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1. INTRODUCTION

1.1. Framework and the main result. In this work, we revisit the Krein-Rutman theory for
semigroups of positive operators in a Banach lattice framework and we provide some very general,
efficient and handy results with constructive estimates about

- the existence of a solution to the first eigentriplet problem;

- the geometry of the principal eigenvalue problem;

- the asymptotic stability of the first eigenvector with possible constructive rate of convergence.

This abstract theory is motivated and illustrated by several examples of differential, intro-differential
and integral operators. In particular, we revisit the first eigenvalue problem and the asymptotic
stability of the first eigenvector for

- some parabolic equations in a bounded domain and in the whole space;

- some transport equations in a bounded or unbounded domain, including some growth-fragmentation
models and some kinetic models;

- the kinetic Fokker-Planck equation in bounded domain;

- some mutation-selection models.

The results we establish on these examples are more general and more accurate that what we can
find in the literature. Our approach is in the same time able to tackle some critical cases, but also
it is very natural and makes possible to bring out the main important properties for each example
and to get rid of many technical issues.

The present work is motivated by new problems and ideas presented in the lectures on the Krein-
Rutman theorem by P.-L. Lions at College de France [227] and by the recent contributions by
Bansaye et al [31] and by Canizo and Mischler [77] developing Harris techniques. Bringing and
developing these ideas and techniques together with the more classical spectral analysis approach
developed or synthesized in previous contributions by Krein and Rutman [214], by Arendt et al [13],
by Mischler and Scher [250], by Bétkai et al [37] and many others, we are then able to significantly
generalize and improve the Krein-Rutman theory for positive semigroups.

The abstract results are developed in the framework of a quite general Banach lattice X, that is
a Banach space (X, || - ||) endowed with a compatible order relation > and thus with associated
positive cone Xy := {f € X; f > 0}, which satisfies either X =Y’ or X’ =Y for another dual
Banach lattice Y. The precise (and standard) framework will be presented in Section 2.1, and
some additional properties will be added when needed (these ones always hold in usual Banach
lattices used in PDE and stochastic processes theory). On the other hand, all the applications we
will presented are made in the following examples of usual Banach lattices :
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o X := Cy(FE), the space of continuous functions which tend to 0 at infinity (when E is not a
compact set) endowed with the uniform norm, or X := Cy ,,,(F) its weighted variant;

e X :=LP(E)=LP(E,&, ), the Lebesgue space of functions associated to the Borel o-algebra &,
a positive o-finite measure p and an exponent p € [1,00], or X := LE (E) its weighted variant;

e X := MYE) = (Co(E))’, the space of Radon measures defined as the dual space of Co(E), or
X := M} (E) its weighted variant.

In all the above examples, E denotes a o-compact metric space, and we write £ = UEg, with
Er C Ery1, Er compact.

We next consider a positive one-parameter semigroup of operators S = S, on X (we will indiffer-
ently writes Sy = S(t) = Sg(t) for ¢ > 0), and we denote by L its generator, by D(£) C X the
domain of £, by p(L£) C C the resolvent set of £ and by X(L£) = C\p(L) the spectrum of £. We
also denote by S* and L* the corresponding semigroup and generator on the dual space Y, and we
refer to Section 2.1 for more notations.

As announced, we may split the issue into several pieces concerning the stationary and the evolution
associated problems.
e Existence. We are first interested in the existence part of the first or principal eigentriplet
problem, namely we wish to bring out very general conditions under which

(S1) there exists a solution (A1, f1,¢1) € R x X x Y to the eigentriplet problem

(1.1) Lfi=Mf1, f120, fLr#0,

(12) L*QSl = )\1(;51; (bl > 0) ¢1 7é 07

and furthermore \; coincides with the spectral bound, namely

(1.3) A1 =s(L) :={supRe\; A € (L)} = inf{rx € R; A, C p(L)},

where A, is the open half plan A, := {z € C; Rez > a}.

We emphasize on the fact that this problem is named as the principal eigenvalue problem because

M eX(L) Cc{zeC, Re(z) < \i}.

e Geometry. A second issue is about an accurate analysis of the principal eigentriplet solution
and of the geometry of the (principal part of the) spectrum.

On the one hand, concerning the eigentriplet solution, we investigate conditions such that

(S2) fy is strictly positive (we refer to Section 4.1 for a definition) and f; is the unique (up
to normalization) positive eigenvector for £, ¢ is strictly positive and ¢; is the unique (up to
normalization) positive eigenvector for £*, and finally \; is geometrically and algebraically simple
for both £ and £*. We then may make the (usual) normalization choice

(1.4) (Il =1, {fr,¢1) =1) or (lgull =1, (f1.01) =1).
We are next interested by describing the boundary point spectrum
SH(L) = Sp(L) N T4 (L),

where we define the boundary spectrum ¥ (£) := s(£) + iR and £p (L) as the point spectrum (or
set of eigenvalues). More precisely, we exhibit some conditions such that

(S31) T5H(L£) — A is a (discrete) additive subgroup of iR;

(S32) X5(£L) is trivial, namely
(1.5) Sp(L) = {\}s
or

(S33) X5 (L) is trivial and (L) enjoys a spectral gap property (on its principal part), namely
(16) dr < Aq; E(,C) NA, = {)\1}
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In the last situation (1.6), a band separates the spectral value A; to the remainder of the spectrum,
while there is no spectral gap when (1.5) holds but (1.6) does not.
The importance of such a eigentriplet comes from the fact that we may associate the Malthusian
function

Fl(t) = eAltfl,
which is a particular solution to the evolution equation (with maximal growth) and a natural
candidate to capture the main asymptotic feature of generic semigroup flow.

e Asymptotic stability. In order to formulate our third main issue, namely the asymptotic
stability of F7, we introduce the rescaled operators £L = £ — A\; and L* = L* — A1, so that

Efl :07 E*(bl :07
or in other words, f7 is a stationary state of the semigroup S=5 7 and ¢1 is a stationary state of

the semigroup S* =5 7+, and thus a conservation law for S:

St fi=fi, S )¢ =1, (SO 1) = (f 1),
for any t > 0 and any f € X. Because of the property of the eigentriplet and of the normalization
assumption (1.4), we may reduce the issue to considering the case fy € X satisfies (¢1, fo) = 0
when (S32) or (S33) holds and more generally fo € Y55 when (S3;) holds, where Y, stands for
the eigenspace associated to the eigenvalues belonging to EJ}S (£). Depending of the hypotheses we
made on £ and S, we are able to establish some

(E1) mean ergodic property, namely

1 [T
—/ Sifodt -0 as T — oc;
T Jy

(E2) ergodic property, namely
gtfo—>0 as t— oo;

(E3) quantitative asymptotical stability, which may be geometric (or exponential) in the
spectral gap (1.6) case, namely

(1.7) IS foll < Ce ™| foll, Vt>0, Y foeX, (fo,dn) =0,

for possible constructive constants € > 0 and C > 1, or under the weaker condition (1.5) only
subgeometric, namely

(1.8) 1S() folli < O®)|folla, Yt>0, Y foeX, (fo,¢1) =0,

where |- |l = || - |lx, || - ||+ is a weaker norm and © : R, — R, is a constructive decay function
satisfying ©(¢) \, 0 when ¢ * co.

We aim now to allude some general hypotheses on the semigroup S, or its generator £ such that
the above three main issues may be tackled. Additionally to the yet mentioned fact that S, is
positive (which is almost equivalent to the fact that its resolvent is a positive operator, that £
enjoys a weak maximum principle or that £ enjoys Kato’s inequality) our hypotheses are mainly
of two kinds :

- strict positivity conditions;

- regularity conditions;

and these ones may be formulated at the stationary level directly on the generator £ or its resolvent
R or they may be formulated at the evolution level on the semigroup of operators Sz. Of course, in
order to establish constructive results these hypotheses will have to be formulated in a quantitative
way.

The strict positivity we will introduce and use are of different kinds:

- strong maximum principle on the generator, or equivalently irreducibility of the semigroup;

- reverse Kato’s inequality for the generator or aperiodicity condition of the semigroup;

- Doblin-Harris condition on the semigroup, which may be formulated as

(1.9) Stf = go(vo, f), V[feXy,
for some for some T' > 0 and convenient go € X;\{0}, ¥ € Y;\{0}.
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Less systematically but in a crucial way, we will make use of somehow related
- barrier functions and positive subeigenfunctions, which for the last one typically writes

(110) dkg € R, 3’@/]0 c Y+\{0}, E*’QZJQ > liowo.

On the other hand, some regularity is needed on the dominant part of the semigroup. In order to
briefly explain the issue, we assume that £ = A+ B with A € #(X) and B is the generator of a
positive semigroup Si. In such a context, we may write the resolvent factorization identity

Re =R+ RAR.
on the resolvent R, of £ and Rp of B, and its iterated version
(1.11) Re=V+WRz, Vi=Rpg+-+Rs(ARs)Y !, W:=(RgA).
At the level of the generator, our regularity assumption then typically writes

(1.12) sup [[V(2)||lzx) < oo, sup [W(z)|zxx,) < o,
2EA, 2E€EA

for some k € R and X; C X, which is nothing but the classical Voigt’s power compact condition
when X; C X with compact embedding. Similarly, at the level of the semigroup, we may write
the associated Duhamel formula
Sy =S+ (SB.A) *Sp,

(we refer to Section 3.1 for a precise definition) and its iterated version

N-1
(1.13) Se=V+W=xS, Vi=> Sgx(ASp)*D, W= (A,

£=0
with N > 1. At the level of the semigroup, our regularity assumption then typically writes

(1.14) sup ||V (t)e || (x) < 00, sup |[|[W(t)e ™| z(x,x,) < o0,
>0 >0

for some x € R and X7 C X in the dissipative framework and a variant of these estimates in a
weak dissipative framework. The crucial information is k < k¢ (dissipative framework) or £ = kg
(more involved weak dissipative framework).

We are now in position to state in a very informal way our main result at the level of the abstract
Banach lattice framework.

Theorem 1.1 (rough version). Let us consider a Banach lattice X picked up in the examples listed
above and a positive semigroup Sy on X which enjoys the above splitting structure (1.11), (1.12),
(1.13), (1.14).

(1) Conclusion (S1) holds under the localization of the principal spectrum assumption k < ko and
a weak compactness assumption on the regular part W or W in the splitting.

1
loc?

(2) Under an additional strong mazimum principle the conclusion (S2) holds. When X C L
we additionally conclude that (S31) and (E1) hold.

In order to make one step further, we have the three next possibilities

(8) Under an additional inverse Kato’s condition or an aperiodicity property, the conclusion (S32)
holds, as well as (E2) when X C L}

loc*

(4) Alternatively, under an additional strong compactness assumption on the regular part W of
the semigroup, the quantitative exponential asymptotic stability (E1) holds without constructive
constants, and thus also the spectral gap conclusion (S33) holds (in a not constructive way).

(5) Alternatively, under the additional Doblin-Harris condition (1.9) and an appropriate regularity
estimate on the reqular part of the splitting W, the quantitative asymptotic stability (E3) holds for
both the geometric and subgeometric framework with now constructive constants.

More general and precise statements will be presented in Sections 2, 3, 4, 5 and 6, where in
particular some variants in a weak dissipative framework (k = k) will be presented.

1.2. Discussion about Theorem 1.1. We discuss several works related to the main Theorem 1.1
as well as the hypotheses and the techniques used during the proof.
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1.2.1. The Krein-Rutman work and related approaches. For a strictly positive matrix in a
finite dimensional space, Perron [279] and Frobenius [152] establish at the beginning of the 20th
Century that the eigenvalue with largest real part is unique, real and simple. In their pioneer
work, Krein and Rutman establish in [214] for the very first time a possible infinite dimensional
functional space version of Perron-Frobenius theorem.

Theorem 1.2 (Krein-Rutman). Consider a Banach lattice with positive cone X, and strictly
positive cone Xy = intX, # (0. Consider a linear and compact operator R : X — X such that
R:X. — X, and R : X4\{0} — Xyy. Then there exists a unique eigentriplet (p1, f1,¢1) such
that pp >0, f1 € X4y, fi=mRf1, ¢1 € X-/l-—i-’ 01 =1 R*¢1.

In Theorem 1.2, the operator R corresponds to a resolvent operator R := (k— £)~! for k > 0 large
enough, so that when it applies, we deduce in particular that the first eigenvalue problem (1.1)-
(1.2) has a solution with A\; = x — 1. The two conditions int X, # @ and R : X \{0} = X, are
very strong. The first one essentially imposes to work in the space of continuous function and the
second one to work in a bounded domain. The result is however suitable and directly applicable
(and somehow restricted) to an elliptic operator with smooth coefficients set in a bounded domain
with suitable boundary conditions or to a Fredholm integral operator with positive kernel also set
in a bounded domain. In the elliptic context, the property R : X1\{0} — X is nothing but the
strong maximum principle while the compactness property of R comes from the elliptic regularity.
We refer to Section 2.3 for further discussions. In the same framework, Theorem 1.2 has been next
slightly extended by Bonsall [61], Schaefer [302], Karlin [204] or Nussbaum [269] for instance. We
also refer to the book by Dautray and Lions [114] for a clear and comprehensible presentation and
several possible versions.

In his paper [54], G. Birkhoff derived the Perron-Frobenius theorem by proving a contraction
principle in Hilbert’s projective metric for positive matrices. His result actually applies to any
“uniformly positive bounded” linear operators of a Banach lattice, such as integral operators with
positive kernels, and also provides geometric stability estimates. A closely related result was proved
by E. Hopf [195], and this Birkhoff-Hopf contraction theorem was subsequently generalized and
sharpened, and its proof simplified, by several authors, see in particular [38, 69, 74, 142, 143,
209, 270, 274]. This approach of the Krein-Rutman theorem requires some “uniform positivity
and boundedness” of the operator, which is quite restrictive, but it nevertheless allows to recover,
through an approximation procedure, the standard result of Theorem 1.2, see [69, Theorem 6.18].
The contraction in Hilbert’s projective metrics has the advantage to be applicable in partially order
linear vector spaces without any topological structure [143], and to nonlinear maps [270].

1.2.2. Spectral analysis approach. In his paper [283], R.S. Phillips formalized the notion of
positive semigroup acting on a Banach lattice paving the way to a new field of research. In the
precursory work [317] by Vidav and next in a series of papers by Greiner and co-authors [169,
171, 13], Webb [325, 326] and Biirger [71] (see also [13, C-III, Cor. 2.12, Thm. 3.12], [139, Thm.
VI.1.12, Cor. VI.1.13] or more recently Theorem 14.17 in the very pedagogical book [37]) significant
generalizations of the Krein-Rutman theory were established leading to, roughly speaking, the
following result.

Theorem 1.3. Consider a positive semigroup Sg on a (suitable) Banach lattice X which is irre-
ducible and such that s(L) > —oo is a pole, then

e s(L) is a first-order pole with one-dimensional and strictly positive residue, so that in particular
there exists a solution (A1, f1,¢1) to the eigentriplet problem;

o There exists o € R such that ¥ (L) = {s(L) + iaZ} consists of first-order poles with one-
dimensional residue.

e A practical way for verifying that s(L) > —oo is a pole consists in assuming that L enjoys the
splitting structure L = A+ B, as described above, with s(B) < s(L) and A is B power compact,
that is to say W is compact, on Ayp,.

Assuming furthermore that gg s quasi-compact then

e S; is exponential asymptotically stable in Span{¢;}t (without constructive constants).

The most important improvements here are the fact that the condition int X, # () and the strong

compactness of the resolvent operator R, are removed, and also that the exponential asymptot-
ically stability is established. The hypotheses seem stronger to those stated in Theorem 1.1-(1),



ON THE KREIN-RUTMAN THEOREM AND BEYOND 7

where only weak compactness is required what is not the case here. It is however worth empha-
sizing that in an AL-space and an AM-space (what includes the examples Co(E) and L'(E)) a
power weak compactness implies a power strong compactness (see [71, Rk. 2.1] and [303, Cor. 1
of Thm. I1.9.9]). The hypotheses and conclusions are similar to those stated in Theorem 1.1-(4).
The proof is based on the one hand on the Banach lattices theory as formalized for instance by
Schaefer [303] (see also [10, 11, 12, 13] for significant developments) using notions as ideals and
quasi-interior points. On the other hand, it takes advantage on the perturbation techniques initi-
ated by Phillips in [282] and developed further by Jorgens [201], Vidav [298, 318] and Voigt [321]
leading to the notions of power compact resolvent and quasi-compact semigroup, essential spectrum
and Calkin algebra.

The above theorem in particular applies to a positive and irreducible semigroup which is eventually
norm continuous and its generator has compact resolvent (see for instance Corollary VI.1.13 in [139]
and for the definition of an eventually norm continuous). In that case indeed, one can show that
s(L) > —o0, X4 (L) is bounded and consists of poles, so that ¥, (£) = {s(£)} and the essential
growth bound wess(S) associated to the essential spectrum (see for instance [37, Sec 14.1] for a
definition) satisfies wess(S) < w(S) = s(L£). The theorem was motivated and successfully applied
to Boltzmann like transport operator [317], cell division operator [122], age structured equation
[326] and selection-mutation dynamics [71]. We also refer to [139, Ch. VI] and [37] for other
numerous applications. Although very general and quite efficient, we formulate several criticisms
about the above result.

- The exponential convergence result is definitively not constructive and that approach is not able
to say anything about the weak dissipative case (a framework we will introduce latter, see in
particular Section 3.3).

- We may observe that Theorem 1.3 is not so popular in the probability and the PDE communities
and still many works in these domains refer to the original Krein and Rutman theorem even when
some additional (approximation) arguments are needed rather than applying directly Theorem 1.3.
By the way, we did not find in the literature where Theorem 1.3 is stated in such an handy way
(the closer formulation is probably [139, Thm. VI.1.12] which is given without proof).

- The proof of Theorem 1.3 we may find in the above quoted references is written in a very specific
(to the functional analysis school of positive semigroups) and abstract language which make it
quite obscure.

In [250, 245], one of the authors proposes the following variant.

Theorem 1.4. Consider a positive semigroup Sp which satisfies (1.10) with ko € R, it is irreducible
and its generator enjoys the splitting structure (1.11)-(1.12) for some k < ko and X1 C X with
compact imbedding. Assuming furthermore that

(1.15) Ja >0, SLE) () IW(2)ll (x) < o0,
z€EA,

the quantitative exponential asymptotic stability (E3) holds (without constructive constants).

The proof of Theorem 1.4 is based on a partial (but principal) spectral mapping and Weyl’s
theorem (in the spirit of Voigt [321]) coupled with a simple analysis of the first eigenelement
problem based on the irreducibility of the semigroup, but which is really simpler than the deep
result on irreducible semigroup stated in Theorem 1.3. On the other hand, that approach is unable
to tackle the situation when ¥5(L) is not a singleton. One of the main features in Theorem 1.4
and the other results established in [250, 245] is the clear identification of the simple localisation
of the principal spectrum condition with (1.10).

1.2.3. Dynamical and probability approach.

It is well known from the mean ergodicity theory of Von Neumann and Birkhoff introduced in the
1930s in [322, 56] that for a bounded semigroup a possible stationary state (and thus a first eigen-
vector associated to the first eigenvalue Ay = 0) can be obtain through a dynamical approach by
establishing that the Cesaro mean of the semigroup appropriately converges. A classical reference
is [215], see also [139, Sec. V.4] for a short presentation.

The existence of invariant measures for Markov chains/processes can be derived through a con-
traction approach by using coupling arguments reminiscent from the ideas of Doeblin [128] and
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Harris [184]. This yields a simplified Krein-Rutman theorem in the Banach lattice of finite mea-
sures for Markov operators, providing the existence of f; whilst A\; = 0 and ¢; = 1 are known
by definition. Doeblin’s condition is a handy criterion which ensures contraction in total variation
norm, and hence existence, uniqueness, and geometric stability of the invariant measure, see for
instance [153, 77] for this very classical and easy result. It turns out that this contraction is re-
lated to the contraction in Hilbert’s metric, see [159]. The drawback of Doeblin’s condition is that
it is quite demanding and typically requires the state space to be bounded. Harris’s idea allows
an extension to the unbounded setting by localizing Doeblin’s condition in a “small set” which
is visited infinitely often. The return to small sets is often obtained by using a Lyapunov func-
tion. When the Lyapunov function is strong enough for ensuring exponential return, contraction in
weighted total variation norm can be established and geometric stability of the invariant measure
is inferred [237, 238, 239, 240, 180, 77], leading to the following result (which is made constructive
in the two last references).

Theorem 1.5. Consider a positive semigroup S on the Banach space X = M}, (E) for some weight
function m : E — [1,00). Suppose that S is conservative, in the sense that

(1) S;1 =1 forallt >0,

and assume that, for some subset K C E on which m is bounded and some time T > 0,
(2) Stm < am+ 01k, for some o € (0,1) and 6 > 0;

(8) Stf > (f,1K)go, for all f € X; and some gy € X1 such that {go, 1x) > 0.

Then there exists a unique probability measure fi € M}, such that (\y = 0, f1,¢1 = 1) is solution
to the first eigentriplet problem, and the quantitative exponential stability (1.7) in (E3) holds with
constructive constants. Moreover, some reciprocal implication holds true.

When only a weak version of the above Lyapunov condition (2) is available, an extension of the
theory to a weakly dissipative framework is possible and has been developed in [313, 133, 132, 179,
77] leading to existence, uniqueness, but only sub-geometric stability of the invariant measure. We
also mention that ergodicity properties of Feynman-Kac semigroups were investigated in [118, 119]
and [211, 212].

Using a condition proposed in [119, Condition Z], the Doeblin-Harris method was extended to non-
conservative semigroups in [31, 95, 97, 96, 99]. In [31] necessary and sufficient conditions for the
geometric stability of (A1, f1, ¢1) in weighted total variation norm are obtained. To our knowledge,
no extension to the above mentioned weakly dissipative setting is available.

