 1) N (0.5, 0.5) N (0, 1) N (0, 1) N (0, 1) 95 45 0.23 72 / 1
k=10 N (0, 1) N (−0.5, 1) N (0.3, 0.5) N (0, 1) N (0, 1) N (0.7, 0.7) N (0, 1) N (0, 1) N (0, 1) N (−0.2, 1) 85 45 0.13 84 / 2
k=10 N (0, 1) N (−0.5, 1) N (0.3, 0.5) N (0, 1) N (1, 1) N (0.7, 0.7) N (0, 1) N (−0.4, 1) N (0.9, 3) N (−0.2, 1) 100 45 0 99 / 1
ni 3187 2847 3189 3175 3042 2989 3184 2868 2998 3193

F1 F2 F3 F4 F5 F6 F7 F8 F9 F10

k=2 N (0, 1) N (0.3, 1) n.a. 1 0.009 n.a. / 96
k=4 N (0, 1) N (1, 1) N (0.3, 1) N (0, 1) 99 6 0.001 99 / 12
k=7 N (0, 1) N (0, 1) N (1, 1) N (0, 1) N (0, 1) N (0.5, 1) N (0, 1) 100 21 0 98 / 1
k=10 N (0, 1) N (0, 1) N (0, 1) N (0, 1) N (0, 1) N (0, 1) N (0.5, 0.5) N (0, 1) N (0, 1) N (0, 1) 100 45 0 100 / 3
k=10 N (0, 1) N (−0.5, 1) N (0.3, 0.5) N (0, 1) N (0, 1) N (0.7, 0.7) N (0, 1) N (0, 1) N (0, 1) N (−0.2, 1) 100 45 0 99 / 1
k=10 N (0, 1) N (−0.5, 1) N (0.3, 0.5) N (0, 1) N (1, 1) N (0.7, 0.7) N (0, 1) N (−0.4, 1) N (0.9, 3) N (−0.2, 1) 100 45 0 99 / 2

showing that some considered frameworks corresponds to critical situations where mixture components
can be highly overlapping, see for instance when k = 2. As already mentioned, the tuning process
is essential here to correctly detect the alternative. Indeed, the penalty term should not compensate
the explosion of the test statistic, which means that taking ε = 0.75 (i.e. ε = ε1) instead of ε =
0.87 leads to very distinct results. Let us focus here on the case k = 10, and emphasize the different
possibilities depending on the number of different unknown component distributions involved across
those k populations.

Table 2 leads to several interesting conclusions. First, the power of the test is much more sample
size sensitive than its level. This is not surprising: detecting departures from the null hypothesis requires
strong evidence that two unknown component distributions are different, which is far from being obvious
when considering mixtures with overlapping components and moderate sample sizes. However, as soon
as the product nipi becomes large enough, say around 1000, the power of the test gets close to 1.

With small sample sizes, it looks tricky to select the right penalty rule in most of cases (except when
k = 2). In practice, one tends to select ε0 instead of ε1. Indeed, dividing the population at the beginning
of Algorithm 1 leads to lower the original sample size, which is likely to create higher variability for Si,j .
Mechanically, the quantity max(Si,j)/ log(n) increases, and thus also γ does. Finally, one gives more
importance to the sample size in (15), which globally increases the penalty term in (16) and is more likely
to compensate the increase of the contrast that normally indicates the departure from the null hypothesis.
The testing procedure thus tends to believe that we are under the null, as can be seen looking at the 90%-
percentile of S̃(n) (which sometimes equals 1 with k = 10). Stopping at order S̃(n) = 1 prevents from
detecting the alternative, given that there exists at least two populations with same unknown component
in our k-sample settings and that the implemented algorithm starts by testing the two closest populations
in the nd(·) discrepancy sense. The consideration of moderate sample sizes clearly helps to improve
the quality of the test. Indeed, both the penalty rule and the right order tend to be correctly selected.
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As expected, the higher the number of different unknown components among the k populations is, the
more powerful the test is. Notice that when k = 2, Algorithms 1 and 2 are useless since they only affect
the penalty rule that helps to detect the right number of summands in the test statistics. Indeed, in this
case, there is only one summand by construction. Finally, Table 2 also reports in its last column the
improvement, in terms of test power, obtained using the tuning process, which validates that the power of
the k-sample test strongly depends on its use. Of course, these results may differ with different simulation
parameters but we tried to consider a large class of simulation setups in order to challenge the robustness
of our procedure.

