Wiener Indices of Minuscule Lattices - Archive ouverte HAL
Article Dans Une Revue The Electronic Journal of Combinatorics Année : 2024

Wiener Indices of Minuscule Lattices

Résumé

The Wiener index of a finite graph G is the sum over all pairs (p, q) of vertices of G of the distance between p and q. When P is a finite poset, we define its Wiener index as the Wiener index of the graph of its Hasse diagram. In this paper, we find exact expressions for the Wiener indices of the distributive lattices of order ideals in minuscule posets. For infinite families of such posets, we also provide results on the asymptotic distribution of the distance between two random order ideals.
Fichier principal
Vignette du fichier
12002-PDF file-48481-1-10-20240213.pdf (410.89 Ko) Télécharger le fichier
Origine Fichiers éditeurs autorisés sur une archive ouverte
Licence

Dates et versions

hal-04121844 , version 1 (20-09-2024)

Licence

Identifiants

Citer

Colin Defant, Valentin Féray, Philippe Nadeau, Nathan Williams. Wiener Indices of Minuscule Lattices. The Electronic Journal of Combinatorics, 2024, 31 (1), p. 1-41. ⟨10.37236/12002⟩. ⟨hal-04121844⟩
94 Consultations
9 Téléchargements

Altmetric

Partager

More