The following result is an immediate consequence of [31, Theorem 2.1].

Theorem 1.6. Consider the same situation as in Theorem 1.5 but relax the conservativeness
assumption (1) by the assumption that there exists a function ¢y : E — (0,00), bounded from
above and below by positive constants on K, such that vy < m on E, and satisfying

(1a) Siabo > Bipo, for some B> 0;
(1b) 1 Sibo < C{go, Lk Sivho), for allt >0 and some C > 0;
and replace the condition o € (0,1) by o € (0,8) in the assumption (2).

Then, there exists a unique solution (A1, f1,$1) to the first eigentriplet problem and the quantitative
exponential stability (1.7) in (E3) holds with constructive constants. Moreover, some reciprocal
implication holds true.

Positivity conditions required for the Doeblin-Harris approach are less restrictive than for Birkhoff
contraction. Conversely, unlike contraction in Hilbert’s metric, Doeblin-Harris method strongly
uses the linearity of the operators, and may thus not be easily extendable to nonlinear operator.
However, since it is based on contraction arguments, it can be extended to time-inhomogeneous
semigroups [30].

Finally, the existence of a first eigenmeasure in a non-conservative setting were established in [100,
101] through a Lyapunov function property, a suitable renormalization and a fixed point argument.
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1.2.4. PDE approaches.

At least as far as the existence issue is concerned, one of the most common way in PDE papers
in order to tackle the existence part of the first eigentriplet problem consists in approximating (by
regularization of the coefficients, add of a small viscosity, discretization) the eigentriplet problem,
then use the most classical Perron-Frobenius Theorem [279, 152] or Krein-Rutman Theorem [214,
114] and next to derive appropriate estimates and pass to the limit through a “stability argument”.

Recently, in order to circumvent the above approximation step, a new abstract and general version
of the existence part of the Krein-Rutman theory has been developed by Lions in [227] which, as
for the early works [229, 228], is also adapted to nonlinear operators and it includes the following
statement (in the linear operators framework).

Theorem 1.7. Consider a Banach lattice with positive cone X4 and a linear and bounded operator
R: X — X such that

(Z) R : X+ — X+,'

(i1) g2 € X1 \{0}, 3C3 > 0 such that Rgs < Caga, and set Ky :={g € X4; 3C, g < Cga2};

(1) p1 = sup J < +oo, where

J:={u>0; 3h e Ky, h > iRh + g2}

(iv) any sequence (g") of almost first eigenvectors is relatively (possibly weakly) compact, where
we say that (¢g") is a sequence of almost first eigenvectors if g" = u"Rg™ + ™, (g") is bounded,
u” S ur and g™ — 0.

Then there exists f1 € Ko such that fi = ;1R f1 and || f1]| = 1.

The statement and proof of Theorem 1.7 somehow generalize the existence part of the Krein-
Rutman theorem presented in Theorem 1.3 because the required splitting structure and associated
power compactness are replaced by the very natural stability principle (iv). Applications to ellip-
tic operator with strong or critical confinement property in the whole space R setting are also
presented in [227].

Let us also mention the huge literature on the characterization of the first eigenvalue by a min-
max formula. As explained with more details below, this approach has first been introduced in
the Courant-Fischer min-max theorem [146, 103, 104] providing a variational characterization of
eigenvalues in an abstract Hilbert setting for self-adjoint elliptic operators. Inspired next by point-
wise minmax formula established for simple self-adjoint operators [137, 290, 191] using a technique
which goes back to Picard [284], it has been next generalized to non self-adjoint elliptic operators
in [291, 43] among others. More recently, the same approach has been generalized to non elliptic
operators, see for instance [107] and the references therein.

On the other hand, and beyond the eigentriplet problem, the convergence towards the first eigen-
function may be proved using the general relative entropy (GRE) method which has been ap-
plied to a large class of evolution PDE in [241] which principle is as follows. Assume that
(M, f1,41) € R x X x X’ is a solution to the first eigenvalue problem, that A\; = 0 (a case to
which one can always reduces from the general case by a mere change of operator and unknown),
that X, X’ C L{ (O) and then define the generalized relative entropy

T() = /O i/ ) fr én d

for any given convex function j : R — R, . For any solution f(¢) € X to the (appropriate) evolution
PDE, one may establish (at least formal) the identity

(1.16) TGO+ [ Patsods =0y, 2o,

where D7 > 0 is the associated generalized dissipation of relative entropy, so that J is a Lya-
punov functional (it is decreasing along the flow associated to the evolution PDE). Under suitable
positivity hypothesis, one has D7 (f) = 0 if and only if f € Vect(f1), and then one may deduce
from (1.16) and some lower semicontinuity assumption on the operator Dy that f(t) — cf1 as
t — oo (without rate and with ¢ € R). The GRE method is of course connected to j-divergence
in information theory and statistics [110, 111, 70, 234] and to j-entropy in probability and PDE
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theory [93, 161], where however here it is crucial to identify the associated operator D s and that
this last one enjoys suitable properties.

1.2.5. Hypotheses and proof.

We now briefly discuss the strategy of the proof of Theorem 1.1 and how it is connected to the
above material. Additional comments will be made in the corresponding Sections 2 to 6. As
already said, the first eigenvalue problem is mainly split into three steps: existence, geometry and
asymptotic stability. From a general point of view, our approach is more general than the initial
Krein-Rutman theorem as well as less abstract than the usual semigroup school approach. We
believe it is more intuitive and handy for the possible applications since it is presented as a series
of a estimates to be checked and the necessary assumptions are made clearer at each step.

e Concerning the existence of a solution to the first eigentriplet problem, our result improves the
previous known results because (1) only weak compactness property is needed (while Theorems 1.3
& 1.4 require strong compactness assumptions), (2) it is more flexible than Theorems 1.3, 1.4, 1.6
& 1.7 (the two first ones being restricted to the generator of a strongly continuous semigroup, the
third one being restricted to a M}, framework and involving the tricky condition (1b) and the last
one being somehow restricted to a weighted L™ framework), (3) it applies to weakly dissipative
cases (so that no spectral gap is needed). We present two different proofs: one based on a stationary
problem approach and another one based on a dynamical problem approach (with which we are
able to tackle the weakly dissipative case).

Our stationary problem approach mixes in a first step the (clearly formulated) approximation
argument of [37, proof of Thm. 12.15] together with the stability argument of [227], where it
is worth emphasizing that the condition x < k¢ in Theorem 1.1 is nothing but a practical (and
possibly constructive) condition ensuring that assumption s(8) < s(£) holds in Theorem 1.3. On a
second step, we exhibit several practical situations where the required stability condition is fulfilled
recovering as a particular case the existence part in Theorems 1.3 & 1.6. We would like to point
out here that the splitting hypothesizes (1.13)-(1.14) on the semigroup is generalization of the
Lyapunov condition (2) in Theorem 1.5 on the semigroup which in turn generalizes the classical
Lyapunov condition on the generator, namely for instance

Ly < kpy + Kahg

with ¥; € X', 41,12 > 1y together with 12 < 1)1 (super Lyapunov condition), 12 = 11 (standard
Lyapunov condition), 12 > 11 (weak Lyapunov condition). We refer to [77] and to Sections 2 and
3 for further discussions on that question.

On the other hand, our dynamical approach mixes the splitting method yet alluded above together
with some argument picked up from Von Neumann & Birkoff mean ergodic theory in the spirit of
but in a more elaborate way than in [77, Sec. 6].

e The proof about the geometry of the principal eigenvalue problem in Theorem 1.1 is a refinement
of many arguments already developed in the literature. More precisely, the uniqueness of the
first eigentriplet (A1, f1,¢1) and the strict positivity of the eigenvectors is established by taking
up again in a more general setting some arguments developed in [281, 250, 207]. The subgroup
structure of the boundary point spectrum ¥5(L£) is next under suitable geometrical properties
on the Banach lattice X, these ones being always true for the usual examples we have in mind
and the we have already listed above. The proof mainly mimics the usual proof (as for instance
presented in [37, Sec. 14.3]) but it is less abstract and more general. Especially, the proof does not
refer to the notions of ideals, quasi-interior points or Calkin algebra nor uses the Kakutani lattice
isomorphism theorem but rather uses the simpler notion of strict positivity (defined by duality)
and some convient structural properties of the signum operator. In order to go one step further
and to prove the triviality property X5 (£) = {\1}, we propose one quite original approach (which
we believe to be new at this level of generality) based on an inverse Kato’s inequality condition of
L (by refining some arguments picked up from [250, 207]) and some more standard ones based on
an aperiodicity condition on the semigroup Sg, on a localisation of the point spectrum condition
or on a quasi-compacteness condition on the semigroup Sg.

e Finally, the proof on the asymptotic stability of the first eigenvector picks up and mixes some
spectral analysis, dynamical system, entropy method and Doblin-Haris coupling arguments. On a
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first step, we mainly rewrite some very classical dynamical system results mixed together with some
arguments coming from the General Relative Entropy method in order to get our mean ergodicity
and ergodicity results which are really general and very little demanding about the trajectories.
We also rewrite the most classical result about the exponential asymptotic stability (without con-
structive constants) of the first eigenfunction proposing a very simple (and self-contained) proof
which does not make any references to abstract notions as Calkin algebra, essential spectrum or
essential growth bound. Last, we adapt the Doblin-Harris approach as qualitatively formulated in
[180, 77, 31] in order to get our quantitative asymptotic stability of the first eigenfunction with
constructive constants.

1.3. Some examples of applications.

The abstract Krein-Rutman theory developed in these notes and alluded above have been cooked
up in order to answer to the first eigenvalue problem for PDEs. We show its efficiency by applying
it to several examples of evolution PDEs. These examples must be thus considered both as a
motivation and an illustration of simultaneously developed abstract theory.

1.3.1. Parabolic equations. In Part 7, we are interested by parabolic equations in divergence form
Of = 0i(ai;0; f) + 0i(Bif) + b;0;f +c¢f in (0,00) x €,

on the function f = f(¢t,x), ¢ > 0, x € Q, with general conditions on the coefficients a;;, 5;, bj, ¢

and in both the case of a bounded domain 2 C R? (and we then complement the equation with

a Dirichlet boundary condition) and the case = R%. The importance of parabolic equations for

Physics, Chemistry, Biology and Economy modeling is well known and we do not discuss it here.
We consider the four following casses.

e For a bounded domain Q C R%, we consider a general elliptic operator in divergence form
Lf = 0i(aijO; f) + bi0if + 0;(Bif) +cf, f€ HHQ),
under the very general assumption about the regularity of the coefficients a;; € L>(Q), a;; > v6;j,
for some v >0, b;,8; € L"(), c € L2(Q), r > d, as well as
c+divB <c¢y and c¢—divb < ¢y,
for some constant ¢y € R.
e In the case when Q = R?, we focus first our analysis by considering

Lf:=Af+b-Vf+ecf, feHY(RY,
with drift b € L2, (R?), potential ¢ € L2 (R?) and a confinement condition that (roughly speaking)

c loc
we impose through the properties ¢ — —oo as |z| — oo and b is dominated by ¢ at the infinity. A
typical case is given by ¢ ~ —|z|7 and b ~ z|z|?~1 as || — oo, with v > max(0, 8 — 1).
e Still in the case when Q = R?, we next consider the similar problem
Lf:=Af+b-Vf+ref, feH (R,

with now ¢ € Cy(R?%), b € Cy(R?) and r € R, a parameter. That hypotheses correspond to a
critical confinement case and we further assume that r > 0 is large enough.

e In the case when Q = R? again, we finally consider the elliptic operator
Lf=Af+b-Vf+cf,
with the drift confinement .
b=VU, U(z)= E(@”, v >0,

and with ¢ dominated by b at the infinity. We further assume ¢ > divb when v € (0,1]. It is
worth emphasizing that this corresponds to a perturbation of the classical Fokker-Planck operator
associated to the potential U.

For each of these operators we are able to complete the existence, geometric and stability program
as stated in Theorem 1.1, with constructive estimates on the first eigentriplet solution and more
or less explicit rate of convergence to the first eigenfunction. Few suitable additional assumptions
on the coefficients and on the regularity of 2 as well as the precise results will be discussed in the
corresponding sections.
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The first eigenvalue problem in the three first situations has been studied in [227, 8th and 9th
courses| which inspired our study and to which we refer for motivations and possible extensions.
Since mainly the existence issue is considered in [227], our results supplement the previous analysis
by tackling the geometry of the principal spectrum and the exponential asymptotic stability of the
first eigenfunction. On the other hand, the fourth situation in the conservative case (¢ = divd) is
very classical and we refer to [25, 26, 172, 246, 207] and the references therein. We believe that
the extension to a non conservative case as considered here is new.

Of course, when the operator £ is the Laplace operator or more generally is a self-adjoint elliptic
operator, there exists a huge literature about the analysis of its spectrum and in particular about its
first eigenvalue problem because among other things thus is related to the ground state problem in
quantum mechanic. We do not have the precise historical reference where similar results to the ones
developed here are established for the first time. We may for instance refer to the contributions
by Poincaré [286] and by Courant and Hilbert [103, 104]. We also refer to the textbook [162,
Thm 8.38] for the quite general and modern proof which mixes minimisation technique, strong
maximum principle and Hilbert structure arguments. It is worth mentioning that in earlier works,
the Krein-Rutman theorem has been proved using elementary ODE method when considering the
Sturm-Liouville operator (in dimension d = 1), see for instance [59]. Still for a self-adjoint elliptic
operator, the Courant-Fischer min-max theorem [146, 103] gives a variational characterization of
eigenvalues through Rayleigh quotient [296] and the Weyl theorem [328, 329, 258, 280] provides
some information about the distribution of the eigenvalues. More specifically, some constructive
lower bound on the best constant in Poincaré inequality and thus on the first eigenvalue may be
obtain through the Faber-Krahn [144, 213] isoperimetric inequality as presented in [85], see also
Polya-Svzego [288, 287] and Payne-Weinberger [276, 277]. Other results on that direction but based
on the Lyapunov condition are obtained in [25, 26] and we also refer to [28] and the references
therein.

On the other hand, in the case of an elliptic operator which is not self-adjoint the first result on
the principal eigenvalue problem seems to be Protter, Weinberger [291, Remark 2] who consider
the case of smooth domain and coefficients (without precise statement about the regularity) and
use minmax formula and the Krein-Rutman Theorem 1.2. This work has been followed by several
papers by Donsker and Varadhan [131, 130] and next by the famous work of Berestycki, Nirenberg,
Varadhan [43] opening a new field of research. These works are mainly based on strong maximum
principle technique, see [292]. We also mention the recent works by Champagnat and Villemonais
[96, 97] where similar results to ours for smooth enough coefficients are established using a variant of
the probabilistic Doblin-Harris argument as already mentioned in Section 1.2.3. We also emphasize
that in the conservative case, the long time behavior problem has been widely studied and some
constructive estimates has been obtained in [27, 40, 194, 309, 310] by the mean of log-Sobolev
inequality, in [25, 26, 299, 207] by the mean of Poincaré inequality and in [172, 207] by the mean
of semigroup arguments.

1.3.2. Transport equation. In Part 8, we are interested in the general transport equation
(1.17) Of+a-Vyf=X[f]l-Kf in (0,00) x0O,

on the function f = f(t,y),t >0,y € O, with O C RP, D > 1, a smooth open connected set. We
assume that a : O — RP, K : © — R, and that the collision operator K is linear and defined by

(Hg)(y) = /O k(y,.) 9(u) dys,

for some kernel k : O x O — R;.. When O # RP, complement the equation with a boundary
condition on the incoming boundary >_ which writes
(v-Hty) = Rolf ;)] + Relrf(t,)](y) on (0,00) x X,
where 4 f are the trace functions on the incoming and out going set ¥+ and
(Rog)(y) = /O ro(y,y+) 9(y=) dy«, (Rsh)(y) = /Z (Y, ys) h(ys) doy,.,
+

for some kernels rp : ¥_ x O = Ry, 7y, : ¥_ x X4 — R4, All the (quite usual) notations will be
explained at the begin of Part 8. It is worth emphasizing here that this framework in particular
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covers the cases of the renewal equation, the growth-fragmentation equation and the kinetic linear
Boltzmann equation on which we will come back below. This framework is motivated by and
generalizes the transport theory developed in [33, 39, 127, 66, 108].

In a first step, we consider a very general vector field a by assuming that it satisfies the usual Sobolev
regularity condition of DiPerna-Lions transport theory [127]. We also make general assumptions
on Rp and Ry, but a very strong and somehow restrictive positivity condition on 2. Such an
equation can be motivated by the abstract transport theory developed [39] as well as non-local
reaction-diffusion models [99, 107, 224] and selection-mutation models in changing environment
[148, 186]. Under these general conditions and additional ones we will detail later, we are able to
solve the existence and geometrical part of the first eigenvalue problem and to prove an ergodicity
result (without rate of convergence) generalizing some similar results obtained in [99, 107, 224, 148].

Because of the strong positivity condition made on %7, the above mentioned result does not
apply to the above mentioned important particular cases of transport equations and they must be
considered separately. We will dedicate the two next parts to the growth-fragmentation equation
and the kinetic linear Boltzmann equation.

A first related model is the age structured (or renewal) equation
atf + ayf = _Kf in (0700) X (0700)7

£(1,0) = (RF(t, )(w) = / () () s

It corresponds to the case D = 1, O = (0,00), a = 1, Ry = 0, X_ = {0} and # = 0 in the
transport equation (1.18). The age structured equation is very popular because it is useful for
describing dynamic of populations [304, 17, 112, 325, 235] and simple neuronal dynamic [265, 275].
The long time behaviour can be analyzed though Laplace transform technique [145, 197], relative
entropy method [247, 241, 178], spectral analysis tool [324, 169, 250, 252, 249] and Doblin approach
[30, 78, 153]. Because £ = 0, our previous result on the first eigenvalue problem does not apply.
We just briefly observe that the method can be applied on the dual equation, thus guaranteeing
the existence of (A1, ¢1), and then that the validity of Doblin’s condition ensures the existence and
uniqueness of the triplet (A1, f1, ¢1), its positivity, and the exponential ergodicity.

1.3.3. Growth-fragmentation equation. In Section 9, we consider the growth-fragmentation equa-
tion

Of=Lf=Gf+Ff
posed on R4, with the growth operator Gf = —0,(af) and the fragmentation operator

FN@ = [ M) ) dy - K@@, K= [ ko) Lay

Since the work of Diekmann, Heijmans and Thieme [122], many authors studied this equation by us-
ing various methods. We can mention, among many others, [281, 241, 136, 79, 46] for studies based
on entropy and functional inequalities, [47, 48, 250, 257] in the framework of positive semigroups,
[52, 53] for a probabilistic approach via the Feynman-Kac formula, or [31, 76, 154, 320] for Harris’s
method. Our aim here is not to treat the most general cases of coefficients, but rather to illustrate
the variety of the possible behaviors of the equation together with the efficiency and flexibility
of the method developed in the first sections. We thus focus on a specific case of fragmentation
operator, namely the equal mitosis kernel

k(2. y) = 2K (2)6,a(dy) = AK (2)02, (dx),
so that the equation writes
O f(t,x) = =0, (a(x)f(t, x)) — K(x)f(t,x) + 4K (2x) f (¢, 2x).

In particular, we are interested in the case when the growth rate a is such that a(2z) = 2a(x) for
all size z, for which the boundary spectrum is not trivial and the solutions then exhibit persistent
oscillations in time. When this condition is not satisfied, we recover the more usual exponential
convergence to the first eigenfunction.

We also aim at studying the variant of this equation where a variability v is introduced as a growth
speed parameter which is inherent to any individual, in the spirit of [247, 300] where such a variable
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is added in the renewal equation. More precisely we consider the growth-fragmentation equation
with variability v € [1,2] and the equal mitosis division kernel which reads

2
Of(t,x,v) = —v0y (alz) f(t,z,v)) — K(2)f(t, z,v) + 4/1 K(Q2z)p(v,vs) f(t, 22, v.)dv,.

This model was introduced in [134], and then also considered in [273]. We prove that, unlike the
case without variability, it exhibits exponential relaxation to the first eigenfunction even when
a(2z) = 2a(x) for all z.

1.3.4. Kinetic linear Boltzmann equation. In Part 10, we are interested in another important sub-
class of transport equations, namely in the kinetic linear Boltzmann equation

(1.18) Ouf +v-Vof — Vod(x) Vof = #[f] — Kf, in (0,00)x O

on the function f = f(t,z,v),t >0, (z,0) €O =Q xV, Q Cc R? V Cc R? d > 1. We assume that
K : O — Ry, that £ is a linear integral operator defined by

Hg] = /Rd rk(x,v,v.) g(vi) duy,

for some real number r» > 0 and some kernel k£ : Q x V x V — R, and that ® is a space confining
potential ® : Q — R. We restrict our analysis to the case V := R% and € is either the torus
Q := T? (and we assume ® = 0) or it is the whole space  := R? (and we assume that ® is a
power function). This equation is vey famous because it provide a model for neutron transport
theory in nuclear reactors [86, 41] and for cells migration in a chemotactic gradient [7]. We refer to
[36, 165, 35, 34, 253] for a mathematical analysis of the neutron transport equation and its diffusive
approximation and to [193, 94] for the same concerning kinetic models for chemotaxis. Because the
linear integral operator J#” is local in the position variable, this problem does not fall in the class of
transport equation covered by Krein-Rutman theorem established in Part 8 and a specific analysis
is necessary. Under suitable positivity and regularity conditions on the kernel, we are able to
complete the existence, geometric and stability program as stated in Theorem 1.1, with constructive
estimates in the torus case, generalizing and improving previous works [55, 317, 318, 168, 231, 254]
where spectral analysis arguments are used and [95] based on a probability approach. It is worth
emphasizing that these works are concerning the same equation in a bounded domain with no-flow
boundary condition. Most of the literature is about the conservative case (when Ay = 0 and ¢ = 1)
which has been tackled by the mean of spectral analysis method [49, 255, 256], of entropy method
[120, 50], of geometric control method [182, 123], by hypocoercivity method [187, 129, 141] or by
Harris coupling approach [75].