6.3 Clustering
Hereafter, we are willing to cluster the unknown components Fi’s overK populations under study, having
only observed the admixture Li of the known Gi’s with the unknown Fi’s. We begin with the description
of our clustering frameworks, before discussing our results.

Clustering schemes description. We dedicated the previous section to the study of the performance
of the k-sample testing procedure (2 ≤ k ≤ K), since the quality and the robustness of our clustering
algorithm strongly relies on it. Now, we would like to recover simulated clusters over K = 10 pop-
ulations. Various frameworks are investigated, from the extreme cases of one single cluster up to ten
clusters. In-between, we also study situations where we have both, sizewize speaking, unbalanced and
balanced clusters. Figure 2 illustrates the four considered settings. In the first case (one single cluster)
the common unknown component is distributed according to Fi ∼ N (7, 0.5), i = 1, . . . , K, whereas
two clusters appears for the second case. The densities of populations underlying these two clusters are
depicted through different line types (plain and dotted). In the third case, the densities associated to the
three balanced clusters are displayed with different line types and widths. Clustering the unknown com-
ponents of these populations having only the knowledge of the known components is not straightforward.
Indeed, there are overlapping components among the populations, see for instance the 3rd and 4th popu-
lations in the 1-cluster example. Moreover, some of the clusters can be close from one to another, see for
instance the third case where two of the three clusters are not well separated because of close means and
higher variances. All the parameters involved in those simulations are stored in Table 3.

Table 3: Parameters for clustering. The two clusters are composed of populations (1,2,5,6,8,9,10) and
(3,4,7), and the three clusters embed populations (1,3,4,7), (2,6,9) and (5,8,10)

Populations i 1 2 3 4 5 6 7 8 9 10
Weight pi 0.3 0.8 0.6 0.4 0.9 0.2 0.4 0.15 0.7 0.5
Sample size ni 312 271 293 322 289 282 279 280 294 324
1 cluster Gi N (16, 0.7) N (22, 1) N (6, 2) N (8, 1.2) N (2, 0.2) N (3, 0.3) N (−3, 0.4) N (−5, 0.5) N (−1, 0.1) N (11, 0.7)
Gi (2&3 clusters) N (16, 0.7) N (22, 1) N (6, 2) N (8, 1.2) N (2, 0.2) N (3, 0.3) N (4, 0.4) N (5, 0.5) N (6, 0.6) N (7, 0.7)
Fi (2 clusters) N (7, 0.5) N (7, 0.5) N (15, 1.1) N (15, 1.1) N (7, 0.5) N (7, 0.5) N (15, 1.1) N (7, 0.5) N (7, 0.5) N (7, 0.5)
Fi (3 clusters) N (15, 1.1) N (7, 0.5) N (15, 1.1) N (15, 1.1) N (17, 0.7) N (7, 0.5) N (15, 1.1) N (17, 0.7) N (7, 0.5) N (17, 0.7)
Gi (10 clusters) N (16, 0.7) N (22, 1) N (6, 2) N (8, 1.2) N (2, 0.2) N (3, 0.3) N (−3, 0.4) N (5, 0.5) N (−1, 0.1) N (7, 0.7)
Fi (10 clusters) N (7, 0.5) N (6, 0.6) N (15, 1.1) N (12, 0.05) N (3, 2) N (−4, 0.9) N (−8, 1.1) N (0, 0.5) N (17, 0.4) N (−5, 0.2)

Performance of the clustering. We still use a Monte Carlo approach here, meaning that we perform
the clustering task B times for each of the four cases aforementioned. As the clustering process is
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computationally intensive (it requires to perform many k-sample tests), we set B = 20. However, we
also considered B = 50 for some of our examples, which led to very minor modifications of the results
without changing the global picture. Given the parameters of the simulations, see Table 3, in the four
studied frameworks further denoted (a) to (d), we expect our procedure to find respectively the following
clusters: (1,2,3,4,5,6,7,8,9,10); (1,2,5,6,8,9,10) and (3,4,7); (1,3,4,7), (2,6,9) and (5,8,10); and finally
(1),(2),(3),(4),(5),(6),(7),(8),(9),(10).

In practice, there exists many ways for the clustering algorithm to reach wrong conclusions. Either it
detects the right number of clusters but does not affect the right populations to the right clusters, which
should not happen asymptotically, or it selects straight out a wrong number of clusters. In the latter case
the algorithm tends to overestimate the correct number of clusters, leading to clusters with wrong sizes
and isolated populations.

