On the Krein-Rutman theorem and beyond - Archive ouverte HAL
Pré-Publication, Document De Travail (Preprint/Prepublication) Année : 2023

On the Krein-Rutman theorem and beyond

Résumé

In this work, we revisit the Krein-Rutman theory for semigroups of positive operators in a Banach lattice framework and we provide some very general, efficient and handy results with constructive estimates about - the existence of a solution to the first eigentriplet problem; - the geometry of the principal eigenvalue problem; - the asymptotic stability of the first eigenvector with possible constructive rate of convergence. This abstract theory is motivated and illustrated by several examples of differential, intro-differential and integral operators. In particular, we revisit the first eigenvalue problem and the asymptotic stability of the first eigenvector for - some parabolic equations in a bounded domain and in the whole space; - some transport equations in a bounded or unbounded domain, including some growth-fragmentation models and some kinetic models; - the kinetic Fokker-Planck equation in the torus and in the whole space; - some mutation-selection models.
Fichier principal
Vignette du fichier
FSGM-KR-v1.pdf (2.38 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-04093201 , version 1 (09-05-2023)
hal-04093201 , version 2 (10-01-2024)

Identifiants

Citer

Claudia Fonte Sanchez, Pierre Gabriel, Stéphane Mischler. On the Krein-Rutman theorem and beyond. 2023. ⟨hal-04093201v1⟩
395 Consultations
229 Téléchargements

Altmetric

Partager

More