1.3.5. Kinetic Fokker-Planck equation. In Part 11, we consider a kinetic Fokker-Planck equation
(1.19) Ohf+uv-Vyf=Ayf+b-Vof+ecf in (0,00) x0O,
on the function f = f(t,z,v), t > 0, (z,v) € O = Q x R4, Q C R? is a bounded domain,

b: O — R?is a given vector field and ¢ : O — R is a given function. In contrast with the previous
part, collisions are typically modeled by a Fokker-Planck operator A, f 4 div, (vf) which takes into
account a thermal bath of (Gaussian) white-noise, see Kolmogorov [210], instead of the integral
collisional operator #[f] — K f in the linear Boltzmann equation (1.18). The above equation is

complemented with the Maxwell boundary condition

V-f = a(x)Dav4 f + B(@) a4 f,
where v4 f stand for the outgoing and incoming trace functions, & and 3 are accommodation
coefficients, D, is a boundary diffusive operator and I, is the specular reflection operator. All
these classical objects will be precisely defined in Part 11. We refer to [196, 268, 117, 62, 84,
63, 244, 319, 331] for a mathematical analysis of the kinetic Fokker-Planck equation or related
problems. Under suitable boundedness and regularity conditions on the coefficients we are able
to complete the existence, geometric and stability (without constructive estimates ) program as
stated in Theorem 1.1, generalizing the previous works [223, 175] (partially based on [297, 192, 222])
where similar results are established for the same kind of equation in a bounded domain with no-
flow boundary condition. From a technical point of view, our proof is based on trace results as
those developed in [231], boundary estimates picked up from [16, 231, 51] and regularity estimates
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recently obtained in [189, 163, 174]. We also emphasize that in the conservative case, many works
have been done related to hypocoercivity and constructive rate of convergence to the steady state
in [121, 177, 138, 188, 185, 319] or more recently in [129, 246, 82, 64, 5].

1.3.6. Mutation-selection equation. Last, in Section 12, we consider the mutation-selection evolu-
tion equation

Wf=Lf=Jxf-W(x)f, t>0,2cR%

This nonlocal-diffusion equation appears for instance in the modeling of genetic variability in evo-
lutionary biology. In this context, f(¢,x) represents the density of a population, at time ¢, of
phenotypical trait 2 on the multi-dimensional phenotypic trait space R?. The rate of change in f
per generation is considered given by the convolution term with kernel J which models the muta-
tions, and the fitness function —W which stands for the difference between birth and death. This
model has been widely used in the literature; we refer, for example, to the works of Kimura [208],
Lande [221], Fleming [147] and Biirger [72] as examples of biological applications.

On the mathematical analysis point of view, the Krein-Rutman problem was investigated by Biirger
in [71, 73] and more recently by Coville and co-authors [105, 224], as well as by Alfaro and co-authors
in [6] where a quantified spectral gap is obtained for symmetric kernels J. A main difference of this
equation compared to more classical “local” diffusion models, where the convolution is replaced by
a Laplacian, is that the first eigenvector f; might be a measure with atoms [71, 73, 106]. Some
conditions are then needed relating W and J for guaranteeing that the first eigenvector is an
eigenfunction [6, 71, 224].

All the above mentioned results deal with kernels J which are densities, namely absolutely contin-
uous with respect to the Lebesgue measure. In our study, we allow the convolution kernel to have
a singular part. In Section 12.1 we extend the results of the literature to the case of a small enough
singular part. In Section 12.2 we consider a specific kernel which is purely singular, supported by
the canonical axes of R?, and we extend the recent result of Velleret [316] to more general confining
functions W.

1.4. Organization of the paper. The paper is organized in two main parts: the sections 2 to 6
are dedicated to the development of the abstract results about the Krein-Rutman problem, and the
last sections 7 to 12 aim at illustrating the applicability of these results to various linear positivity
preserving PDEs.

More precisely, with start with the existence part of the Krein-Rutman theorem, namely the con-
clusion (S1). This question is addressed through a stationary approach in Section 2 and through
a dynamical approach in Section 3. Section 4 is devoted to the stronger conclusion of uniqueness
of the first eigentriplet in the sense of (S2), as well as to the mean ergodic property (E1). In
Section 5, we are interested in the geometry of the boundary point spectrum, deriving conditions
that guarantee (S31), (S32) or (S33), as well as in the ergodic properties (E2) and (E3). Fi-
nally, in Section 6, we tackle the problem of quantifying the conclusions (S33) and (E3) by using
constructive contraction arguments of the Doeblin-Harris type.

The purpose of the last six sections is to apply the theory developed in the first sections to the
examples of PDEs presented in Section 1.3: some parabolic equations, transport equations with
integral terms and in particular growth-fragmentation and kinetic equations, kinetic Fokker-Planck
equations, and purely integral mutation-selection equations.

2. EXISTENCE THROUGH A STATIONARY PROBLEM APPROACH

In this part we provide a general existence result for the first eigentriplet problem by considering
a perturbation by stationary problems and using a stability argument. We start by presenting the
basic material about the Banach lattice framework and conclude with a comparison with several
previous works.
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2.1. The Banach lattice framework. We start recalling the Banach lattice framework by stating
(most of the time without proof) some well-known facts that one can find in reference monographs
as [65, Chapitre II: Espaces de Riesz] or [303, 13, 29, 37].

Banach lattice. A real Banach lattice is a real Banach space (X || - ||) endowed with a partial

order denoted by > (or <) such that the following holds:

(1) The set X4 := {f € X; f > 0} is a nonempty convex cone (compatibility of the order with

the vector space structure).

(2) For any f € X, there exist some unique positive part f1 € X and negative part f_ € X, such

that f = f; — f— which are minimal: f =g —h, g,h > 0 imply g > f4 and h > f_ (generation

and properness of the positive cone). We set |f| := f1 + f— € X the absolute value of f € X.

(3) For any f,g € X, |f] < |g| implies || f|| < ||g|l (compatibility of norm and order structures).

Under these assumptions, one can show that

- The convex cone X is closed, pointed X, N (—X1) = {0} and generating X = X; — X .

- The lattice operations f — fy, f— f_ and f — |f| are continuous (1-Lipschitz).

- The order intervals {h € X; g < h < f} are closed and bounded for any given f,g € X, f > g.

It is worth emphasizing that one commonly defines the supremum and infimum operations by
fveg=g9+(f-9+=fg [frg=9-(-f+=1fy,

for any f,g € X, and these operations can be used as an alternative way for defining a Banach

lattice (the lattice structure referees indeed to these supremum and infimum operations). We may
note the following elementary formulas

(2.1) fe nf-=0, I =1A1 VfeX.
We write f L g when |f| A |g| = 0 or equivalently when |f| + |g| = |f] V |g|]- In that case, we have
lfI+ 19l = 1f +gl.
Dual Banach lattice. On the dual space X’, we may naturally associate a dual order > (or <)
by writing for ¢ € X’
>0 (orpe X)) iff VfieXy (pf)20.

For ¢ € X', there exist some unique ¢+ € X/ such that ¢ = ¢ — ¢_ which also satisfy (and are
defined by)

VieXy, (px,f)= sup (£p,g).

0<g<f
One can show that the above conditions (1), (2) and (3) of a Banach lattice are fulfilled, and thus
X' = (X',]| - [[xs,>) is a Banach lattice. We observe that for any f € X, there exists f* € X/
such that
(2.2) =112 = 111
as a classical corollary of the Hahn-Banach dominated extension theorem. Moreover, for any f € X,
(2.3) f>0 iff (p,f)>0, VpeX],

as an immediate application of the Hahn-Banach separation theorem. In other words, the restric-
tion to X of the dual order in X" associated to the order defined (by duality) on X’ is nothing
but the initial order, in particular the positive cone X', is weakly  closed.

The functional framework : The duality bracket. We consider X,Y such that X = Y’
with Y separable or Y = X’. We emphasize on the facts that

(2.4) for fe X: feX it (fip) >0, Vo ey,

(2.5) forpeY: peY iff (fip) >0, VfeXy,

which are immediate consequences of (2.3) and of the definition of the dual order.

Examples. For the space Cy(FE), the order is defined by f > 0 iff f(x) > 0 for any = € E. For
a space LP(E, &, u), 1 < p < oo, the order is defined by f > 0 iff f(z) > 0 for p-a.e. © € E. For

the space M'(E), the order is defined by f > 0 iff in the Hahn decomposition f = f, — f_, there
holds f_ = 0, or equivalently, by duality: f > 0iff (f, ) > 0 for any ¢ € Co(E), ¢ > 0.
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Because confinement will play a major role in our analysis, we will use some weighted version of
the above space associated to a weight (continuous or Borel measurable) function m : E — (0, c0)
that we introduce now. We recall that E always denotes a o-compact metric space, and we write
E = UFER, with Er C Eg41, Er compact. In that context, we write x,, — oo if for any R > 1
there exists ng such that x,, ¢ Er for any n > ng.

e We denote by Cy, o(E) the space
Cmo(E):={p e C(E); |p()|/m(z) - 0asz— oo}
endowed with the norm |l¢|c,. , == |l¢/m|c,-

e We denote by M} (E) := (Cp0(E)) the associated space of Radon measures.
e We denote by L?,(E) = L? (E, &, i) the space

L3 (E) == {f € Lige(E); I fllzs, := lfmllLe < co}.
It is worth emphasizing that L (E, &, u) = LP(E, &, mPu) when p € [1, 00).
Positive operator. We denote by %(X) the set of linear and bounded operators on X. We also
denote by J#(X) the subspace of compact operators. We say that a bounded operator A € Z(X)
is positive, we write A > 0, if

Afe X4, VfeX,.

We will also sometimes abuse notations by writing A € (X, ) for meaning that A > 0. For a
positive operator A € (X)), we have

(2.6) |AfI<Alfl, VfeX, and [A]= sup [Af],
0<feBx

where Bx is the unit closed ball. More generally, we have

(2.7) (Af) v (Ag) < A(fvyg), VYfgeX

For A € #(X) and Y in duality with X, we uniquely define A* € Z(Y) by
(Af.0) = (J,A"9), VfeX, peY.

For A € #(X) and A* € Z(Y), there holds

(2.8) A>0 iff A*>0.

Let us present the elementary and classical but instructive proof of the direct implication, the
reciprocal sense being similar. We assume thus A > 0. We take ¢ € Y, and we define ¢ := A*p.
We then take f € X, and we define g := Af, so that g > 0 by assumption. We compute

(W, f) = (A%, f) = (p, Af) = (p,9) 2 0.
Since f € X is arbitrary, we get ©» € Y, and thus A* > 0.

Semigroup, generator and spectrum. In this work, a semigroup S = S(¢) = (S;) on X
will always denote a semigroup of linear and bounded operators on a Banach lattice X which
trajectories are

- either strongly continuous, namely, the mapping ¢ — S; f is continuous for the norm of X for any
fixed f € X;

- either weakly * continuous, namely X = Y’ for some separable Banach lattice Y such that
Vie X, Vo eV, t— (Sf, ¢)xy is continuous and V¢ > 0, V¢ € Y, f — (Sif,d)x,y is
continuous. That is in particular the case when there exists a strongly continuous semigroup P on
Y such that Sy = P} for any t > 0.

For a semigroup S, we denote by L its generator and D(L) the associated domain, and thus we
sometimes write S = S;. We also denote the iterated domain defined recursively by D(LF) :=
{f € D(LkY), Lf € D(LF1)} for any k > 2 and D(L>) :=(,~; D(£¥). We recall that D(L) is
dense in X and the graph of £ is closed in X x X. We define the growth bound

1
(2.9) w=w(S) = 1imsupglog|\5(t)|| € RU{—o0},
t—o0

so that
(2.10) Vo' >w, IM>1, [[SO)|lax) < Me't, V>0,
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and w is the infimum of w’ € R such that (2.10) holds. We say that .S is a semigroup of contractions
when S satisfies (2.10) with M =1 and w’ = 0.

The resolvent set p(L£) is the set of z € C such that if z— £ : D(£) — X is bijective and its inverse
belongs to #(X). We define the resolvent operator by

(2.11) R(2)=Re(z):=(2— L)', VzepL)

and the spectrum by 2(L£) := C\p(L). Denoting the half complex plane of abscissa o € R by
(2.12) A, = {z € C; Re(z) > a},

we have p(£) D A, and for any z € A, there holds

(2.13) R(z) = /O T S(e - dt.

Positive semigroup. We say that a semigroup (S;) on a Banach lattice X is positive if
S >0, Vt>0.

Lemma 2.1. For a semigroup S on a Banach lattice X, there is equivalence between

(a) S is positive;

(b) the associate resolvent operator R is positive: R(k) > 0 for some (and thus any) k > w.

It is immediate from Hille’s identity (2.13) that (a) implies (b). The reciprocal implication comes

from the relation S(t) = lim,_, o [n/tR(n/t)]" at the foundation of the Hille-Yosida theory, see for
instance [278, Theorem 1.8.3].

2.2. Existence part of the Krein-Rutman theorem. From now-on in this section, we consider
a Banach lattice X and an operator £ with dense domain and closed graph. Our goal is mainly to
prove the existence part for the primal problem in the Krein-Rutman theorem, namely

(214) dA\ €R, Hfl S X+\{0}, Efl = )\1f1.
We will also discuss the existence part for the dual problem at the end of the section.

We first assume
(H1) 351 € R such that A\ — £ is invertible and (A — £)~! : X — X for any A > k1.

We then set

(2.15) T :={k € R; A\ — L is invertible, (A —£)™* >0 for any \ > &},
which is a non empty and non upper bounded interval due to (H1). We finally set
(2.16) A :=1inf7Z € [—o0, K1].

For the sake of completeness, we recall now some general facts about Z and A\; when L is the
generator of a positive semigroup. We also refer to [139, Section 1.b, Chapter VI] or [37, Chapter 12]
and the references therein for more details.

Lemma 2.2. When L is the generator of a positive semigroup S = S, then

(1) (H1) automatically holds with any k1 > w(S), so that A1 < w(S);

(ii) Z(£) N Ay, =0 and the representation formula (2.13) holds true for any z € Ay, ;
(iii) it may happen that A\; = —oo.

The important property (b) is probably due to [171].

Proof of Lemma 2.2. The claim (i) is an immediate consequence of the representation formula
(2.13) for any k1 > w(S) and the positivity of S(t) for any ¢ > 0 (that is nothing but Lemma 2.1).

We prove (ii). Take A > A;. From the classical identity
t
S(t)e ™ —T= (L~ )\)/ S(s)e ™ ds, Vt>0,
0
and the positivity property of S, we have

0< V()= / CS(s)e 2 ds = R(A) - RIS < RN,
0
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for any ¢ > 0. From that estimate, we get ||V (¢)|| < ||[R(A)||. For any z € Ay, an integration by
part yields

t t
/ e *S(s)ds = e CTVV (1) + (2 — )\)/ e~ NV () ds.
0 0
The estimate on V' makes possible to pass to the limit ¢ — co in the above identity, and we deduce
U(z) = / e *°S(s)ds = (z — /\)/ e~V (5) ds € B(X).
0 0

In that situation, one classically knows that z € p(£) and (z — £)~! = U(z). We have thus
established X(£) N Ay = 0 and we conclude the proof of (ii) by observing that (2.13) is then
nothing but the above formula.

(iii) On LP(0,1), 1 < p < oo, the translation semigroup defined for @ > 0 by

St)f(x) = flx+at)lzrai<1, YE>0,z€(0,1),
is strongly continuous and positive. Since S(t) = 0 for any ¢ > 1/a, we have w(S) = —oo, and thus
A1 = —oo because of (i). O
For further discussion, we give some probably classical results about the condition (H1) and some
equivalent definitions of the set Z.

Lemma 2.3. The operator L satisfies (H1) if and only if the operator L* satisfies (H1). Fur-
thermore, under condition (H1) for L (or L*), we have

(2.17) I=T, Vi=234,

with
I, = {keR; X\— L is invertible for any X\ > K},
I3 = {k€R; \—L* is invertible, (\— L")t >0 for any \ >k},
Iy = {keR; \—L" is invertible for any X > k}.

Proof of Lemma 2.3. The equivalence of condition (H1) for the operators £ and £* is an immediate
consequence of the identity p(L£) = p(L*) (see for instance [205, Theorem II1.6.22]) and the fact
that (A —£)71: X4 — Xy iff (A —£*)71: Y, — Y, as recalled in (2.8). As a consequence, we
have T = 73 and 7y = 1.

We obviously have Zo C Z and let us show the reverse inclusion. We denote R = R,. On the one
hand, for any 29 € p(£) and any z € C, |2 — 29| < [|R(20)||~*, we know that

o0

(2.18) R(z) = R(20) > (20 — 2)*R(20)",
k=0

which gives a proof of the fact that resolvent set p(£) is open and that R is an holomorphic function
on p(£). Formula (2.18) also ensures that for Ao, A € R, the condition R(\g) > 0 implies that
R(A) > 0 provided that Ag — A > 0 is small enough and thus R(\) > 0 for any A in the non
upper bounded connected component of the set p(£) N R thanks to a continuation argument. In
particular, Z is an open set and Z = Zs. O

We next assume
(H2) J ko € R such that inf Z > k.

We point out several conditions under which (H2) is satisfied.

Lemma 2.4. Condition (H2) holds under one of the four following conditions
(1) ko € R, T € YL \{0} such that L*y > Kotho, which means

VieDL)NXy, (do,(ko—L)f) <0;
(ii) Iko € R, I fo € X \{0} such that Lfy > Ko fo, which means

Vo e D(LY)NYy, (ko — L), fo) < 0;
(iii) L* is the generator of a positive semigroup S* = (S}) and

ko €R, Fehy € Y1\{0}, 3T >0 such that Siabg > T )y;
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(iv) L is the generator of a positive semigroup S = (St) and
Iro €R, 3 fo € X \{0}, 3T >0 such that Srfo > e™" fo.

Proof of Lemma 2.4. In the three cases, we claim that ko ¢ Z and thus inf Z > ko. We argue by
contradiction, assuming \; < kg, so that kg € Z = Z; for any ¢ = 2, 3, 4.

We assume (i). For any g € X, we define f := (ko — £) 'g € Xy and we compute

0 < (¢0,9) = (Yo, (ko — L) f) <0.

That implies (g, g) = 0 for any g > 0, so that 19 = 0 and a contradiction.
We assume (ii). For any ¢ € Y., we define ¢ := (kg — L*) "¢ € Y} and we compute

0 < (&, fo) = ((ko — L)Y, fo) < 0.
That implies (£, fo) = 0 for any £ > 0, so that fy = 0 and a contradiction.
We assume first that (iii) holds for any T > 0. For any f € D(£) N X\{0}, we compute

(o, (70 — £)f) = =5 (o, 45,f) <0,

which is precisely (i). We assume now that (iii) holds. If kg € Z, for any g € X, we may define
f=(ko—L)"tg € X, ND(L) and from condition (iii), we have

0 < (e ™" Syrf — foabo) = <(/3 — Ko) /O"T e S, f dt71/)0>,

for any n € N. From the very definition of f, we also have

nT nT nT
- HO)/ e~ oG, f dt = / e~ S, (L — ro) f dit = _/ =0 8,q dt < 0.
0 0 0

The two pieces of information together imply

</O"T e "tS,g dt,w0> =0.

Passing to the limit n — oo thanks to Lemma 2.2-(ii) and using (2.11)-(2.13), we obtain

0= ( [ Sugdeiin) = () = (g (50~ £) ).

That implies (ko — £*) 149 = 0 since g is arbitrary, what is not possible since 1)y # 0. The proof
of (H2) under assumption (iv) is similar and thus skipped. O

Remark 2.5. (1) In practice, we may build fo or 1o through an explicit computation or use a
barrier fonction and strong mazimum principle techniques. We refer to Lemma 4.10 for a possible
general result in that direction.

(2) When (ii) holds with fo € X4 \{0} N D(L) and L is the generator of a positive semigroup S,
then (iv) holds for any T > 0. In that case, we may indeed compute

T
Sre T fo — fo= / Sie™ " (L — ko) fods > 0.
0

Lemma 2.6. Under conditions (H1) and (H2), there hold

(219) A1 € [Ii(),lil]
and
(2.20) I AL 3fn € DL N Xy, €ni=Aafn—Lfn >0, |full =1, |len] — 0.

Proof of Lemma 2.6. We obviously have \; < k; from assumption (H1) and A\; > ¢ by assumption
(H2), so that (2.19) is proved.

Consider now a sequence (A, )p>2 such that A, N\, A1 as n — co. We eventually have [|R(A,)| — oo
as n — oo. On the contrary, we would have [|R(\,/)|| < M for some subsequence A, \, A1 and
some constant M > 0. Because of (2.18) this implies that (A,s — &, A,/) C Z for any n’ and some
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e > 0, and this is in contradiction with the definition of A;. The blow up ||R(A,)| — oo means
that

Ifn€D(L), Ign € X, R(An)gn = fn, [Ifall = o0, [lgnll < 1.
By splitting g, = g — g,,, we get

with
lgEl <1 and  (|R(An)git|l = oo or [[R(An)gy || = 00).
Changing notations, we have thus
3fn>0,39, 20, R(An)gn = fn, Ifnll = 00, llgnll < 1.
We get (220) by deﬁning fn = fn/an” and g, = gn/”fn” U

We learn a very similar proof in [227], from which our own proof is adapted. The same type of
arguments can also be found in [37, proof of Theorem 12.15].