Basically, it is difficult to summarize all possible encountered wrong answers through one single
indicator. In our case, we have chosen to measure the performance of the clustering algorithm through
classification matrices (also called heatmaps). Indeed, it seems to us that it is an efficient and yet simple
indicator. Figures 3 and 4 display examples of such matrices, in our simulation setups. The reading of
heatmaps is easy. First, they are symmetric, with errors stored in the off-diagonal terms (of course a
given population is always clustered with itself). For these non-diagonal terms, one counts how many
times (among B experiments) the clustering algorithm clustered each population with the other ones.
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Figure 2: Simulated densities of the 10 populations. From top left to bottom right: 1 cluster, 2 clusters
(pop.(1,2,5,6,8,9,10) and (3,4,7)), 3 clusters ((1,3,4,7), (2,6,9) and (5,8,10)), 10 clusters.
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Figure 3: Heatmap (or classification matrix) describing the efficiency of our clustering algorithm with n
around 300, see Table 3. Values for the percentage of right predictions are given from very light to dark
blue, which corresponds to no error (0%), [80%, 90%[, [90%, 100%[, 100%

Then, comparing this to the expected clusters, it is straightforward to deduce the percentage of correct
classifications.
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Figure 4: Heatmap with n = 200. Percentage of classifications are given from very light to dark blue,
which corresponds to no error (0%), [80%, 90%[, [90%, 100%[, 100%. For cases (a) and (d), the interpre-
tation differs: populations 5 and 8 were put in the same cluster in 10% of simulations

To simplify, our heatmaps are organized by blocks, each block corresponding to an expected cluster.
This means that a perfect clustering has 100% of right classifications for every blocks. This is the case for
instance in Fig. 3 concerning the first and fourth settings (cases (a) and (d)). In the two other frameworks,
the KCMC algorithm is sometimes mistaking, but results show that these errors remain reasonable.
Indeed, the percentage of right classifications does not fall below 80%. Focusing now on the case of
two unbalanced clusters (case (b)), it is obvious that certain populations are always found to belong to
the same cluster (populations 2, 5 and 6; or populations 4 and 7), whereas others can be detected to be
outside the actual cluster (e.g. population 3 which is not clustered everytime with populations 4 and 7).
The worst case here lies in the cluster containing population 8. Figure 4 illustrates the phenomenon that
was already observed when studying the performance of the k-sample test. Decreasing the sample size
has a strong influence on the clustering efficiency. Here, the clusters could be recovered thanks to the
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fact that we use B simulations, but the reader has to keep in mind that using this clustering algorithm
can reveal tricky in real-life applications containing a low number of observations. Finally, once the
clusters are recovered, useful information can be deduced. For instance, knowing that the unknown
weights are consistently estimated inside each cluster, it is possible to retrieve the estimated proportions
of the unknown perturbation impacting the original population. Table 4 provides such results based on
our simulation parameters (not applicable for the case of 10 clusters since weights are not consistenly
estimated when there are no equal unknown components). Moreover, the corresponding decontaminated
densities can also be nicely illustrated, see Fig. 5.

Table 4: Mean of estimated unknown weights of the ten populations under study (n = 300), obtained
from pairwise IBM testing over each cluster.

Real weight pi 0.3 0.8 0.6 0.4 0.9 0.2 0.4 0.15 0.7 0.5
Estimated weight p̂i p̂1 p̂2 p̂3 p̂4 p̂5 p̂6 p̂7 p̂8 p̂9 p̂10

Case of 1 cluster 0.271 0.798 0.669 0.424 0.894 0.159 0.378 0.174 0.676 0.390
Case of 2 clusters 0.291 0.829 0.603 0.417 0.884 0.253 0.395 0.147 0.701 0.752
Case of 3 clusters 0.367 0.821 0.581 0.441 0.903 0.216 0.448 0.151 0.740 0.494
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Figure 5: Decontaminated densities (recovered unknown components) once the clusters identified.
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7 Real world Application