We finally assume that

(H3) for any sequence (f,) of X such that (2.20) holds, there exist f; € X, \{0} and a subse-
quence (f,/) such that f,, — f; for the weak convergence or the weak * convergence.

We discuss several situations in which assumption (H3) holds. We start with a very classical
framework due to Voigt [321], which is however quite restrictive since it is based on a strong
compactness property assumed at the level of the associated semigroup of operators.

Lemma 2.7. We assume that L generates a positive semigroup S, that (H2) holds for a constant
ko € R and that there exists T > 0 such that the splitting

(2.21) St =Vr+ Kr,

holds with ||V ||z(x) < e, k < ko, and Kp € ¢ (X). Then condition (H3) holds for the primal
and the dual problems.

Proof of Lemma 2.7. The condition (H1) holds because of Lemma 2.2-(i). Let us then consider
three sequences (A, ), (f») and (e,,) satisfying (2.20). Integrating along the rescaled flow, this yields

T
eiA"TSTfn - fn = / eiAntSt(‘C - /\”)f”dt
0

T
= —/ e MtS,e, dt =: &,
0

which also reads
an + Kfn - e)\ann - e)\nTén-
Since e’ T > e0T > T the operator e*»? — V7 is invertible with inverse Q(\,) := (eT —Vp) ™1
uniformly bounded and converging in %(X) to Q(\) = (eT — V)=, We thus have
fn = Wp + Vp, Wp:'= Q(/\n)KTfn; Up = _Q()\n)e)\nTgn;

with ||v,||x — 0 and (w,) relatively compact in X, since there exist a subsequence (fy,) and
g € X such that Krf,, — g and next

wn, = Q)9 = (Q(An,) = Q) Erfu, + QM) (Kr fu, — g) = 0.
We deduce that fnk — f1 strongly in X. Because of the positivity and normalized properties of
fn, we get f1 € X1, || f1llx = 1, and we conclude that (H3) holds for the primal problem
Observing that the dual semigroup S* satisfies S5 = Vi + K7 with [|[V}| ) < T and K} €
H(Y), the same proof implies that (H3) holds for the dual problem. O

In the six next lemmas, we will assume that (H1)-(H2) holds associated to some constants x; € R,
ko < k1, and we always make the following splitting structure hypothesis
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(HS1) there exists a splitting £ = A + B such that B — « is invertible for any a > k¢ and
N-1
(2.22) V(a) := Z (Rp(@)A) ' Rp(a), Wl(a):= (Rs(a)A)V,
i=0

are bounded in Z(X) uniformly with respect to a > k¢ and for some N > 1, where we recall that

Rp(a) := (o — B)~L.

We first present a result also based on a strong compactness property which is assumed to hold
however at the level of the resolvent operator. We will be able to use that result in most of the
applications.

Lemma 2.8. (1) We assume (H1)-(H2)-(HS1) and there exists N > 1 such that
(2.23) W(a) is strongly compact locally uniformly on o > ko,

in the sense that if a, — a, ay, > Ko, and (gn) is a bounded sequence in X, then there exist f € X
and a subsequence (gn,) such that W(an, )gn, — f strongly in X. Then condition (H3) holds.

(2) We assume (H1)-(H2) and (HS1) where Rp(«) is bounded uniformly in o > ko, A € B(X)
and W(a) € (X)) for any fized o > ko and some N > 1. Then condition (H3) holds both for

the primal and the dual problems.

Remark 2.9. (1) The property (2.23) holds if we assume W(«) : X — Xy is bounded uniformly
ma > Kk and Xy C X with strong compact embedding.

(2) The property (2.23) holds if we assume (H1)-(H2)-(HS1) together with the facts that Rp(«)
and Rp(a)A are bounded uniformly in o > ko and W(a) € # (X) for any fized o > kg. Consider
indeed oy, — «, > Ko, and (gn) a bounded sequence in X. On the one hand, there exist f € X
and a subsequence (gn, ) such that W(a)gn, — [ strongly in X, because W(a) € # (X). On the
other hand, using the resolvent identity Rg(\) — Rp(p) = (u — NRe(AN)Re(p), we have

N
W(a) = W(an) = (an —a) Y (Rs(@) AN Rp(a)(Ri(an)A) — 0,

j=1
so that W(am,,)gn,, — [ strongly in X, and (2.23) holds true.

Proof of Lemma 2.8. We first assume (1). Taking advantage of the splitting structure (HS1), we
write equation (2.20) as

(2.24) A = B) fr = Afy + 24,
or equivalently

fr=Ri(An)Afn + Rie(An)en.
Iterating that last identity and using the notations (2.22), we get

(225) fn = wp + Un, Wy 1= W()\n)fna Up = V(An)sn-

We observe that (w,) is strongly relatively compact from (2.23) and || f,||x = 1, so that there exist
a subsequence (wy, ) and f1 € X such that w,, — fi strongly in X. Since v, — 0 strongly in X,
we deduce that f,, — f1 strongly in X. We conclude that condition (H3) holds as in the proof of
Lemma 2.7.

We next assume (2). As observed in Remark 2.9-(2), the property (2.23) holds and thus also the
condition (H3) for the primal problem. We claim that the same locally uniform strong compactness
property (2.23) holds for the dual problem at order N + 1 and thus condition (H3) holds for the
dual problem. We may indeed use Remark 2.9-(2) since then Rp-(a) and A*Rp- () are bounded
uniformly in o > kg and

(A*Rp- ()N = A*W(a)* Rp-(a) € (YY), Va> ko,

as a product of two bounded operator with a compact operator. O



ON THE KREIN-RUTMAN THEOREM AND BEYOND 23

Remark 2.10. Instead of (HS1) in Lemma 2.8, one can assume that there exists a splitling
L=A4+B and N > 1 such that B — « is invertible for any a > kg and

N-1

Ri(a) = (a—B)™", V(a):= ) (ARp(a))’, W(a):= (ARp(a))"

i=0
are respectively bounded in B(X) uniformly with respect to o > ko and strongly compact locally
uniformly on a > kg. Starting indeed again from (2.24) and defining hy == (An — B) fn, we may
write

hn = ARB(Ap)hn, + €n.
Observing that ||hy||x > ”RB(/\n)”,_@l(X) > ¢ > 0 by assumption, we deduce that hy = hn /|| ha||x
satisfies

B = W + U, W = W), O = V(An)én,

with |[hn|| = 1 and é, := e,/||hn|lx — 0. Similarly as in the proof of Lemma 2.8, we conclude to
the existence of subsequence (hy, ) and hq € X1\ {0} such that h,, — hq strongly in X. Defining
f1:=Rp(M)h1/||Re(A1)h1]], we have again fn, — f1 strongly in X and next that condition (H3)
holds.

As we see now, strong compactness is not really necessary.

Lemma 2.11. We assume (H1)-(H2)-(HS1) and there exists N > 1 such that
W(a): X — X1 C X s positive and uniformly bounded in « > kg

and, denoting Xy := X, we assume that for any Ry > Rg > 0 the set

(2.26) C=Cro,r, =19 € X4; ll9llxo = Ro, llgllay < R}

is relatively sequentially compact for the weak topology o(X,Y) and 0 ¢ C, where the closure is
taken in the sense of the weak topology o(X,Y). Then condition (H3) holds.

Remark 2.12. When X1 C Xy with strongly compact embedding the above set C clearly satisfies
the required conditions. In particular, Lemma 2.11 generalizes the result stated in Remark 2.9-(1).

Proof of Lemma 2.11. We go back to the proof of Lemma 2.8 and we start with (2.25). We
recall that || f,]|x, = 1 and ||v,]|x, — 0 from (2.20) and that w, > 0 because W(\,,) is a positive
operator. We also observe that

walla, < Cwll fullxe = Cw

and
wnllag =1 — llvallx, > 1/2

for any n > n., with n, > 1 large enough, so that w, € C := Cy/3 ¢,, for any n > n.. By the
compactness properties of C, there exist a subsequence (wy, ) and fi € X;\{0} such that w,, — fi
weakly o(X,Y’). Since v, — 0 strongly in X, we deduce that fnk — f1 weakly 0(X,Y) and that
ends the proof of (H3). O

We present a typical concrete application of the preceding result.

Lemma 2.13. We assume X = LP(E,&, 1), p € [1,00), (H1)-(H2)-(HS1) with A > 0, Rg(a) >
0 for a > kg, and there exists N > 1 such that

(2.27) W(a): X — Xy s uniformly bounded in o > Ko,

for a subspace X1 C X such that {gF; g > 0, ||gllay < Ri1} is a weakly compact subset of L'(E)
for any Ry > 0. Then condition (H3) holds.

Remark 2.14. (1) A typical example in the above statement is Xy := LYN LE, for some exponent
q > p and some weight function m : E — [1,00) such that m(z) — oo as © — oo.

(2) The same result holds under the condition that if (un) is a nonnegative and bounded sequence
in LP then the nonnegative sequence w, = W(\,)u, is such that wr is weakly compact in L'.
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Proof of Lemma 2.13. For 0 < Ry < Ry, we define C by (2.26) with Xp := LP. From the weak
compactness property made on X7, we observe that

a(R) :=sup [|g1E;||Lr — 0, as R — oo,
geC

and
ﬁ(M) = SupHglgzMﬂLp — 0, as M — oo.
geC

For g € C, we may then write

Ro < lglle < [lg A M1gg|re + |g1eg |le + [l91g>n| e

and thus
MR g1, |2 > [lg A M1gg|oe > Ro — a(R) — B(M) > Ro/2,
for some R, M > 0 large enough. On the one hand, from the reflexivity of LP or the Dunford-Pettis
theorem, the set C is relatively sequentially compact for the weak topology o (LP, Lp/). On the other
hand, because 1g, € L' the last estimate implies that any element g* € C, where the closure is
taken in the sense of the weak topology o(LP, Lp/), satisfies
<g*7 1ER> = Hg*]'ERHLl > Mpil(R0/2)p >0,

and in particular 0 ¢ C. We deduce that (H3) holds as a consequence of Lemma 2.11. ]
We present a second kind of result where some weak compactness is required.
Lemma 2.15. We assume (H1)-(H2)-(HS1) and there exists N > 1 such that
(2.28) W(a): Xo = X C Xy s uniformly bounded in o > kg

and, denoting Xy := X, the set C defined by (2.26) satisfies the same properties as the ones stated
in Lemma 2.11. Then condition (H3) holds.

Remark 2.16. If we replace the norm || - ||x, by a seminorm || f|lx, := {|f], o), vo € Yy, and we
define C accordingly by (2.26), and if we assume that X =Y’ with Y separable, then C satisfies
the same compactness properties as required in the statement of Lemma 2.11. If we further assume
that (2.28) holds where Xy is endowed with the above seminorm, we may repeat the proof below in
order to obtain that (H3) holds in that situation (see also Lemma 2.19 and its proof for a slightly
generalized situation).

Proof of Lemma 2.15. We start here again with (2.25). We have

1= || fullzy < Cwll fullzo + [lvnllx,
and thus
I fallg = C (1= flonlla) = (2Cw) ™"
for any n > n,, with n, > 1 large enough, so that fn € C := Cicyy)-1,1, for n > n,. By the
compactness properties of C, there exist a subsequence (fy, ) and fi € X \{0} such that f, — f1
weakly o(X,Y). O

We present a strong variant of Lemma 2.13 which is also a concrete consequence of Lemma 2.11
and Lemma 2.15.

Corollary 2.17. We assume (H1)-(H2)-(HS1) in X = LF9 | 1 < py < oo, together with the facts
that R () is positive and bounded in B(LE ) and B(LE} ) uniformly in o > kg, 0 < A € B(LE9 )
and (Rg(a)A)N is bounded in ZB(LES , LP ) uniformly in a > ko for some N > 1, with p1 > po

and my such that mo/my € LV, 1/9 := 1/po—1/p1. Then condition (H3) holds for both the primal
and the dual problems.

Proof of Corollary 2.17. On the one hand, we have
Ri(@) + -+ (Re(a) AN IRz(a) is bounded in (X)) uniformly in a > ko,
W(a) = (Rp(a)A)Y is bounded in Z(X, X;) uniformly in o > ko,

with Xy := L2} C X and thus {(gmo)P; g >0, ||g|lx, < R1} is a weakly compact subset of L*(E)
for any R; > 0. Condition (H3) holds for the direct problem thanks to Lemma 2.13.
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On the other hand, we set Y := X' = L%

vo?
Rp-(a) + -+ (Rg (a)A*)N "R+ (a) is bounded in Z(Y") uniformly in a > k.

We next observe that
(A*Rp- ()N H = A*W(a)*Rp-(a) is bounded in #(Yy,Y) uniformly in a > ko,
with Yo := LI}, q1 1= p, v1 = mfl. Because {(gv1)?; g >0, ||g]ly < R1} is a weakly compact
subset of L1(E) for any R; > 0, we have from the proof of Lemma 2.13 that the set C defined by
(2.26) for the norms of )y and Y := Y satisfies the weak compactness property required in the
statement of Lemma 2.11. We may thus apply Lemma 2.15 and we deduce that condition (H3)
holds for the dual problem. |

Another concrete consequence of Lemma 2.11 and Lemma 2.15 is the following.

qo := Py, Vo i:= Mg !, and we first observe that

Lemma 2.18. We assume X = M%“ (E) for a continuous weight functionm; on E, i =0 ori =1,
(H1)-(H2)-(HS1) and there exists N > 1 such that (Rg(e) AN : M}, (E) — My, (E) uniformly
in a > kKo for another continuous weight function mi_; on E such that mi(x)/mo(z) — oo as
x — oco. We additionally assume that A > 0 and Rp(a) > 0 for a > ko when i = 0. Then
condition (H3) holds.

Proof of Lemma 2.18. We define X; := M, (E) and we consider the set C defined by (2.26) which
is clearly compact for the weak  o(M,, ,Cim, 0) topology. When X = M}, . the result follows
from Lemma 2.11 while when X = Mﬁn, the result is a consequence of Lemma 2.15. g
We may slightly improve the preceding results by considering a more abstract framework and a

somehow more general boundedness condition.

Lemma 2.19. We assume X = Y', Y separable, (H1)-(H2)-(HS1) and there exist N > 1,
v €[0,1) and ¢ € Yy \ {0} such that for any o > kg, there holds

(2.29) IW(a)fllx < ylIfllx +{fso)xy,
for all f € X, or there holds
(2.30) W) fllx <lfllx + W) f, o) xv,

for all f € X,. Then condition (H3) holds true, and the limit f1 satisfies (f1,¢)xy >1—~ > 0.
The case X = M}, (E) in Lemma 2.18 corresponds here to the first situation where (2.29) holds
with X := M}, (E), v:=0,Y := Cpy0(E) and ¢ := mg/m.

Proof of Lemma 2.19. Starting with (2.25) and using (2.29), we have

fallx < IV fallx + [VOn)enllx
< Afallx + (s @) xy + lonllx,
so that
(frro)xy > 1=~ — |lvallx.
By compactness, there are f; > 0 and a subsequence ( fn/) such that fn/ — f1 weak * o(X,Y).
Passing to the limit as n’ — oo in the above estimate, we find
(2.31) (fo)xy = n}iinoo“n', o)xy > 117,

and in particular f; # 0.
Under the assumption (2.30), modifying slightly the previous argument, we have

||JE7L||X < ’YHJEn”X + (wn, ) xy + ||vnllx,
which, together with
(frr @) xy = (Wn, @) xy + (Un, @)Xy,
implies
(s @)xy =1 =7 = ||vnllx + (vn, @) x.v-

By compactness again, there are f; > 0 and a subsequence ( fn/) such that fn/ — f1 weak %
0(X,Y), and passing to the limit n’ — oo in the above estimate, we conclude again to (2.31). O
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Let us comment on Lemma 2.19 and in particular the condition (2.30).

In the case when X = L>(E, &, p) = (LY(E, &, u))l, we can relate condition (2.30) to the assump-
tion that there exist fo € X1 and ¢y € Y, \ {0} such that

(2.32) [1Sc(t) foll x < (Sc(t)fo,%0), V>0,

This last condition is reminiscent from conditions that appear in probabilistic inspired methods
for the ergodicity of semigroups, see the condition (1) in Theorem 1.6 but also Assumption (A2)
n [95], both in the vein of [119, Condition Z]. Assume indeed (2.32), let n > k1 — Ko > 0 and
consider the trivial decomposition £ = A+ B =n+ (£ —n). Then set k5 := k1 — 1 < Ko, so that
for any a > kg, B—a = L — (n+ «) is invertible since n + « > n+ kp = k1. We thus have for any
o > KB

W(a) :=n(a—-B)"t=ng / e~ (FItS () dt
0

and (2.32) then ensures that
[W(a) follx < W(@)fo, o)
We recover (2.30) with v = 0 and the difference that fy is fixed here.

As a Corollary of Lemma 2.18 or Lemma 2.19 and anticipating on the material of part 3, we present
now a situation very classical in stochastic processes theory.

Corollary 2.20. We consider a positive semigroup S = S defined on a Radon space X = Ml}}(E)
for some weight functions ¥ on E, in particular (H1) holds. We also assume that (H2) holds for
some kg € R. We finally assume the Lyapunov condition

(2.33) LY < kpp + My,
with kg < kKo, M >0 and x € Cyo(E), 0 < x <. Then condition (H3) holds true.

Let us emphasize that we may assume some regularity on ¢ by considering ¢ € D(L*) so that
(2.33) makes sense in X or just understand (2.33) in the weak sense:

(Lf ) < kB(fih) + M(f,x), VfeDL)NX,.
Proof of Corollary 2.20. We introduce the splitting £ = A + B where A is the multiplicator (and
thus bounded) operator A := My/¢¥. As a bounded perturbation of £, the operator B is the
generator of a semigroup Sp. Defining Sy := S, (t)e= ™t > 0 and A¢ := M (1 — x/1) > 0, we have
the Duhamel formula o

Sp =5+ SA° xS
and iterating infinitely many times, we deduce the Dyson-Philips formula
Sp = (SA°)H) « .
k=0

That implies that Sg > 0 as a combination of positive operators. Alternatively, from the very
definition of B, we have kK — B < (M + &) — L for any x € R. Choosing x > max(w(S¢),w(Sg)) and
using the direct implication in Lemma 2.1, we have Rp(k) > Rz (M + ) > 0. Using the reciprocal
implication in Lemma 2.1, we obtain again that Sg > 0.
Now, for 0 < fo € D(B) and setting f; := Sgz(t) fo, we may compute

%<fta¢> = <Bft,¢> < 55<ft7¢>7

so that
1S5(t) follary, < "= follars -
Using (2.13) we immediately and classically deduce
1

IRs()ll ) < —— pt Va > kg,

so that R () is bounded in #(My) and Rp().A is bounded in B(My, M) uniformly for a > ro.
We apply Lemma 2.18 or Lemma 2.19 ((2.29) with N =1, v =0 and ¢ = af/{%x) in order to
conclude. g
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In the proof of Corollary 2.20, we may alternatively use the trivial splitting £ = A+B = r+ (L—7)
for some r > k1 — Ko, so that o — B is invertible for any a > ko, and reformulate the Lyapunov
condition
(= B")¢ > (a+7r— k) — My,
for any a > kg. Observing that W(a) = ARB(a) =r(a — B)~!, we deduce
W (@ € "t W ().

+ o —Kp r+oa—Kg

We equivalently have . -
IW(@) llars, < ¥l Flars + V(@)1 6,

- r
r+KrRo—KB

M

uniformly for any o > kg, with v := r——

condition (2.30).

We finally come to the existence of a solution to the first eigenvalue problem and the first eigentriplet
problem.

Theorem 2.21. Under conditions (H1)-(H2)-(H3), the first eigenvalue problem (2.14) has a
solution (A1, f1) with A1 satisfying (2.19). When furthermore (H3) holds for the dual problem,
then the first eigentriplet problem (1.1)-(1.2) admits a solution (A1, f1,¢1) ERx X x Y.

Theorem 2.21 generalizes some known versions of the existence part of the Krein-Rutman Theorem
where either £ is assumed additionally to be the generator of a semigroup or to have strongly power
compact resolvent or even where some additional conditions are made on the positive cone X.
As mentioned in the introduction, some possible references for these previous results are Krein-
Rutman [214], Greiner in [169, Cor 1.2] and in [13, C-IV Thm 2.1] and Webb [326, Prop. 2.5], see
also [71, Thm. 2], [250, Thm. 5.3], [227], [31, Thm 2.1], the textbook [37, Theorem 12.15] and the
references therein.

Proof of Theorem 2.21. We first assume (H1)-(H2)-(H3). Because of Lemma 2.6, there exists
a sequence (f,) of X such that (2.20) holds, and in particular

(234) <)\anna¢> - <fn7£*¢> = <5n7¢>7
for any ¢ € D(L*). Because of condition (H3), we may pass to the limit n’ — oo in equation
(2.34) and we deduce that (A1, f1) satisfies (2.14) and (2.19).

We now additionally assume that (H3) holds for the dual problem. As recalled during the proof
of Lemma 2.3 and by definition of A;, we have (A1, +00) C p(L£) = p(L*) and N € X(L) = X(L*).
Taking A, \, A1, we argue as in the proof of Lemma 2.6 and we get

Fbn >0, At — L¥Gn — 0, |Gl = 1.

Thanks to (H3) for the dual problem, we deduce that there exist a subsequence (g/zﬁ\nk) and ¢ € X/,

ll¢1]] = 1 such that ank — ¢1. We thus conclude that ¢; is a solution to the dual problem (1.2)
(for the same eigenvalue \p). O

< 1 and ¢ = X, which is nothing but

Let us conclude this section by some remarks.

Remark 2.22. (1) - As seen above, the condition (H1)-(H2) for the primal and the dual problems
are equivalent, and thus one only has to check (H1)-(H2)-(H3) for the primal problem and (H3)
for the dual problem in order to solve the first eigentriplet problem. It is worth emphasizing that
condition (H3) on the dual problem is not a consequence of the condition (H3) on the primal
problem. However, as presented in Lemma 2.7, Lemma 2.8 and Corollary 2.17, there exist several
natural situations where both conditions (H3) for the primal and the dual problems hold together.

(2) - Alternatively, one may also assume (H1)-(H2)-(H3) for the dual problem, and then use
a more classical fixed point theorem for proving the existence of a steady state for the rescaled
semigroup by using for instance the Markov—-Kakutani fized point theorem [202] as in [207, Theorem
5.1], the Tychonov fized point theorem as in [157] or [140, Theorem 1.2] or a Birkhoff-Von Neumann
type Theorem as in [77, Theorem 6.1]. For these last techniques, we also refer to Section 3,
where such a dynamical approach is adapted to the present context. One may also use the usual
Doblin-Harris theory, see for instance [180, 77| and the references therein, and Section 8.5 for an
application of this approach.
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2.3. Discussion.
We discuss now the existence results presented in the preceding section.

For further references, let us first recall that when X is a Hilbert space and L is self-adjoint, the
first eigenvalue may be simply obtained thanks to the variational problem

A1 = in (L], f>
rexi\{oy [l f[?

We now explain how Theorem 2.21 is a generalization of the classical Krein-Rutman theorem
stated in Theorem 1.2. We thus consider a Banach lattice X such that X, := intX, # () and
an operator £ such that, for k; € R and any x > k1, R := (k — £)"! : X — X is compact and
R : X:\{0} - X, in particular (H1) holds true. As a first step, we recall the following very
classical technical lemma of the KR theory.

(2.35)

Lemma 2.23. Assume X :=int X # 0. For g € X, and f € X, there exists C > 0 such
that g < Cf.

Proof of Lemma 2.23. We argue by contradiction. Otherwise, for any n > 1, we would have
f—g/n € X$ C X$, and that last set is closed. Passing to the limit, we get f € X¢ , which is
in contradiction with the assumption f € X, . d

For a given go € X+ \{0}, we set fo := Rgo € X4++. From Lemma 2.23, there exists Cy > 0 such
that (k — L) fo = go < Cofo. That implies that (ii) holds with r¢ := k — Cp, and thus (H2) also
holds. One may then define pq := xk — A1, with

A i=inf{A € R; (N — L)t € B(X), YN €[\ K]} > ko.

We recall that because of Lemma 2.6 (or its proof), there exist (A, ), (f,) and (£,,) such that (2.20)
holds, namely

M N fn >0, 8= Aafo = LFn 20, ||l = 1, Jlenll = 0.
We may rewrite the equation as
fn = R[gn + (’i - )‘n)fn]v
so that ( fn) belongs to a compact set of X because of the compactness assumption made on R, so

that (H3) holds true.

Because of Theorem 2.21, we deduce that there exists fi1 € X1 such that ||fi|| =1 and Lf1 = A\;.
That implies fi = p1Rf1, and thus that the existence part of Theorem 1.2 is a consequence of
Theorem 2.21 for an operator R which is the positive resolvent of an operator L.

We would like to emphasize on the fact that our definition of the first eigenvalue by (2.15)-(2.16)
bears some strong similarity with the definition of the first eigenvalue for elliptic operators in non
divergence form as presented in [43]. Indeed, if A € Z, then

37 e X\{0}, Lf <A
Assuming now that X is a space of functions (defined on a set E) and that f(x) > 0 for any « € E,
we deduce that c
A > sup —f,
e f
and thus \; is characterized by
A1 = inf sup —-,

=
which is nothing but [43, (1.13)] (with a change of sign because of a different sign convention).
We thus see that our formulation is a generalization at a more abstract level and for operators
with positive inverse of that classical min-max approach for elliptic operators. Some more or less
classical references on that subject are [130, 131}, [271], [285], [44] and [42]. In particular in [44],
two generalized principal eigenvalues

N] :=sup{ro € R; 3go € Co Lgo > Kogo}

and
N =inf{rk; € R; 391 € C1 Lg1 < K191}
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are defined for appropriate cones C; C X \{0} for problems with lack of compactness. The links
between the three quantities A1, A} and A/ are discussed as well as the possible non existence
of a related generalized principal eigenfunction f;. The non existence of associated generalized
principal eigenfunction should not be a surprise since it is the case when one considers £ = A in
X = L?(R?) where L£g1 = L*g1 = N/ with 0 < ¢p =1 ¢ X = X’ and A} = 0 but no associated
principal eigenfunction exists in X. We also refer to [227] where some examples of such a situation
are discussed.

For its own interest and further discussions, we finally state and prove a slightly less general
variant of Theorem 1.7.

Theorem 2.24. Consider a Banach lattice with positive cone X1 and a linear and bounded oper-
ator R : X — X such that

(Z) R . X+ — X+,'

(i) g2 € X1 \{0}, 3C3 > 0 such that Rga < Caga.

We define
Ky:={g€ Xy;3a>0,9<ag},
and next
A(g) :=1inf{a > 0; g < aga}, if g€ Ko,
as well as

T :={pn>0; 3he Ky, h > iRh+ g5}.
We further assume
(i) p1 =sup J < +oo.
(iv) Any upper bounded and increasing sequences (") of X is convergent in the weak sense o(X,Y).

More precisely, if gn < gnt1 < g € X for anyn > 1, there exists g € X, g < g, such that g, — g.

(v) Any sequence (g"™) of normalized almost first eigenvectors is relatively compact. More precisely,
for any sequence (g™) of Ko such that A(¢g"™) =1, g" = p"Rg™ + €™, u™ > p1 and €™ — 0, there
exists g € Ko and a subsequence (g™*) such that g™ — g and A(g) = 1.

Then there exists f1 € X such that fi = p1Rf1 and A(f1) = 1.

Proof of Theorem 2.24. We split the proof into three steps.
Step 1. We first establish that for any p € J, there exists § = g, € K3 such that

(2.36) G =Ry + go.
We set go = 0, §1 = g2, and we define (g, ) recursively by gn+1 = uRgn + g2, for any n > 1. We
claim that

0<0gn < gn+1 <h, forany n>0,
where h enters in the definition of € J. That is obviously true at order n = 0. Assuming that
last inequality is proved at order n — 1 for n > 1, we compute

Gn+1 = WRGn + g2 > URgn—1+ 92 = gn
and
Gnt+1 = pRGn + g2 < pRh+ g2 < h,
which proves the same inequality at order n, and thus for any n > 0. Using the convergence

property (iv) of upper bounded increasing sequences in X, we deduce that there exists § € X5 such
that g, — ¢ and thus (2.36) holds.

Step 2. We obviously have 0 € J and J is an interval because if (u, h) satisfies the condition
p € J then so do (¢, h) for any p' € [0, u]. We finally claim that J is open. Take indeed p € J
and g € K5 such that (2.36) holds, what is possible due to Step 1. By definition, there would exist
A > 0 such that § < Ags. Choosing 0 < e < 1/(24C3) and M > 2, we compute
(Mg) — (n+e)R(Mg) = Mgs— MeRg
Z Mgg — M&‘ARQQ Z M(l — EAOQ)QQ Z g2,

so that u+¢ € J.
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Step 3.  We first establish by contradiction that A(g,) ,/* oo when pu 7 pq. If it was not the
case, there exists A € (0,00) and a sequence (u") such that A(g,.») < A as u” 1. Choosing
0<e<1/(2AC3) and M > 2 as in Step 2, the same computation gives

(Mgu") — (pu+ 5)R(M§u") > 92,

so that pu" +¢ € J. That means that " +¢ < u1, and a contradiction with the fact u” " p1. We
next consider p” 7 pp and we define

~ o Jun g2 A N
AT = AGue)s "= eni= o 9N =0T + e
We observe that €, — 0 and A(§") = 1. Because of the compactness assumption (v), we deduce
that there exists fi € K5 and a subsequence (§™) such that g™ — f; and A(f1) = 1. We conclude
by passing to the limit in the above almost first eigenvalue equations. g

We may compare Theorem 2.24 with the results presented in the previous section. When £
satisfies condition (H1), we may set R := R, (k1) so that R € #(X) and R satisfies (i). In that
case, Theorem 2.24 claims the existence of f; € K5 such that £f; = A\ f1, with Ay := k1 — 1.
The condition (i) on R translates as Lg2 < (k1 — 1/C32)g2 which may be seen as an equivalent
of condition (H1) (when working in the space X5 := K3 — K3 with norm ||g||2 := A2(|g|) and £
generates a semigroup S. The hypothesis (iii) is nothing but (H2) and the hypothesis (iv) is very
natural: it holds in the space LP(E) and M!(E) without additional condition on R and it holds in
a space of continuous functions when some additional uniform continuity assumption is made on
the range of R. Assumption (v) has to be compared with condition (H3). It is worth emphasizing
that when X C LP(FE) and g2 > 0 a.e., we simply have A(g) = ||g/gz|lL= for any g € X;. As
a conclusion, although Theorem 2.21 and Theorem 2.24 bear some similarity none seems to be a
consequence of the other. We believe that Theorem 2.21 is more flexible since it does not impose
to work with the normalization associated to the seminorm g — A(|g|) of L>-type. It is also worth
emphasizing that it is shown in [227] that Theorem 1.2 is also a particular case of Theorem 2.24
by essentially exploiting the fundamental Lemma 2.23.

3. EXISTENCE THROUGH A DYNAMICAL APPROACH

In this part, we develop a dynamical approach for proving the existence part of the Krein-Rutman
Theorem. We thus always consider a positive semigroup S = S, on a Banach lattice X. We
recover Theorem 2.21 under slightly reinforced assumptions. Above all, we are able to extend the
existence part of the Krein-Rutman Theorem to a more general framework, namely to the case
when L only enjoys a suitable weakly dissipative condition.

3.1. About dissipativity.
Let us start by recalling some classical definitions and results. We say that an operator £ defined
in a Banach space X is dissipative if there is some number x € R such that

VfeD(L), 3f € Jp, Re(f*,Lf) <wlfI?
where we define the associated dual set Jf C X’ of f by
(3.1) Jr={p e X’ (o, f) =fll = llellx}

In that situation and in order to be more precise, we should say that £ — & is dissipative. It is worth
emphasizing that J; # () thanks to the corollary (2.2) of the Hahn-Banach dominated extension
theorem. We say that an operator £ is hypodissipative in a Banach space X if there exist an

equivalent norm || - ||| in X and a number x € R such that
(3.2) VieDL), 3f e dpyy, Re(f*LF) <xlIfIP
where

(3-3) T = {e € X5 (o, £) = I = llellx }-
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The only difference between the two definitions (3.1) and (3.3) comes from the norms in which the
normalization is performed. When L is the generator of a semigroup S, one can show that the
growth bound w = w(S,) defined in (2.9) also satisfies

w = inf{x € R, (3.2) holds for some equivalent norm || - |||},

and S is a semigroup of contraction when L is dissipative with k = 0. At least formally, denoting
fe:=8@)f, for f € D(L), we deduce from (3.2) that

1d
§£|||ft|||2 =Re((fo)", Lf:) < &I fI?,

and together with the Gronwall lemma, we deduce
ISl < eI, vt =o,

which is nothing but (2.10). That last estimate is actually equivalent to the hypodissipativity
estimate (3.2). Quite similarly, when

(3.4) I e YI\{0}, I e R, £LY < k),
we may compute
£ 2 ) = L Fo ) = o, L) < KL
and together with the Gronwall lemma, we get
(3.5) £ (Sef,0) < £efL0), V0.
Two important more accurate versions of the previous ones are presented now. They will be on

the main importance in the sequel. On the one hand, we may assume that £ satisfies a Lyapunov
type condition, namely there exists ¢; € Y, and s € R such that

(3.6) Ly < kg + 1o,

with ¥ > 0 and ¥ /12 — 0 at infinity. For f; = Se(t)f, f € D(L£) N X4, a similar computation
as above gives

%<ft7¢2> = (ft, L") < K{ft,12) + (ft, o).

Denoting [f]; := (| f],%:) and using the Gréonwall lemma, we classically deduce

(3.7) SOl <o+ [ IS ods. VeZ0

The Lyapunov condition (3.6) is particularly relevant and useful in a Radon measures space frame-
work X = M, (E) for some weight function ¢, on E.

On the other hand, we may generalize the above Lyapunov condition by assuming the structure
condition

(HS2) there exist a splitting £ = A+ B and kp € R such that A is B-bounded, that means
3C =0, VfeX, [Af[l<CUfII+ B,
the operator B generates a semigroup Sg and
(3.8) 1(S8A) 9 Sp(t) | zx) = O(e™), Vi >0,

for any £ > 0 and a > kg.

Here and below, for two functions U : Ry — #(Xp, &A1) and V : Ry — B(X, Xz), we define the
convolution function

(VxU)() := /0 Vit —s)U(s)ds,

when the integral is well-defined. For U : R, — Z(X), we also recursively define U*?) = I and
UG+D) = U & U, Using this convolution notation, the Duhamel formula writes
Sy =S+ SpAx* Sr,
and iterating this formula, for any N > 1, we get the following iterated Duhamel formula
(3.9) Se=8p+-+ (SpA) NV« Sp + (S5.4) M xS,
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When S is well defined in another space Xg O X and the last iterated convolution term enjoys
the regularity property [|(Sz.A)"™ ()] z(x,,x) = O(e*?) for all t > 0 and a > kg, we deduce from
the above iterated Duhamel formula, the estimate

t
(3.10) IS@FII < Coe™ ||l + 01/ e ||S(s) fllods, V>0, a>rp, VfEX,
0

for some constants C; > 1 and where || - ||o stands for the norm in X,. We may observe that the
estimate (3.7) in the case of a Lyapunov condition is a particular case of (3.10) corresponding to
the norms || - || = []2 and || - |lo = [-]o. More specifically, in a Radon measures space framework, the
splitting condition (HS2) is obtained by introducing the bounded operator Af := fi and the
generator B := £L— A. Because of (3.6), we have B*1s < k12, and arguing as for establishing (3.7),
we have [Sg(t)f]2 < e"[f]2 for any ¢ > 0 and f € X. That last growth condition is equivalent to
assuming that B — x is dissipative for the norm [-]2, so that we have established that £ enjoys the
splitting condition (HS2).

3.2. Existence in the dissipative case.

In this section, we give an existence result for a positive semigroup S, on a Banach lattice X
satisfying a kind of regularity /compactness assumption in the spirit of the structure condition
(HS2) discussed above.

Theorem 3.1. On a Banach lattice X =Y, with Y separable Banach lattice, consider a positive
semigroup S = S satisfying the growth bound (2.10), and set k1 = w’ + log M for some w' >
OJ(SL),
We assume

(1) F¢o € Y \{0}, Fro € R such that [S(t)flo > et[flo for any t >0 and f € X,
where we denote [flo = {|f], %o);

(2) there exist k,Co,C1 € R with k < ko, Co > 1 and C1 > 0, such that

t

(3.11) IS0 < Coc I+ Co [ e -S(s)flads, Ve 0, ¥feX.
0

Then there exist \1 € [ko, k1] and f1 € X1 \{0} such that Lf1 = A1 f1.

Remark 3.2. (1) Assumption (2) in the statement of Theorem 3.1 holds when there exist V,W
such that

(3.12) S=V+W=xS, W2>0,
and there exist k,Cy,Cw € R, k < kg, Cy > 1, Cyw > 0 such that
(3.13) IV(E)lax) < Cve™,  [IW(E)lz,x) < Cwe™,

(2) Under the structural condition (HS2) together with some reqularization effect on the semigroup
of the type
1(SBA N W) ey = O™, V>0, k€ (ko).
we recover the above condition (3.12)-(3.13) with
(3.14) Vi=Sg+-+ (SpA NV S W= (S5A)FN)

because of the iterated Duhamel formula (3.9). In that case, the representation formula (2.13) holds
true for any z > \1 from Lemma 2.2-(ii) and we easily compute

Rr(2) =V(2) + WEZ)RL(2), Vz> A,
with - -
V(z) = / e MV ()dt, W(z) = / e MW (t)dt, Vz> k.
0 0
We observe that W satisfies (2.28) in Lemma 2.15 if W satisfies (3.13) and the set C defined by
(2.26) satisfies the same compactness properties as required in the statement of Lemma 2.11. We

may thus apply Lemma 2.15 (see also Remark 2.16) and deduce that (H3) holds for the primal
problem. We finally obtain the same conclusion as in Theorem 3.1 thanks to Theorem 2.21.



ON THE KREIN-RUTMAN THEOREM AND BEYOND 33

(3) Under the same structural condition (HS2) as above, but assuming now that
W ()l zcx .2 = OE™), V>0, k€ (15, r0),

with W = (SBA)(*N) and Xy C X with strongly compact embedding, we observe that S does
not necessary satisfies the assumptions of Theorem 3.1, but it rather satisfies the assumptions of
Lemma 2.7 with Kr := (W % S)(T) and T > 0 large enough. In that situation, we also obtain the
same conclusion as in Theorem 3.1 thanks to Lemma 2.7 and Theorem 2.21.

Proof of Theorem 3.1. We split the proof into two steps.
Step 1. We define the set
C={feXy [flo=1 |Ifl <R},

for a convenient constant R > 0 to be fixed later. For any fixed ¢ > 0, we next define the nonlinear
weakly o(X,Y) continus mapping

Sef
P, :C— X, — .
' / [St.flo
Thanks to assumption (1), we may observe that it is well defined because
(315) [Stf]o > engt[f]o = eﬂot > 0.

For any f € C, we thus immediately have ®;f > 0 and [®;f]p = 1. On the other hand, from
assumption (1) again and the semigroup property, we have
(3.16) [S(t)flo = ™IS (s) flo-

For f € C and t > 0, we next compute
t

[l < Coeiat”f”_kcl/ e—o(t=5) gs
0
< Cpetrt &
(&%

where we have set a := kg — kg > 0. Fixing Ty such that Coe= 70 < 1/2 and next R > 2C}/a,
we have thus @7, : C — C. Thanks to the Tykonov fixed point Theorem, there exists fr, € C such
that ®7, fr, = fr,. In other words, we have established the existence of fr; € X such that

(3.17) fr, 20, Ifnlo=1, Snfr, =M fr,
with A\ := (1/T0) log[STofTo]o S [lio, /il].
Step 2. Rewriting equation (3.17) as

To
0=e M08y fr, — fr, = (L — )\1)/ e M8, fr,dt
0
and defining
To
f1:= / e MES, frydt,
0

we get that f1 € X \{0} and satisfies L£f1 = A\ f1. O

We present now a second proof based on a large times dynamical argument which is classical in
the mean ergodicity theory of Von Neumann and Birkhoff introduced in [322, 56] and which will
be adaped in the weak dissipativity case in Section 3.5 below.

Alternative Step 2. We define §t = Sye~ Mt so that fr, becomes a periodic state for §t from
(3.17), namely

Sifry = Se—kmo fry, k= 1[t/To], Yt >0.

Using (3.15) and the above relation, we have

[Sifrlo = [Si—wmo frlo
> e(KO_Al)(t_kTO)[fTo]O 2 e(f-ﬁg—)q)To =, > 07
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for any ¢ > 0. On the other hand, thanks to the growth bound (2.10), we have

ISefroll = [ISt—rz0 [0l
< MR ol < MelnmMToR = R* < o0,

for any ¢t > 0. We finally define
1 (T
ur = TA St fr, dt.

From the previous estimates, both sequences (S, f7,) and (ur) are bounded in
Ke={feX; f20, [flo=r, [[fI <R}

By compactness, there exists a subsequence (up, ) and f; € K such that up, — f1 in a weak sense
as k — oo. For any fixed t > 0, we observe that

Tk Tk

- . 1 - 1 -
Sifi—fi = hm{T— $iSufr,ds — = SSfTOds}

k—oc0 k Jo k Jo

Tk+t~ 1 tN
= li {_ s ds — — s d}:a
jin (g J, Sufnde= gy [[ Sutmis} =0

where we have used that (S, fr,) is uniformly bounded in the last line. As a consequence, f;
is a stationary state for the rescaled semigroup Sy, and thus an eigenfunction associated to the
eigenvalue \; for the operator L. O

3.3. About weak dissipativity.

In this section, we recall some definitions and results about the weak dissipativity. We say that the
generator B of a semigroup Sp is weakly dissipative in a Banach space X; if there exist a second
Banach space X;_1 D X; and some numbers x € R and ¢ > 0 such that

VfeDWBx,), 3f € Jpx,, (fBf) <slfl%, —olflx, .,

where we define the associated dual set J¢ x, C X, of f (for the norm || - ||x,) by

(3.18) Jrxo={p e Xi5 (o, f) = 1%, = llellx:}-

By translation, we may assume that £ = 0, an hypothesis we will always make in the sequel of this
section. We will furthermore assume the splitting structure £ = A + B with A B-bounded and B
weakly dissipative.

More precisely, we assume that there exists one more Banach lattice Xo D X7 D X5 := X, with

norm denoted by || - || := || - || x,, such that B generates a semigroup and is weakly dissipative in
each Xj: for any k = 1,2
(3.19) VfeDBx,), 3 € Jpxe (1 Bfxpx < —ollflliz-

This classically implies (or we can take the next inequality as a definition of the weak dissipativity
condition) that

d
(3.20) E”SB(t)f”k +o||Spt)fllk=1 <0, Vt>0,VfeXy Vk=1,2.