7.1 Excess of mortality during pandemics
In Milhaud et al. (2023), a pairwise comparison of COVID-19 excess of mortality has been investigated.
This is aimed at identifying countries experiencing similar impact of the COVID-19 on the mortality.
More precisely, the age distribution of death is considered and is supposed to exhibit a common compo-
nent over periods at the country level. This would correspond to the known component in model (1). The
COVID-19 component is assumed to be unknown. For instance, the mortality change between 2019 and
2020 is considered as a baseline and serves to assess the excess of the mortality due to COVID-19. The
current paper follows the same line as Milhaud et al. (2023) and proposes to cluster countries given the
inherent impact of the COVID-19. The datasets of interest came from the Short-Term Mortality Fluctu-
ations (STMF) data series compiled by the Human Mortality Database (HMD). It contains death records
aggregated over age groups: 0-14, 15-64, 65-74, 75-85 and 85+. Here, we restrain our study to the four
last age classes (given that experts agree to consider that the first one 0-14 was clearly not affected by
the pandemic). First, we consider a clustering procedure over the same countries considered in Milhaud
et al. (2023) for the first wave. Formally, we study the similarities in terms of the changes for France,
Belgium, Germany, Italy, Netherlands and Spain. The known distributions are multinomial ones with
four categories here and we compare the unknown multinomial distributions caused by the COVID-19.
In Table 5, we report the resulted clusters:

Table 5: Clustering of excess of mortality profile over 2020.

France Italy Netherlands Belgium Germany Spain
Cluster (id) 3 2 2 1 1 1

Two clusters are the same as those already identified by the authors. Namely, France shows a proper
COVID-19 impact on its mortality whereas Italy and the Netherlands share the same profile. However,
our clustering methodology identifies a third cluster consisting of Germany, Spain and Belgium. In
Milhaud et al. (2023), it is shown that Germany and Belgium, on one hand, and Belgium and Spain on
the other have similar impacts but the test rejects the null hypothesis for Germany and Spain. This lack
of transitivity of the pairwise testing procedure was already discussed in Milhaud et al. (2023) and the
K-sample procedure offers an interesting yet robust generalization of the latter.

7.2 Europe-wide clustering of COVID-19 excess of mortality
In the following, we explore a larger clustering scheme and consider 29 European countries, i.e. Aus-
tria, Belgium, Bulgaria, Switzerland, Czech Republic, Germany, Denmark, Spain, Estonia, England and
Wales, Finland, France, Greece, Croatia, Hungary, Iceland, Ireland, Italy, Lithuania, Luxembourg, Latvia,
Netherlands, Norway, Poland, Portugal, Scotland, Slovakia, Slovenia and Sweden. We aim at explor-
ing the impact of the pandemic over these countries in 2020 and identify the clusters. We adopt the
same assumptions as described above and proceed to clustering the countries with regard to their shared
COVID-19 excess of mortality effect. The known and unknown distributions are multinomials with four
categories (the four age classes). The sample sizes are given in the first row of Table 7 and range from
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1141 for Iceland to 462577 for Germany. We should recall that this comparison focus on the distribution
of the nodular effect of the COVID-19 rather than its dynamics. As soon as the countries under study
suffered from the impact of the outbreak of the pandemic at different periods during the year of 2020, we
will be more concerned with the impact on the population rather than its magnitude. Hence, the following
comparison should be root on the socio-demographic disparities that may exist among the populations as
well as the healthcare capacities, public health measures and many other factors. The discussion of the
implication of such an impact is, however, beyond the scope of this paper.

First, we set up the level α to 1% and explore the clusters that formed on the basis of the H0-rejection
rule. At this level, we are left with 11 clusters. In Figure 6, we report these as well as the estimated
unknown cumulative distribution functions, averaged over each cluster. First, we can observe that some
countries are single isolated clusters. This is the case for Spain, Island, Switzerland, Netherlands and
Portugal. On the other hand, we have two large clusters that represent most countries from center and
eastern European countries: Lithuania, Latvia, Poland, Hungry, Bulgaria, Slovakia and Estonia. This
block is isolated from the geographically adjacent cluster constituted by the Czech Republic and Croa-
tia. Some of the Northern European countries are gathered on two clusters. The largest is constituted
of Finland, Austria, Germany, Northern Ireland, Scotland, Sweden and England & Wales. Surprisingly,
a common factor, among other things, is the Protestant inheritance. Numerous studies, e.g. Kaklauskas
et al. (2022) among others, validated the similarities between the English-speaking and the Protestant
European clusters due to their closely related common histories, cultural interactions, similar develop-
ment levels, and religions. Finally, in order to understand more closely the clusters we refer the reader
to the plethora of studies that investigate the factors that influence mortality levels from COVID-19 such
as well-functioning healthcare system, prevention measures (e.g. social distancing), and population age
structure, among others.