We assume that X}, is dense into X;_1 for £ = 1,2 and that X; is an interpolated space between
Xo and X3 in the sense that there exists a continuous and strictly decreasing function » : (0,1] —
[0,00), n(e) — oo when € — 0, n(1) = 0, such that

(3.21) £l < ellfllza+ 0@l fllo, Vee (0,1, Vfe X
From (3.20) with k& = 2, we deduce
(3.22) 1S5(@) fll2 < I fll2; VE=0, Vf e X
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Next, for k = 1, gathering the weak dissipativity condition (3.20), the interpolation condition
(3.21) and the non expansion property (3.22) in the space Xs, we get

d o o€
— 4 — t < — 4
G5O+ 5 1Sl < s ISs
o€
= 77(5) ||f||27
for any ¢t > 0, € € (0,1) and f € X5. We deduce
d _o ¢ gg  _o 4
= wt) < ()
g (IS5 1hei?) <~ e 7],
and thanks to the Gronwall lemma, we obtain
(3.23) 1S5(t)fllr < ©@)[ ]2,
for any t > 0 and f € X5, with
(3.24) Ot):= inf (e 7' 4¢) =0 as t — +oo.

€€(0,1)

On the other hand, using the representation formula
Rp(z)f = / e F'Sp(t)fdt, Yz€ N, VfeE X,
0

together with (3.20), we get

ollRs(2) 1 S/ ollSs(t)fllrdt < [[f]2,
0
for any z € Ag and f € X,. We next assume that

(3.25) O () lAS(t) fllh +/0 | ASE(t) fll1dt < 1 £,
that there exist « > 1, N > 1, C' > 1 such that
c . c . C
(3.26) sup  [|ARG " (@ +iy) .. ARG (x4 iy) fll2 < —= 1 f]l2,
z+iy€EAg <y>

for any € € {0,1}", 61 +--- +ex < 1, and that
(3.27) sup 1(Rs(z) AN flla, < 1l
2€A0

with X} compactly imbedded in X;. The necessity to add (g;) in (3.26) is probably purely technical
and not restrictive for applications. In examples, we can take N = 2N’, when

, . C
(3.28) sup [[(ARB)™ (¢ +iy) flls < 7z (1 fl2.
z+iy€Ao <y>
for some convenient space X3 such that A: X; — X3 and sup,ca, [R5(2)|2(x,,x,) < 00. At the
level of the semigroup, (3.28) is typically a consequence of

||(ASB)(*NN)(t)||@(X27X§) € L'(R4),

with ¢ > 0, where X§ = {f € X3, L°f € X3} stands for the (possibly fractional) domain for the
operator defined in X3. However, (3.26) is a bit more general than that last estimate. We refer
to [250, 245, 252, 249] for precise definition, examples and discussion. For further references, we
observe that (3.23) and (3.25) together imply

1 T 1 T t
1 / (S5 % ASg) (D) f 1 dE < / / 1S5(t — 5)ASs(s) |1 dsdt
T 0 T 0 0
1 T T
< 7 [ [ 18stlac | ASs(6) 1 duds
0 0
1 T
<
S 7/ ewds.
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Arguing in a similar way for any ¢ > 1, we establish
(3.29) T/ [I(Sg * (ASB)(*Z))(t)le dt < T/ Odul/fll2—0 as T — oo.
0 0

For synthesizing and for further references, let us now bring out some possible general framework
for semigroup enjoying weak dissipativity. We introduce the following structure condition on a
semigroup S, and its generator £ by assuming

(HS3) there exist a splitting £ = A + B, some Banach lattices Xo C X5, an integer N > 1 and
some decaying functions ©; : Ry — Ry with ©1(t) — 0 as t — oo, O3 € L(R;) such that A is
positive, B generates a positive semigroup S and the following estimates hold
(3.30) 1(S5A) ) « SBlla(x,,x,) = O(©1), YLe{0,...,N -1},

(3.31) 1(S54) ™| 5(x, x2) = O(O2).

We now particularize our discussion to a Radon measures framework. We assume that there exist
some weight functions ¥; on E, g < 1 < g, with ¢o(x)/t1(z) — o0 as & — oo so that
M, cC My, (compact imbedding for the weak convergence), a function x € Ce(E), 0 < x <1,
and a constant M > 0 such that

(i) L1 < —tho + Mx;
(if) Loy < Mx;
(iii) 91 < e +n(e)ho for any € > 0,
for a function 7 : (0,1] — (0, 00) such that (1) =0, n(¢) — oo when ¢ — 0, and

(3.32) tes Ot) == 1{%;1)(@*% +¢) € L'(0, ).
ee(0,

It is worth emphasizing that from the very definition, we have automatically that © is positive and
decreasing, ©(0) = 1 and O(t) — 0 as t — oco. Arguing similarly as we did during the proof of
Corollary 2.20 and the end of Section 3.1, we introduce the splitting

A:=My, B:=L-A,

and we establish that Sp is a positive semigroup on X = Ml}}2 (E). More precisely, for 0 < fy € D(B)
in the domain of S and denoting f; := Si(t) fo, we may compute

%/ftw2§/ft8*w2§0

%/ftwls/fts*wls—/ftwo-

Integrating both differential inequalities, we deduce Sg € Ly° (%’(Ml}%)), 1=1,2 and

and similarly

| 18s@allay, dt < ol ¥ fo € M,
0 0 1

We may make a slight (but important) improvement of the previous estimate by proceeding sim-
ilarly as we did for proving (3.23). Using the same notations as in the above computation, we

indeed have
d 1 € €
E/fﬂ/)ﬁ-@/fﬂhS@/ft%é@/fo%,

where we have used (i) and (iii) in the first inequality and the previous Lg°(#(My,)) bound in the
second inequality. Integrating in time, we deduce

1S5(@) fllaz, < OO fllazz_, V> 0.

Taking X, := M, and N = 1, we see that £ then satisfies (HS3) with ©; = ©.
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3.4. First existence result in the weakly dissipative case. We first come back to the proof
of Theorem 2.21 and explain what goes wrong when we try to adapt it to a weak dissipativity
context. More precisely, we assume that S, is a positive semigroup (so that (H1) holds) satisfying
L1 > 0 for some 1y € X'\{0} (so that (H2) holds) and the splitting structure (HS3) for some
bounded operator A and some weakly dissipative operator B, in the sense that (3.19) holds. In
such a situation, we may define

A =Inf{A e R; Re(k) € B(X), VK> A} >0,
and there exist sequences (\,) of R and (f,,) of X, such that
A NeAL >0, [[full =1, eni=Afn—Lfn —0in X,

thanks to Lemma 2.6. In the simplest situation, we may further assume that Rg(x) : X3 — X is
uniformly bounded in k > A\; and A: Xg — X; with X = X; C Xy. The issue is that even in that
case, we may write
fn = RB()\n)Afn + RB()\’R)E’I’U

but it is not clear how to conclude that ( fn) belongs to a compact set in X because it is not clear
that Rg(An)en — 0in X.

The next result aim precisely to establish that last convergence under suitable quite strong (al-
though natural and true in some examples) assumptions on the operator £. The proof is adapted

from [207, Section 6.3] and mixes some dynamical argument together with the stationary approach
developed in Section 2.2.

Theorem 3.3. Consider a positive semigroup S, in a Banach lattice X = Xo C X1 C Xy such
that its generator L satisfies

(1) there exists o € D(L*), 1o > 0, 1o # 0, such that L*1)g > 0.

(2) £ =A+ B with A and B satisfying (3.23), (3.25), (3.26) and (3.27);

Then, there exist Ay > 0 and f1 € X1 such that

(333) Hf1||X1 =1, fl >0, Cfl = )\1f1~

Proof of Theorem 3.3. We split the proof into four steps.

Step 1. We know from Lemma 2.2 and Lemma 2.4-(i) that (H1) and (H2) hold. We may then
define A\; > 0 with the help of (2.16). If A\; > 0, we see that V(a) defined in (2.22) is bounded in
B(X) uniformly on « > kg := A1/2 because of (3.23) and (3.25), and that W(«) also defined in
(2.22) satisfies (2.23) because of (3.25) and Remark 2.9-(1). Using Lemma 2.8, we get that (H3)
holds, and we conclude thanks to Theorem 2.21 in that case.

In the sequel, we always assume A\; = 0.

Step 2. Let us fix fo € D(L) such that fo > 0 and Cy := (fo,v0) > 0, which exists by definition
of 1. Denoting f(t) := Sc(t) fo, we have

d

5 (@), %0) = (LF(8),%0) = (f(t), L7%0) 2 0,

which in turns implies

(f(t), ) > Co, Yt>0.

Step 3. We claim that |[R.(0)[|s(x,,x,) = +oo. That in particular implies ||R.(0)|zx) = 400
and thus 0 € X(L£). We assume by contradiction that Ko := [|R.(0)[|z(x,,x,) < +o00. First,
because S, is positive, we have

Re(@f < [ e ™=Se]f]d = Re(Rez)]s |,
0
from which we deduce

Re(2)lz(x.,x1) < IRe(Rez) || z(xs,x,), V2 € Ao.

As a consequence, we have

(3.34) sup | Rz (iy)ll (xs,x,) < Ko
yeR
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We write the representation formulas (taken from [250, (2.21)])
Se(t)f =To(t) + lim Ty a(t)
M—o00

with
N—-1
Sp x (ASE)O 1) f
=0
and
i a+iM N
T (1) ;:2_/ e Re(2) (AR5 ()N f dz,
T Ja—iM

for any f € D(L), t > 0 and a > 0. On the one hand, from (3.29), we have
1 T
(3.35) T/ To(t)dt -0 in X;, as T — oo.
0

On the other hand, we estimate the contribution of the Cesaro mean of 77 5. Integrating by part,

we have
1 4 a+iM

Tiw(t) = 15— a,iMeZt e [Re(2) (AR5(2)Y] f dz,
with p
—[Re(:) (ARs()M] = D Re(2) TUARG ™ (2) ARG (2).

eeNN+1 |g|=1
Together with condition (3.26) and estimate (3.34), we get

i et amato ],
< (Ken +K3 )N sup ARG ™ (2) ... AR ()2
eeNN |g|<1
Ch
S T Nev f 2
e 171
uniformly for any z = x + iy € Ag, for some constant C; > 0. We deduce
. 11 C
(3.36) I Jim Tl < 33= [ 2 dulla o

as t — oco. Gathering (3.35) and (3.36), we conclude in particular that
1 T
T/ Se)fodt -0 in X7, as T — oo,
0

which is in contradiction with the estimate of Step 2.

Step 4. Conclusion. Taking advantage of the convenient blow up of R, (\) as A N\ 0 established
in the previous Step 2, we may now argue similarly as in the proof of Theorem 2.21. From Step 2,
there exists a sequence (Ay) such that A, — 0 and

IRz(An)ll(x,x0) = 0.
That means that there exist (f,,) and (g,) such that
||anX1 — 9, ”gn”Xz =1, fo= ( )gna

or equivalently that there exist (f,) and (=) (by defining fo = fu /| fullx2+ £n = gn /|l fsll x,)
satisfying

(3.37) ”anXl =1, fn >0, [enllx, =0, en=0—L) fn-
As in the proof of Lemma 2.8, we deduce that (2.25) holds, that is
N-1
(3.38) frn =" (Re(A) A Re(An)en + (Re(An) AN fo.
=0

Using the uniform boundedness
(Re(M)A) Re(\) € B(X2, X1), (Re(M)AYN € B(X1, X)), &1 cC Xy,
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we deduce that ( fn) belongs to a compact set of X1, or in other words, that there exist a subsequence
of (fn) (not relabeled) and f; € X; such that f, — f1 in X;. We may pass to the limit in (3.37),
and we get (3.33). O

3.5. Second existence result in the weakly dissipative case. Using a pure dynamical ap-
proach adapted from the second proof of Theorem 3.1 and from [77, Theorem 6.1], we establish a
second existence result which is less demanding in terms of conditions on the semigroup S¢.

Theorem 3.4. Consider a positive semigroup S = Sz on a Banach lattice X =Y’ for a separable
Banach lattice Y. We assume

(1) there exists o € YL\{0} such that [Scflo > [flo for any f € X4 and f— [flo :== (| f], ¥o)
is a norm on X. We then denotes X the vector space X endowed with this norm [-]o;

(ii) there exist v € L (R4 ; B(X)) and 0 < w € L' (R4 ; B(X, X)) such that
(3.39) S=V+WxS,
and we set

(3.40) M := i‘;g”v(tm@(x) <oo, O(t) = [w(t)|mwx,x) € L' (R+).

Then there exists a pair (A1, f1) € Ry x X3 \{0} such that Lf1 = M\ f1.

Remark 3.5. (1) When S satisfies (HS3) then (3.39) holds with

N—-1
(3.41) V=) Spx(ASE), W= (Sp AN

£=0
(2) By definition of the norm [-]o of X, we see that X is a weighted L* space or a weighted Radon
measures space. In many applications, when both X and X are Radon measures spaces, one can
choose N = 1. On the other hand, when X is for instance a (possibly weighted) LP space, one must
take N > 2 in most of the applications. In condition (ii), the first bound is not really demanding
and almost automatic in view of the estimates exhibited in Section 3.3. The second bound is

a kind of regularity estimate reminiscent of the enlarging and shrinkage technique developed in
[264, 172, 246].

Proof of Theorem 3.4. We split the proof into three steps.
Step 1. We define
R :=max(2[0][z1, [g0])),
for some go € X4 such that [go]o = 1, and next the nonempty convex and compact (in the sense
of X) set
C={feXy[flo=1, Ifll £ R},

as well as the increasing function

A1) = iE[S(0)flo. ¥t >0,

We have the alternative

o (1) supA > 2M,

e (2) supA <2M.

Step 2. We assume that the first term (1) of the alternative holds true, or in other words, there
exists Tp > 0 such that

(3.42) Vfel, [St,flo>2M.

We define as before Si f
To
P = ,
o f [STO f]O
By construction, for any f € C, we have @7, f > 0 and [®1, f]o = 1. On the other hand, using the
splitting structure (3.39) and the estimates (3.40), we have

Vfec.

IS@)FI < Mf| + / Ot — 5)[S(s) flo ds.
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From hypothesis (i) and the semigroup property, we also have
[Stflo > [Ssflo, Vt>s2>0.
The two above estimates together imply

MISL (T [Sufl
Bnflo Jo O Vsl

1
I +18l < &,
for any f € C. We have thus proved @7, : C — C. Thanks to the Tykonov fixed point Theorem,

there exists fr, € C such that ®r,fr, = fr,- In other words, we have built a pair of “almost
eigenvalue and eigenfunction”

fr, >0, [fnJo=1, Spfr, =e"fn,

with eMTo = [Sp, flo and thus A\; € [0,k1]. We conclude to the existence of f; € C such that
Lf1 = A1 f1 really similarly as in Step 2 of the Second proof of Theorem 3.1.

ds

||q)Tof|| <

A

Step 3. We assume that the second term (2) of the alternative holds true. In that case, for any
n > 1, there exists f, € C such that [S(n)f,]o < 2M. By compactness, there exists fy € C and a
subsequence (fp,) such that f,, — fo € C and

V=0, Vk(ne 2 t), [St)fnJo < [S(nk) fn,]o < 2M,
so that
(3.43) VE>0, [S(t)folo < 2M.

Using this particular initial datum, we argue similarly as in [77, proof of Theorem 6.1], and we
conclude to the existence of a stationary state. More precisely, we come back to the splitting
structure (3.39) of the semigroup S and we introduce the associated Cesaro means

T T T
(3.44) Up = %/0 S(t)dt, Vi = %/0 o(t)dt, Krp = %/0 (w + S)(t) dt,

for any T' > 0. We obviously have

IN

1 T
Vrlaco < 7 [ 1o@)lago de < 01,

On the other hand, we have

/OT(U) xS)(t)dt = /OT /ST w(t — s)dtS(s)ds < /OTw(T)dT /OT S(s)ds,

thanks to the Fubini theorem and the positivity of the two operators involved in this integral

formula. We deduce
T 1 (T
H/o w(r)dTT/O S(s) fo dsH

[ee) 1 T
/0 ) Ly |7 / S()fods| = 16]lz: [Ursulo.
thanks to assumption (ii), so that Krfy is uniformly bounded in X thanks to (3.43) and the
elementary estimate [Ur folo < [S7fo]o. We then deduce that Ur = Vr + Kr satisfies
[Ur foll < M|l foll +2M||©[[1  and 1 <[S7folo < 2M,

for any 7" > 0. By compactness, there exists Tj, — +00 and f; € X such that Ur, f — fi weakly
in X. Thanks to the second inequality, we have [f1]o > 1. We then argue thanks to the usual mean
ergodic theorem trick. For any fixed s > 0, we observe that

1Kz foll

IN

IN

SO~ fi = Jlm{gy [ SESORd =g | SO
1 Tr+s 1 s
= i), sone-g [ sona)
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weakly in X. By the lower semicontinuous property of the norm [-]o, we deduce

Tr+s s
Sh= Al < tmint{ [ 8@ lodt + - / S0 folodt} =0,

0o k Jry,

so that f; is a stationary solution, and thus f; is an eigenfunction associated to the eigenvalue
AL =0. g

4. IRREDUCIBILITY AND GEOMETRY OF THE FIRST EIGENVALUE

In this section, we are concerned with the geometric part of the Krein-Rutman theorem for an
unbounded operator £ on a Banach lattice X. We assume that the conclusions of the existence
part are achieved, namely

(C1) the first primal and dual eigenvalue problem has a solution (A1, f1, ¢1): there exist A; € R,
fie Xy NnD(L), ¢1 € YL N D(L*) such that

(4.1) Ifill=1, Lfi=Mfi, loll =1, L¢1=\i¢r.

By construction, we also have X(£) C {z € C, Re(z) < A\ }.
Assuming that S is positive as for the existence part and an additional strong maximum principle
property, we analyze the first eigenvalue problem.

4.1. More about positivity. For further references, we introduce several notions which are
strongly related to the positivity property for semigroups.

The signum operator sign. In a real Banach lattice X, we say that sign f € Z(X,X") is a
signum operator for f € X, if it satisfies the following properties

(sign f) f = |fl,
(signf)g <|g|, VgeX.

In the sequel, we will always assume that such an operator exists. We refer to [13, Sections C.I
& C.II] for a general introduction to the topic. In practice, we will only need a weak formulation
of the sign operator (see below) which may be defined only in some subspace X C X. We always
additionally assume that the signum operator satisfies

(sign (—f)) (—g) = (sign f)g, Vg€ X,

(signf)g=g, VgeX, if fe Xy,
We also define )

sign f = 5(I + signf).

e When X is a space of functions, the sign operator sign f associated to f € X corresponds to
the multiplication by the function sign f := 1759 — 1y<o. When X := LP(FE), we obviously see
that sign f € Z(LP(E)) for any f € LP(E). On the other hand, when X := Cy(FE), we only have
sign f € B(Co(E); M>(E)), where M*>(E) denotes the space of uniformly bounded measurable
functions, so that M>®(E) C (Co(E))”. In a space of bounded measures X = M!(E), we may
define the sign operator by means of the Radon-Nikodym theorem. For a given f € M!(E),
using Hahn decomposition, there exists indeed a measurable function o : E — {—1,1} such that
f = a|f|, and we then define (sign f)g = ag for any g € M (E).
e When X is o-order complete, in the sense that any increasing and upper bounded sequence has
a supremum (a common least upper bound), the operator sign exists and is more regular, namely
signf € B(X) for any f € X, see [266] and also [13, Section C.1.8]. We recover in particular that
sign f € B(LP(F)) for any f € LP(E).

Weak principle maximum and Kato’s inequality. We introduce now two definitions formu-
lated on an operator £ which are almost equivalent to the positivity property of the semigroup S
when L is the generator of S.

e We say that the operator L satisfies the weak mazimum principle when
(4.2) keR, feD(L)and (k—L)f >0 imply f>0;
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e We say that the operator L satisfies Kato’s inequality when
(4.3) VfeD), Lfl > (sienfLS.
Since |f| does not necessarily belong to D(L), the correct way to understand Kato’s inequality is

(4.4) VfeDKL), Ve DL)NYy, ([fl,L%%) = ((sign f)LS, ).

We immediately see from the definitions that (4.3) is equivalent to assuming
(4.5) VfeD(L), Lfy=(signgf)LS.

Remark 4.1. We complement Lemma 2.1, by claiming that for a semigroup S =S¢ on a Banach
lattice X, there is equivalence between the fact that S is positive and k — L satisfies the weak
maximum principle for any k > w(L), what is straightforward using that these properties are
equivalent to the fact that Re(k) > 0 for any k > w(L). These properties also imply that Kato’s
inequality holds true, see [266, 11], [12, Proposition 1.1], [10, Remark 3.10] and the textbook [13,
Theorems C.II.2.4, C.I1.2.6 and Remark C-11.3.12].

We end this section by introducing other notions of positivity which strengthen the previous defined
positivity condition.

Strict order. We may define a first stronger order > (or <) on X by writing for f € X

f>0 if fe X \{0}
and similarly a stronger order > (or <) on X’ by writing for ¢ € X’
Y>>0 if ¢e X, \{0}.
We may next define the strict (and stronger) t order > (or <) on X by writing for f € X
f>00r feXyp iff Vye X \{0}, (,f)>0,
and similarly the strict order > (or <) on X’ by writing for ¢ € X’
p>0o0r¢pe X, iff Vge X \{0}, (,g9) > 0.
On the two Banach lattices X and Y, we have thus three positivity notions with > (associated to

X+ and Yy ) stronger than > (associated to X;\{0} and Y;\{0}) which itself is stronger than
> (associated to X4 and Y, ).

Let us comment on the notion of strict positivity.

Examples 4.2. In the space Co(E), the strict order is defined by f > 0 iff f(x) > 0 for any
x € E. In a space LP(E, &, 1), 1 < p < oo, the strict order is defined by f > 0 iff f(x) > 0 for
p-a.e. x € E. In the space M*(E), the strict order is defined by duality by f > 0 iff (f,¢) > 0 for
any ¢ € Co(E), ¢ 20, ¢ #0.

Remark 4.3. In a Banach lattice X such that intX, # 0, the common definition of the strict
order is X1 4 := intX . In particular, in the case when E is compact and X = Cyo(E) = C(F), we
have intX, # O and the definition of Xy introduced in Exzamples 4.2 coincides with intX . In
all the other examples considered, we have int(X;) =0, and thus our definition of the strict order
does not coincide with the one defined through the set int(X).

Remark 4.4. Another notion of strict order can be defined through the notions of ideals and quasi-
interior points as briefly explained now, see [13] or [37, Chapter 10] and the references therein for
details. Defining the segment [g1, g2| and the set Iy for g1,92 € X and f € X;\{0} by

[91,92) :={9 € X; g1 <g<ga}, I;:=|J[~kS,kf] = Span[0, f],
k>0

one shows that Iy is an ideal in the sense that g € Iy implies |g| € Iy and 0 < g < f implies
g € Iy. We say that f is an order unit if Iy = X. When intX, # (0, we find that f is an order unit
iff f € intXy from Lemma 2.23, so that we recover the notion of strict positivity defined above.
On the other hand, we say that f is a quasi-interior point if I; = X. When X = LP(E,&,p),
1 < p < oo, uis a o-finite diffuse (or atomless) measure, one shows that f is a quasi-interior point
iff f > 0 a.e., see [37, Examples 10.16], so that we also recover the notion of strict positivity defined
above by defining f € X414 iff Iy = X.
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We finally point out the following result. For a semigroup S = S, in a Banach lattice, under the
mild assumption that there exists a strictly positive subeigenvector for the dual problem, namely

doe X\, JbeR, L¢<bg,
Kato’s inequality (4.3) implies that S is positive, see [12, Theorem 1.6].

4.2. Irreducibility and strong maximum principle. We present some other material involving
the strict positivity.

In the sequel, for both spaces we will always assume X, # 0, Y, # 0 and

(46) f+ S X++ 1mphes f S X++, (b+ S Y++ 1mphes (b S Y++.

Lemma 4.5. The property (4.6) holds true when X is a reflexive space, X = LP, p € [1,00],
X=CyorX=M"

Proof of Lemma 4.5. Assume first that X is reflexive and fix f € X such that fi € X ;. There
exists 0 < o* € X', ||¢*|| = 1 such that

||f—||:<§0*;f—>: sup <1r/)7_f>7

0<p<p®

where we have used the corollary (2.2) of the Hahn-Banach dominated extension theorem in the
first equality and the definition f_ as an element of X" in the second equality. There next exists
0 < ¥* < ¢*, such that

[f=Il = @% =f) = % F- = f+),
where we have used that By is compact for the weakly * topology o(X’, X) in the first equality.
We deduce

0 S <(¢0* _¢*7f7> = _<¢*7f+> S 07
with (¢*, f1) < 0 if ¥* # 0. That implies ©* = 0 and f_ = 0.
We next assume X = LP(E, &, u) and we take f € X such that fy € X, . From the definition of
X1+ made explicit in Examples 4.2, we have fi(z) = max(f(x),0) > 0 a.e., so that f(z) > 0 a.e.
and finally f_(z) = 0 a.e.. We last assume X = M'(FE,&) and we take again f € X such that
f+ € X4y, Writing f = a|f|, where o : E — {—1,1} is the measurable function related to Hahn
decomposition as introduced in Section 4.1, the condition fy = ai|f] > 0 means that a4 (z) > 0
for |f|-a.e. © € E. We deduce again a(z) > 0 for |f|-a.e. x € E and thus f_ = a_|f| =0. O
For an operator A € #(X), we have yet formalized a positivity condition in section 2.1, by
Other possible definition of positivity may be
(P2) A: X:\{0} — X\ {0};
(PB) A: X++ — X++.
We now define a stronger notion of positivity, named as strong positivity condition, by
We list without proof some elementary properties about these different notions and also refer to
Section 6.2 for further discussion. We have (P2) = (P1), (P3) = (P1) as well as (P4) = ((P3),
(P2)). We also have A : X, — X iff A* Yy - Y ; A Xy — Xy if A Y, — Yy
A : X+\{0} — X++ 1ff A* : Y+\{0} — Y++.

We say that A\ — £ satisfies the strong maximum principle if
(4.7 feXinD(L), A\=L)f>0 imply f>O0or f=0.

It is worth emphasizing that if A — £ satisfies the strong maximum principle for some A € R then
N — L satisfies the strong maximum principle for any A < \.

We say that a positive semigroup S is irreducible if
(4.8) Ve X \{0}, Vo e Yi\{0}, 3Ir >0 (S:f,¢)>0.

A semigroup S is classically said to be irreducible and aperiodic if the above positivity condition
holds for all sufficiently large times, namely

(4.9) Ve X \{0},VoeY, \{0}, 3T >0,Vr>T (S.f,¢)>0.
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Other notions of strong positivity for the semigroup S are

(410) a7 > 0, ST : X+\{O} — X++,
T
0

We summarize some possible implications between the previous positivity notions.

Lemma 4.6. For a positive semigroup S, the following hold:

(1) The pointwise strong positivity condition (4.10) implies the condition (4.11);

(2) The integral strong positivity condition (4.11) implies the irreducibility condition (4.8), but the
reverse implication is false. Similarly, the irreducibility and aperiodicity condition (4.9) implies
the irreducibility condition (4.8), but the reverse implication is false;

(3) The irreducibility condition (4.8) is equivalent to the fact that Re(N) : X4 \{0} = X414, for
any A > A1, as well as to the fact that X\ — L satisfies the strong mazimum principle (4.7) for any
AeR.

The result is very classic, at least for strongly positive semigroup, see e.g. [13, Definition C.3.1] or
[37, Proposition 14.10]. For the sake of completeness, we however present a short proof.

Proof of Lemma 4.6. We prove (1). We assume (4.10) and we fix g € X1 \{0}, ¢ € Y;\{0}, so
that (S(T)g, ¢) > 0. Observing that the function ¢ — (S(t)g, ¢) is continuous, there exists ¢ > 0
such that (S(t)g,#) > 0 for any ¢t € [T — ¢, T}, so that
T T
</0 S(t)dtg, &) = /O (S(t)g, d)dt > 0.

Because ¢ € Y. \{0} may be chosen arbitrary, we deduce (4.11).
We prove (2). We assume now (4.11) and we fix g € X3 \{0}, ¢ € Y;\{0}, so that

[ st ={ [ sa.0) >0

by assumption. We get (4.8) by observing that the function ¢ — (S(t)g,$) must be positive
somewhere on [0,7]. For the reverse implication we refer to [46, 154], where is studied an exam-
ple of growth-fragmentation operator associated to mitosis satisfying the irreducibility condition
(4.8) but not the integral strong positivity condition (4.11) nor the irreducibility and aperiodicity
condition (4.9), see also Section 9.

We prove (3). We finally assume (4.8). From the above continuity argument, for any g € X \{0},
¢ € Yi\{0} there exist 7 > ¢ > 0 such that (S(t)g,¢) > 0 for any ¢t € [T —¢,7+¢]. As a
consequence and thanks to the representation formula (2.13) for some fixed A > A; which holds
thanks to Lemma 2.2-(ii), we have

ReWg.0) = ([ e 5(0itg.0) >0
Because ¢ € Y;\{0} is arbitrary, we have established that Rz (A)g € X4 for any g € X;\{0}.
In other words, when A > Ay and f € X, N D(L) satisfy g :== (A — £)f > 0, we deduce that
f=Rc(Ng € X4, what is the strong maximum principle. This one is obviously equivalent to
the strong positivity property R (A) : X1 \{0} — X,;. On the other way round, writing the
above identity as

/0 T e S(t)g, 6)dt = (Re (Mg, ),

we see that the strong maximum principle implies that the RHS term is positive for any g € X \{0},
¢ € Yi\{0}. As a consequence, the LHS term is positive and there exists 7 > 0 such that
(S(1)g, ) > 0, which is nothing but the irreducibility condition (4.8).

O

We present two other elementary results about the strong maximum principle.
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Lemma 4.7. Consider L satisfying (H1) and A € R. Then the following assertions are equivalent
(1) A — L satisfies the strong mazimum principle for any f € D(L) N X4 ;

(2) X\ — L satisfies the strong maximum principle for any f € D(LF) N X, for some k > 1;

(8) A — L* satisfies the strong mazimum principle for any ¢ € D(L*) NY,;

(4) X — L satisfies the strong mazimum principle for any ¢ € D((L*)*) NY, for some £ > 1.

Proof of Lemma 4.7. Assume that A — L satisfies the strong maximum principle for some A € R
and k£ > 1 and consider ¢ € D(L*) N Y \{0} such that (A — L*)¢ > 0. For any £ > max(\, A1)
and g € D(L£F1) N X, \{0}, thanks to(H1) and the strong maximum principle, there exists
f € D(LF)N X, such that (k — £)f = g. As a consequence, we have

(0,9) = (&, (k—L)f)
= (k=L f)> (k=N (9, f) >0.

Since g € D(L£F=1) N X, is arbitrary and D(£¥~1) N X, is dense in X, we deduce that ¢ > 0.
We have proved that A — £* satisfies the strong maximum principle. The other implications can
be proved similarly. O

Remark 4.8. (1) In many applications, we start proving the strong mazimum principle on smooth
enough functions (belonging to the iterated domain) for which pointwise arguments may be used.
(2) We may replace the condition (1) by assuming that A— L satisfies the strong mazimum principle
for f €CN X,y for a subspace C C D(L) such that (A — L)~ € B(C) and C is dense in X.

The strong maximum principle can be seen as a consequence of the weak maximum principle
together with the existence of a family of strictly positive barrier functions. We give now a typical
result which can be applied (or modified in order to be applied) in many situations.

Lemma 4.9. We assume that

(i) the operator A — L satisfies the weak mazimum principle;

(ii) there exists a subset ¢ C X4+ N{g € D(L); (L—N)g > 0} such thatV f € D(L) N X \{0},
dg € 4 such that (g — f)+ € D(L).

Then A — L satisfies the strong mazimum principle.

Proof of Lemma 4.9. We consider f € D(£) N X;+\{0} such that (A — £)f > 0 and choose g € ¢
such that h:= (g — f)4+ € D(L). We remark that from Kato’s inequality

(L —XNh >sign, (g — f)(L=N)(g—f)>0.

As a consequence of the weak maximum principle, we have h < 0. That implies h = 0, so that
g— f <0 and finally f > 0. a

The above barrier functions technique is also useful for obtaining the condition (H2) (possibly in
a constructive way).

Lemma 4.10. For an operator L, we assume that
(i) the condition (H1) holds with a constant k1 € R;
(i) the hypothesis (ii) in Lemma 4.9 holds with A\ = k;
(i) there exists hg € X \{0} such that for any g € 4 there exists € > 0 such that g > €hy.

Then the property (H2) holds true.

Proof of Lemma 4.10. Thanks to assumption (i), we may define fo € D(L£) N X;\{0} as the
solution to the equation (k1 — L) fo = ho. From the proof of Lemma 4.9 and condition (iii), there
exists g € ¢ and next € > 0 such that fo > g > ehy. Coming back to the equation, we have

Lfo = k1fo—ho > (k1 —e ) fo,

so that condition (H2) holds true with g := k1 — e~ ! thanks to Lemma 2.4-(ii). O
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4.3. The geometry of the first eigenvalue problem. We come back on and state a result
about the geometry of the first eigenvalue.

On the one hand, we assume that X is a Banach lattice such that

(X1) the signum operator is well define in X, X, # 0 and the property (4.6) holds true.
On the other hand, we consider an operator £ on X which satisfies the conclusion (C1) about the
existence of a solution (A1, f1,¢1) to the first eigentriplet problem. We also assume

(H1’) the weak maximum principle

(4.12) A> A, fe€DL), A=L)f>0 imply f>0
and its Kato’s inequalities counterpart

(4.13) (signf)Lf < LIf[,  (signy fILF < LSy,

as well as

(H4) the strong maximum principle
(4.14) A>AM, feXynDL), A—=L)f>0 imply f>0or f=0.

We may then state our main result in this section, where we recall that N(A) denotes the null
space associated to the operator A.

Theorem 4.11. We assume that X is a Banach lattice satisfying (X1). We consider an unbounded
operator L on X which satisfies the conclusion (C1) about the existence of a solution (A1, f1,¢1)
to the first eigentriplet eigenvalue problem, the weak mazimum principles and Kato’s inequality
(HY'), as well as the strong mazimum principle (H4).

Then the following hold

i) f1 >0, ¢1 > 0 and A\ is the unique eigenvalue associated to a positive eigenvector.

it) A1 is algebraically simple:

N((£—A)F) =Span(f1), Vk>1,
N((L* = \)¥) = Span(¢1), VEk>1,

in particular f1 (resp. ¢1) is the unique positive and normalized eigenvector of L (resp. L*)
associated to A1. Finally, the projection on the first eigenspace (associated to A1) writes

Hf = <f7¢l>fl~

Remark 4.12. (1) It is worth emphasizing again that (4.12) is true when L is the generator
of a positive semigroup, and that (4.14) is true when Sp enjoys additional strong positivity (or
irreducibility) condition as formulated in (4.8), (4.9), (4.10) or (4.11). As a consequence, the
conclusion of Theorem 4.11 holds true when L is the generator of a positive semigroup which
satisfies the hypotheses of the existence part of the Krein-Rutman Theorem 2.21 and one of the
additional above strict positivity conditions.

(2) Theorem 4.11 has to be compared with the seminal Krein and Rutman Theorem 1.2 ([214]), to
the many results gathered in [13, Part C-III] (see in particular [13, Proposition C.3.5], [13, Theo-
rem C.3.8] and the original paper [167]) and to the more recent contributions [250, Theorem 5.3],
[37, Theorem 14.15] and [207, Theorem 5.1]. Probably many of the conclusions of Theorem 4.11
are very similar (or even included) in the material of [13, Part C-III]. However, our assumptions
slightly different since we do mo make explicit reference to a positive semigroup but rather refer to
the weak and strong maximum principle.

(8) Our proof is quite direct and elementary and uses similar arguments as those used during the
proof of [250, Theorem 4.3] and [207, Theorem 5.1]. We learnt this kind of technique in the (less
abstract and general) proof of the uniqueness part of [281, Lemma 2.1].

(4) From i), we deduce that L decomposes according to X = Xo ® X7 with X7 := Span f1 and
Xo := (Span¢)*t = {f € X; (f,¢1) = 0} in the sense of [205, §111.5.6]. More precisely, X =
Xo ® X1 is a topological direct sum, L: Xo N D(L) — Xo and L : X1 — X;.

The proof of Theorem 4.11 is split into the following Lemma 4.13, Lemma 4.15, Lemma 4.16 and
Lemma 4.18.
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Lemma 4.13. Under assumptions (C1) and (H4), the solution (A1, f1,¢1) to the first eigentriplet
problem satisfies

(4.15) fi>0 and ¢1>>0.

Proof of Lemma 4.13. By definition of f7, we have

fre Xi:\{0}, (M —£L)fr >0,

and thus f; > 0 from (H4). Thanks to Lemma 4.7, the strong maximum principle holds for
— L*, and the same proof leads to the same conclusion, namely ¢; > 0. O

Remark 4.14. [t is worth emphasizing that the same conclusion holds when we only assume that
f1 € Xy and ¢1 € Y, satisfy

(4.16) IAll=1, LAi=Mfi, leill=1, L¢1= A,

what we see by just repeating the argument. In that case, we deduce that \] = A1 by writing

A(f1,01) = (Lf1,01) = (f1, L5¢1) = A1 {f1, ¢1),
and observing that (f1,¢1) # 0.

Lemma 4.15. Under assumptions (C1) and (H4), M\ is the unique eigenvalue associated to a
positive eigenvector for L (resp. for L*).

Proof of Lemma 4.15. Consider A € C and f € X;\{0} such that Lf = \f. We compute

0= <()\ - E)f7 ¢1> = <f7 ()\ - E*)¢l> = ()\ - )\1)<f7 ¢1>7
and thus A = A1 since (f, ¢1) > 0. The same proof applies to the dual problem. O
Lemma 4.16. Under assumptions (C1), (H1') and (H4), we have N (L — A1) = Span(f1) (resp.

N(L* — \1) = Span(¢1)). In particular, f1 (resp. &1) is unique (because of the positivity and
normalization condition).

Proof of Lemma 4.16. Consider a eigenfunction f € X\{0} associated to the eigenvalue A;. First,
we observe from Kato’s inequality that

M|f = Asign(f)f = sign(f)Lf < LIf].

That inequality is in fact an equality, otherwise we would have

ML o1) # (LLfL 1) = (I £701) = M| f], ¢1),

and a contradiction. As a consequence, |f| is a solution to the eigenvalue problem A\ |f| = L]|f], so
that

Mfr=Lf,

by writing f1 = (|f| £ f)/2. The strong maximum principle assumption implies f1 > 0 or f1 =0,
and thus fy > 0 or f_ > 0 thanks to Lemma 4.13. Without loss of generality we may assume
f+ > 0. From (4.6), we then deduce f > 0. We introduce the normalized eigenfunctions f=rf
and f~1 = Tlfl with

(4.17) (f. 1) = (fr.0n) =1
Now, thanks to Kato’s inequality again, we write
M(f = fi)y =sign, (f = F)L(F = f) < £(F = fi)+,

and for the same reason as above that last inequality is in fact an inequality. The strong maximum
principle implies that either (f fl)Jr =0, or in other words f < fi, either (f fl)Jr > 0 or in
other words f > fi. Because of the identity (4.17) and the fact that ¢; € X/, \{0} the second case
in theNabove alternative is not Npossgble. Repeating the same argument with ( f1 f)+ we get that
f1 < f and we conclude with f = f;. The same proof applies to the dual problem. O
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Remark 4.17. Under the same hypotheses as in Lemma 4.16, we have v € span(¢1) if ¥ € Y4
satisfies L1 > A and g € span(f1) if g € X4 satisfies Lg > A\1g. In the second case, we indeed
cannot have L*g — A\1g € X1 \{0}, since this would implies

<‘Cg - )\197¢1> > 07

and this would be in contradiction with the fact that

(Lg —A1g,01) = (9, L7 b1 — A1) = 0.

We thus must have Lg— A\1g = 0 and we conclude thanks to Lemma 4.16. The same proof applies
to the dual problem.

Lemma 4.18. Under assumptions (C1), (H1') and (H4), A1 is algebraically simple.

Proof of Lemma 4.18.  We use an induction argument. We have already proved that N((£ —
A)*) = Span(f;) for k = 1. Assume then the result proved for any ¢, 1 < ¢ < k, and consider
f € N((£L—X1)FF!). That means that (£ — A1) f € N((£ — \1)¥), and thus (£ — \1)f = rf1, with
r € R, thanks to the induction hypothesis. If r = 0, then f € N(£ — A1) = Span(f1). Otherwise,
r # 0, and then

)‘1<f7 ¢1> = <f7 £*¢1> = <‘Cf7 ¢1> = <)‘1f + Tfla ¢1>7

which in turn implies r{f1, #1) = 0 and a contradiction. That concludes the proof. g

4.4. Mean ergodicity. We deduce from the above analysis a first classical and general but rough
information about the long-time behaviour of the trajectories associated to a semigroup.

More precisely, assuming the existence and uniqueness of the first eigentriplet (A1, f1,¢1) for the
generator £ of a semigroup S and introducing the rescaled semigroup Sy i=e Mt g (t), we wish to
establish the following mean ergodic property

(CE1) for any f € X, there holds

1 (T
(4.18) T/ Spfdt — (f,¢1)f1, as T — o,
0

in a sense to be specified.

Theorem 4.19. Consider a positive semigroup S on a Banach lattice X and assume that its
generator L satisfies the conclusions of Theorem 4.11 about the ezistence and uniqueness of the
first eigentriplet (A1, f1,¢1). With the above notations, we assume furthermore that

(1) (S,) is bounded;

(2) Bx is weakly compact for a topology which makes f — (f,¢1) continuous.

Then, the above mean ergodic property (CEL) holds for the topology introduced in (2).

The result is not new, see for instance [139, Corollary V.4.6]. We present however the very short
proof for completeness and further discussion.

Proof of Theorem 4.19. Fix f € X and define

1 T
ur = T/; Stf dt.
From (1), we have
1 r o
Jurll < 7 [ 18 e <MY VT >0,

We also compute

1

T ~
wroon) = 7 [ Gufoonpat = (fon), VT >0

Thanks to assumption (2), we deduce that there exists f* € X and a sequence (1}) such that
Uy, _>f* and <f*7¢1>:<f7¢1>
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Because (§t f) is bounded, we may use the usual ergodicity trick as in the second proof of Theo-
rem 3.1 and for any ¢ > 0, we have

Sif* — f* = lim i{/Tkﬂgsfals—/tgsfalg}:0.
0

k—oo 1k

T
We have established (£ — A1) f* = 0, so that f* € Span(f;) and more precisely f* = (f,é1)f1. By
uniqueness of the limit, it is the whole family (ur) which converges to f*. O

We present a variant of the previous result in which we see that in a very general framework
(including all the applications we present in the second part of this work) the above hypotheses
(1) and (2) are not needed (or more precisely are automatically satisfied).

Theorem 4.20. (1) Consider a Banach lattice X C Li (E,&, 1) and a positive semigroup S on

loc
X such that its generator L satisfies the conclusions of Theorem 4.11 about the existence, positivity

and uniqueness of the first eigentriplet (A1, f1,¢1). Then the mean ergodic convergence (CE1)
holds for the weak topology of Lll.