A way to check the stability of the clusters is to change the threshold of the test acceptance, for
example by increasing α to see if the groups merge then. In Figure 7 we reported the clusters for different
levels, respectively, 1%, 5% and 15%. As noted earlier, this parameter clearly reflects the threshold for
accepting the composition of a group. Indeed, we see that these three levels lead respectively, to 11, 14
and 15 clusters. From Proposition 1 the number of groups determined by our algorithm is asymptotically
greater than the true (unknown) number of groups. Since the sample sizes are large here we can conclude
that 11 groups is a reasonable choice. If we want to obtain greater detail, a larger value for α will enable
a more refined clustering, but may look artificial if too many groups are suddenly created.
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Figure 6: Clustering of the excess mortality profile due to COVID-19 during the year 2020 over 29
countries (top) and the corresponding unknown cdf (bottom right).

Figure 7: Clustering of the excess mortality profile (for the 29 countries) due to COVID-19 for different
levels of α: 15% (top), 5% (middle) and 1% (bottom).
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8 Appendix

8.1 Proof of Theorem 3
Let us prove that P(S(n) ≥ 2) vanishes as n→ +∞. By definition of S(n) we have

P (S(n) ≥ 2) = P (it exists 2 ≤ r ≤ d(k) : Ur − r`n ≥ U1 − `n)

≤ P (it exists 2 ≤ r ≤ d(k) : Ur − U1 ≥ (r − 1)`n)

= P

it exists 2 ≤ r ≤ d(k) :
∑

(i,j)∈S(k): 2≤rk(i,j)≤r

Ti,j ≥ (r − 1)`n


≤ P (it exists (i, j) with 2 ≤ rk(i, j) ≤ r ≤ d(k) : Ti,j ≥ `n)

≤
∑

2≤rk(i,j)≤d(k)

P (Ti,j ≥ `n) .

From Lemma 1 we know that under H0, for all ε > 0, n−εTi,j = n−εndn[i, j](θ̂n(i, j)) that goes to 0 in
probability, as n→ +∞. Since d(k) = k(k−1)/2 is fixed we then obtain P(S(n) ≥ 2)→0 as n→ +∞,
which proves the wanted result.

8.2 Proof of Theorem 4
From Theorem 3 we have P(S(n) = 1)→ 1 as n→ +∞, from which we can deduce that for all ξ > 0

P(|US(n) − U1| ≥ ξ) = P(|US(n) − U1| ≥ ξ ∩ {S(n) = 1}) + P(|US(n) − U1| ≥ ξ ∩ {S(n) > 1})
= P(|US(n) − U1| ≥ ξ ∩ {S(n) > 1})
≤ P(S(n) > 1)→ 0,

which implies that US(n) has the same limiting distribution as U1 = T1,2, see Lemma 1.

8.3 Proof of Theorem 5
Consider the general case H1(r) with r > 1, the particular case H1(1) being similar. We first show that
P(S(n) ≥ r) tends to 1 as n→ +∞. Under H1(r), we have for all r′ < r

P (Ur − r`n ≥ Ur′ − r′`n) = P ((Ur − Ur′) ≥ (r − r′)`n)

= P

 ∑
r′<rk(i,j)≤r

Ti,j ≥ (r − r′)`n


≥ P

(
Ti,jI{rk(i,j)=r} ≥ (r − r′)`n

)
.

When rk(i, j) = r, under H1(r) we have from Lemma 1 Ti,j = U1
n(i, j) + V 1

n (i, j) where V 1
n (i, j) =

λ[i, j]×n+oa.s.(n). From (B) we know that ln = nε with ε < 1, and we deduce that P
(
Ti,jI{rk(i,j)=r} ≥
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(r − r′)`n

)
→1, as n tends to infinity, which proves that P(S(n) ≥ r) tends to 1. Under H1(r), if

rk(i, j) = r we have from Lemma 1 that Ti,j → U1
n + V 1

n , where V 1
n = O(n). Since Ur ≥ Ti,j

we obtain P(Ur → +∞) = 1. From (B) we also have P(Ur − r`n → +∞) = 1. It implies that
P(r ∈ arg max1≤s≤d(k){Us − s`n})→ 1 which implies that P(S(n) > r) tends to 0.

8.4 Proof of Proposition 1
Consider a group with at least two elements, Gs, obtained from Algorithm 3 and assume that there exists
is,j such that Fis,j 6= Fis,1 . We are then under an alternative of the form H1(r) which is asymptotically
detected from Theorem 5, that is: P (is,j ∈ Gs)→ 0, as n→ +∞.
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