(2) Assuming additionally that S is strongly continuous and that
(4.19) XF = (D(L*), || - || xx) C L with strong compact embedding for some k > 1,
where
| les = 1oy, +- 1L flloy .V F € D(CY),
then the mean ergodic convergence (CEL) holds for the strong topology of Lll.
Proof of Theorem 4.20. Step 1. We first recall a very classical result about conservative semigroups.
Denoting S; := e~ ! S(t), we observe that this rescaled semigroup satisfies
(i) St >0;

(i) Stf1 = f1 for any t > 0;

(iii) (Sig,¢1) = (g, ¢1) for any g € X and ¢ > 0.
We denote [f]; := (|f],$1) which is a norm on X (we use here that ¢; > 0) and Sy is obviously a
contraction for this one. Indeed, for any f € X, there holds

|Sef| = |Sefs = Sef-| < Sifs + Sef- = Silf),

using (i) in the inequality, and next

(4.20) [gtf]l = <|§tf|7¢1> < <§t|f|7¢1> = [fh,

using (iii) in the last equality. Abusing notations, we also denote by X the completion of X for the
L}, norm (so that we may identify X to a closed subspace of Lj, ). We may then extend Sy to X
by uniform continuity and this extension still satisfies the properties (i)-(ii)-(iii) on X. Consider
now f € X such that H(f/f1)f1 € X for some convex function H : R — R, where we use here that
X C L., and thus in particular f; > 0 a.e. on E, in order to give a sense to the term H(f/f1)f1.
From (ii), we have

U(Seh)/ Hilfr = Slef ) f) ),
for any real affine function ¢. Next from (i) and (2.7), we have
H((Sef)/ hilfy < SiH(f/ f1) ],

because of H = sup, g ¢ and the supremum can be taken on a numerable set of affine functions.
Thanks to (iii), we conclude that

(4.21) (H((Sef)/ filfr.dn) < (HIf/ fi)f1, 1), V>0

Step 2. We normalize (f1,¢1) = 1. For f € X C Lén so that fo1 = (f/f1)fi¢1 € LY, the de
la Vallée Poussin theorem tells us that there exists an even and convex function H : R — R4
such that H(s)/s — +oo as s — oo and H(f/f1)fi¢1 € L*. Using the notations of the proof of
Theorem 4.19, the Jensen inequality and the above estimate (4.21), we deduce

1 /T ~
| i onodn< £ [ [ 1 nodudc< [ 1070 0vdn
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for any T' > 0. Now, for any A € & and T, K > 0, we have

/ urlagrdu
E

ur ur
—1 1 d +/ —15 1 d
T etk Afrordp Ty Herlex Afrordp

< %/EH(UT/fl)f1¢1dM+K/ElAf1¢1dM

K
< m/EH(f/fl)f1¢1dM+K/E1Af1¢1d/17

from what we immediately deduce that (ur) belongs to a weak compact set of Lél. We conclude
that (4.18) holds for the weak convergence in Lél as in the proof of Theorem 4.19.

Step 3. We now additionally assume that (4.19) holds with strong compact embedding for some
k > 1. Taking f € D(L*), we compute

(L7 (Sef)], b1) = (1S (L7 f)], 1) < (IL7f], 61),

for any 7 < k and any ¢t > 0, and thus the same bound holds for (ur). From (4.19), we deduce
that up to the extraction of a subsequence, (ur) converges a.e. on E. Together with the weak
convergence in Lé,l yet established, we classically deduce that the whole family (ur) converges for
the strong topology in Lél. We conclude that the same holds for any f € X by taking advantage
of the fact that D(LF) is dense in X for the strong topology of X, and thus for the strong topology
of X, and of the estimate of contraction (4.20). O

Remark 4.21. (1) A similar conclusion holds as in Theorem 4.20 when we assume X C ML,

D(LF) C LL. and D(L**) C LL . for some k > 1 instead of X C L .. For f € D(L*) C Li_, we
may indeed repeat the proof of Theorem 4.20 and we obtain the same conclusion. We next define
X as the closure of D(LF) for the norm [-]1. We conclude that (4.18) holds weakly in Lél for any

f € X by a density argument.

(2) The proof of Theorem 4.20 is based on so-called General Relative Entropy (GRE) techniques
as developed for instance in [232], [241] and [45]. These ones are known to be useful for some
classes of PDEs and for stochastic semigroups in order to establish uniform in time estimates and
longtime convergence results.

The main interest of the two previous results is that they do not ask any new information on the
semigroup but they are just based on the eigentriplet stationary problem. The shortcoming is that
they are formulated in terms of the norm []; instead of the norm of X. We present a second
variant of Theorem 4.19 which is well adapted to the splitting framework developed in Sections 2
and 3 and is precisely formulated in a weak or strong topology of a space Xy O X.

Theorem 4.22. Consider a positive semigroup S = Sp such that L satisfies the conclusions of
Theorem 4.11 about the existence and uniqueness of the first eigentriplet (A1, f1,¢1). Assume
furthermore that S satisfies the splitting structure introduced in (HS2) in section 3.2 or (HS3) in
Section 3.2, or more precisely, there exist two families of operators (V(t)) and (W (t)) such that

S=V+WxS,

a real number k < A1 and some decaying functions ©; : Ry — Ry with ©1(t) — 0 as t — oo,
O € L'(Ry) such that the following estimates hold

(4.22) IVt zcx) = O),  [V(t)e™™ | zx,x0) = O(©1),
(4.23) W (t)e™"" | zxo,20) = O(O2),

with X1 C Xo C Xp, where Xy is the space X endowed with the norm [g]1 := (|g], ¢1)-

(1) Assume furthermore that X1 C Xo with compact embedding for the weak or the strong topology
in Xo and this topology makes f — (f, $1) continuous. Then the mean ergodic convergence (CE1)
holds true for the above strong or weak topology.

(2) Assume furthermore that X C Ll ., S is strongly continuous, and that the space X* defined by

loc?
(4.19) is strongly compact embedded in LllOC for some k > 1. Then the mean ergodic convergence

(CE1) holds true for the strong topology of X.
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Proof of Theorem 4.22. We define
V(t) :i= V(e ™M, W(t) := W(t)e MY,

so that
S=V+WxS,
and
(4.24) M = igg ||‘7(t)||33(X) < 00, ||‘7||33(X7X0) <01 € Co(Ry),

O (t) = |[W(t)l| (0. 0) € L (Ry).

Step 1. We furthermore assume (1) and that the weak topology of X makes f — (f, ¢1) continuous.
We denote by & the weak or the strong topology Xy (depending of the assumption made on the
embedding X; C Xj). For fp € X, we split

F(8) = Sefo=w(t) +k(t), v(t):=V{t)fo, k()= (W *S)(1)fo.

and we observe that ||v(t)||x, — 0 as ¢ — oo from the second estimate in (4.24). On the other
hand, we have

sup [[k(t)[|x, < [[WllLrsup [|Sefollae < W2l follxo,
t>0 t>0

from (4.20). In particular, k(t) belongs to a compact set of .7, so that (f(¢)):>0 also belongs to
a compact set for the same topology 7. The same argument used on the Cesaro function (ur)
defined during the proof of Theorem 4.19 implies that there exist f* € X and a sequence (T}) such
that

ur, — f* in the sense of 7 and  (f*,¢1) = (f, é1),
the last identity following from the assumption that f — (f, #1) continuous for 7. We may then
conclude as in the proof of Theorem 4.19.
Step 2. We furthermore assume (2), and by linearity we may assume fo € X, (fo,¢1) = 0. We
recall that (4.18) holds for the strong topology of Lén from Theorem 4.20 and that ||v(¢)||x, — 0
as t — oo from Step 1. Arguing as in Step 3 of the proof of Theorem 3.4, we have

T _ T T—s _
K(T):= %/0 (W« S)(t)dt = %/ W(s)/o S(u) duds

0
T T— s~
= /0 W (s) T U(T —s)ds,

where Uy = Ure=7T U, is defined by (3.44), so that ur = ﬁTfo and [ur|; = 0 as T — oo from
Theorem 4.20. As a consequence, we have

T/2 _ T ~
IK(T) follx, < O2(s)[U(T = s)lods + | O(s)[U(T — s)ods
0 T/2
< 1Ozl sup [U®)]o+ [ Oa(s)dssup[U(t)]o — 0,
t>T/2 T/2 >0
as T — oo. All together, we have established that ||ur||x, — 0 as T — . O

5. THE GEOMETRY OF THE BOUNDARY POINT SPECTRUM

We summarize the results established up to now by assuming that the main conclusions in the
previous sections are achieved, namely

(C2) the first eigentriplet problem (4.1) has a unique solution (A1, f1,¢1), and furthermore,
f1> 0 and ¢; > 0. In that situation, we usually normalize the eigenvectors by (f1,¢1) = 1 and
either ||f1]| =1 or ||¢1] = 1.
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In this section, we aim to describe one step further the geometry of the spectrum and more precisely
to get some some information on the boundary point spectrum

E;(L) = EP(E) QZ)\l = EP(E) n E+(£)

That will be possible by introducing first a suitable and usual complexification framework and
next by assuming a stronger positivity property on £ or on the associated semigroup. Here and
for further references below, we recall that we define the sets

Ed(ﬁ) C EP(L) (@ E(E),

where the point spectrum set ¥ p(L) is the set of eigenvalues, namely A € p(L) if N(L—X) # {0},
and the discret spectrum set Y4(L) is the set of eigenvalues which are isolate and have finite
algebraic multiplicity.

5.1. Complexification and the sign operator.
We present some materials, most of them being very classical, about the sign operator in a complex
Banach lattice and we refer to [303, 13] for more details.

Complexification. The complexification space X¢ associated to a real Banach lattice X is defined
by Xc¢ := X +iX so that f € X¢ if f = g+ ih, g,h € X. In general, we just write X without
mentioning the field, although when we need to specify it we write X¢ or Xr. We extend on X¢
the order defined on Xk by writing

f=g+ith>0 if g>0andh=0.

The conjugate f of a complex vector f = g+ih is classically defined by f = g —ih. We then define
the modulus

(5.1) |f| ;== sup (gcosf+ hsind),
0€[0,27]

which indeed exists for such a family of vectors. One checks the usual modulus properties:
f1=0, [fl=0 i f=0, [M|=[Af [f+gl <[fl+]gl,
for any f,g € X and A € C. We finally define the norm on X¢ by
11 == Illg + ihlll xe,
and we observe that X¢ has a complex Banach lattice structure. We extend the definition of
A € B(XR) to X¢ by setting
A(g +ih) = Ag+iAh, Vg+ihe Xc.

The operator sign. We classically extend the sign operator defined in Section 4.1 to the present
complex Banach lattice framework. Instead of dealing with the most general case, we will use
some regularity assumption on the Banach lattice X which is suitable for our purpose and that we
present below. Similarly as in Remark 4.4, for f € X, we define

Xy = U{gEX; lgl < nlfl},

and next, similarly as in Theorem 2.24, we define
Aflgl :=nf{C > 0; |g| < CIf[}, Vge Xy

We summarize the regularity conditions we need on the Banach lattice X by assuming :

(X2) For any f € X such that |f| € X, there exists a sign operator sign f € Z(X), with the
following properties
(5.2) sign fosignf =1, (signf)f=|f|,
(5.3) (sign f) g = (sign (uf)) (ug), |(signf)g| <lgl, Vge X, VueSh
and furthermore

(X3) for any f € X such that |f| € X, the inclusion Xy C X is dense for the strong, the
weak, or the weak-* topology, and for all f € X and g € X

(5.4) (g€ Xgand |g| <C|f|]) & Aflg—irlfl]] < VC2+12,VreR.
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For a space of functions, the sign operator is defined as the multiplication by (abusing notations)
(55) Sig]fle: f/|f|7 vaXv |f|€X++'

Lemma 5.1. With (5.5), the properties (X2) and (X8) hold when X = LP(E, &, p) or X =
Co(E).

Proof of Lemma 5.1. For f € X, |f| € X1y, we just indicate the proof of X; = X, the other
algebraic properties being clear from the definition (5.5). When f € LP such that |f| > 0 p-a.e.
and 0 < g € LP, we set g, := g A (n|f|). We have 0 < g, < g and g,, — g strongly L? if p < oo and
weakly-x L if p = co. The general case g € LP is dealt in the usual way by introducing positive
and negative parts and next real and imaginary part. That concludes the proof of Xf = LP. The
proof of X y = Cy(E) is similar. O

A sign operator satisfying (X2) and (X3) can actually be built by using Kakutani’s theorem in
general Banach lattices whenever |f| is a quasi-interior point, see for instance [37, Chapter 14.3].
In X = L*°(E, &, 1), being a quasi-interior point is more demanding than belonging to X, and
our framework is thus more general in that case. In X = M'(FE), the situation is even worst
since there is no quasi-interior point, so the approach via Kakutani’s theorem does not provide
any sign operator. However, we can associate to f € M(E) such that |f| > 0 a sign operator
by means of the Radon-Nikodym theorem. Denoting a : £ — S! the measurable function such
that f = «|f], the multiplication by &/|«| defines a sign operator sign f € B(X), or in other words
(abusing notations)

(5.6) sign f :=a/lal, Vf=alfle M', |fle M},.
Lemma 5.2. With the definition (5.6), X = M*(E) enjoys the properties (X2) and (X3).

Proof of Lemma 5.2. Take f € X such that [f[ > 0, meaning that |f[(O) > 0 for any open set
O C E. As for Lemma 5.1, we only sketch the proof of the density property X ; = X, which holds
here for the weak-* topology, the other algebraic properties being clear from the definition (5.6).
For ¢ > 0 and ¢ € Cy(F), we can find a partition Ei, ..., E, of E and some elements x1, ..., z,
of E such that for any i € {1,--- ,n}:
|[fI(E) >0, =z €E; and sup |p(x) — p(z;)| <e.
zeF;
For g € X and € > 0, defining g. by

n (El)
ge = ; ?(Ei)f\Ei € Xy,

we have

<l [ (o) ol ) < elalx,

as well as
\<g, o) =D eledo(B)] < Y- [ lote) — ol lal(d) < clllx
i=1 i=1 Y Ei

We have established that |{ge — g, p)| < 2¢]|g]| for any € > 0, from what we deduce that g belongs
to the weak-* closure of Xjy. g

Lemma 5.3. Assume (X2)-(X3), and f € X11. Consider a linear operator Q : Xy — Xy such
that Of = f and Ay(Qg) < Ay(g) for any g € Xy. Then Q > 0.

Proof of Lemma 5.3. Take 0 < g € Xy such that g <2Cf, C'> 0, and observe that
—Cf<g—-Cf<Cf.
For any r € R, we compute

Apl(Qg) —Cf —irf] = As[Q(g—Cf —irf)]

< Aflg - Cf —irf]
< Vez4ae,
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by using the non expansion property of Q and the claim (5.4). Using again (5.4), we deduce
—Cf <(Qg)—Cf <Cf and the conclusion. a

We generalize Kato’s inequality (4.3) to the present complex framework by saying that an operator
L on X satisfies (the complex) Kato’s inequality if

(5.7) Vfe DKL), Re(signf)Lf < LIf],

possibly in a dual sense as in (4.4). As for the real Kato’s inequality, when L is the generator of
a semigroup, Kato’s inequality (5.7) is a consequence of the positivity of the semigroup, and we
refer to Remark 4.1 for references about this claim.

5.2. On the subgroup and discrete structure of the point boundary spectrum.
In this section, we establish that the point boundary spectrum enjoys a subgroup structure under
the same kind of hypotheses as considered in the previous sections.

Lemma 5.4. Under assumptions (X2), (X3), (C1), (H1') and (H4), for any A € S5(£)\{0}
the associated normalized eigenfunction f satisfies |f| = f1.

Proof of Lemma 5.4. By definition £f = Af and f € D(L£). By linearity of the operator sign and
thanks to (5.2) and Kato’s inequality (5.7), we have

M |f| = Re[A(signf) f] = Re(signf)(\f) = Re(signf)Lf < L|f].

By the duality argument introduced during the proof of Lemma 4.16, we must have A\ |f| = L|f|
and the conclusion. O

Theorem 5.5. Assume (X2), (X3), (H1'), (H4) and (C2). Denoting L =L— M\, the set

S = Yp(L)NiR is an additive subgroup and dAimN (L —ia)* =1 for any ia € S and k > 1.

Theorem 5.5 is similar but more general than [13, C-III, Cor. 2.12] and [37, Prop. 14.15]. Our
proof is also very similar to the proof of [37, Prop. 14.15]. However, it is more direct and avoid
the use of the C'(K) algebra and Kakutani’s Theorem [203] (see also [236, Thm. 2.1.3]).

Proof of Theorem 5.5. We split the proof into three steps.

Step 1. We consider f associated to an eigenvalue iac € X p(L£)\{0}, and we define
T(t) := (sign f)e " S(t)(sign f).
Observing that S(t)f = e f, we have
T(t)|f| = (sign /e 'S (1) f = (sign f)f = |f] = SW)|f].
On the other hand, we have
IT(t)g] < |S(t)(sign f)g| < S(D)lgl, Vg€ X,
which, by positivity of S (t), yields

IT(t)gl < Ap(9)S(®)If = Ar(9)Ifl, Vg€ X;.

Because |f| = fi > 0 from Lemma 5.4 and (C2), we can apply Lemma 5.3 to |f| and Q :=

T(t). We deduce that T'(t) > 0 on X5 = Xy, and then on X = X;. As a consequence,
0<T(t)g = |T(t)g| < S(t)g for any g > 0. In other words, we have 0 < S(t) — T(t) and then
0 < S(t)* —T(t)*. We must have S(t)* — T'(t)* = 0. Otherwise, there would exist ¢» € X/ \{0}

such that (S(t)* —T'(t)*)y € X/ \{0}, and we find a contradiction by computing

0 < ((S(t)* = T(O)" ), 1) = (&, (S(t) = T() 1) = 0.
We have thus established that S(t) = T'(t).
Step 2. Consider o, 8 € R and f,g € X\{0} such that Zf = jaf and gg = ifg, and suppose

first that (sign f) : D(L) — D(L). From Step 1 and the fact that (sign f) o sign f = I, for any
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h € D(L), we may compute

Lh = lim =(S()h—h)

t—0

= (sign /) lim + (¢~ 5 (1) (sign )1 — (sigm /)h)
= (sign f)(£ — ia)(sign f)h,

or in other words £ — i = (sign f)Z(sign f). We have similarly L— i = (sign g)Z(sign g). Both
equations together imply

L —i(a+ B) = (sign f)(sign g)L(sign g) (sign f).
Defining h := (sign f)(sign g) f1, so that (sign g)(sign f)h = f1, we get Lh = i(a + B)h, and finally
i(a+ B) € S, so that the additive subgroup structure is established.

When the condition (sign f) : D(L) — D(L) is not granted, we modify the above argument by
using a resolvent approach. For some A > 0, we compute thanks to (2.13)

A—L) ' = /OOO e MS(t) dt

= (sign f) /000 e~ AHS(1) dt (sign f)

= (sign f)(A +iae — L) (sign f).
Repeating the argument, we obtain

(A+i(a+B) = L)~ = (sign [)(sign ) (A — £) " (sign g) (sign f).

Applying that last identity to the vector h = (sign f)(sign g) f1 and using that ()\—Z)’lfl =\,

we deduce (A +i(a+ B) — £)"'h = A"'h. In other words, we have again Lh = i(a + B)h, and we
conclude as above.

Step 3. From the fact that (sign f) is an invertible operator and the equation
(L —io)* = (sign f)~*(L)" (sign f),

we see from Theorem 4.11-(ii) that N(£ — ia)* = (sign f)"'N(L)* = (sign f)~'Spanf; for any
k > 1, so that its dimension is one. O

Making an additional splitting structure hypothesis as yet introduced in Section 2.2, we may
significantly improve the conclusion. We first recall a classical result on the spectrum of an operator
which holds under some power compactness assumption on the resolvent.

Theorem 5.6. We assume that L satisfies the splitting structure (HS1) introduced in Section 2.2
with W(z) € (X)) for some N >1 and any z € Ay,. Then X(L) N A, C Xgq(L).

Theorem 5.6 is a consequence of [321, Cor. 1.1]. We also refer to [250, proof of Thm. 3.1] for a
possible elementary proof.

A sketch of the proof of Theorem 5.6. Iterating the formula R, = Rp + R AR, we deduce
J(2)Re(2) = V()

with J := I — (AR5)Y and V := Rp + -+ R5(AR5)V L. Because J is holomorphic on A,,, it
is a compact perturbation of the identity and J(z) — I when Rez — oo, one may use the theory
of degenerate-meromorphic functions of Ribari¢ and Vidav [298] (also established independently
by Steinberg, see in particular [307, Cor. 1]), and conclude that J(z) is invertible outside of a
discrete set D of A,,. That implies that 3(£) N A,, = D is a discrete set of A,,. On the other
hand, thanks to the Fredholm alternative [149], one deduces that the eigenspace associated to each

spectral value A € D is non zero and finite dimensional, so that A € X4(L). See also [308, 323] for
pioneering works in the subject. O

We end this section by a result which gives a more accurate description of the geometry of the
boundary spectrum, and is a variant of the classical results [13, C-III, Thm. 3.12], [139, Thm.
VI.1.12], [37, Thm. 14.17].
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Theorem 5.7. Assume (X2) and (X38) for both the spaces X and Y, (C2), (H1'), (H4) and
additionally that the splitting structure (HS1) holds with W(z) € # (X) for some N > 1 and any
z € Ay,. Then the set EP(Z) NiR is a discrete additive subgroup of iR and any of its elements
is an algebraically simple eigenvalue. More precisely,

- either Xp(L) NiR = {0} and the projection on the first eigenspace (associated to A1) writes

I f = (f, ¢1)f1;

- or Xp(L) NiR = iaZ for some o > 0 and there exists a sequence (gi, ¥r)rez such that Lg =
(M +ika)gr, L %k = (M1 + ika)Yr, and (g, Ve) = Oke.

Proof of Theorem 5.7. Combining Theorem 5.5 and Theorem 5.6, we immediately get that the

subgroup S := ¥ p(L) NiR satisfies S C ¥4(L), it is thus discrete and made of algebraically simple

eigenvalues. The first case Xp(L£) NiR = {0} falls yet in the conclusions of Theorem 4.11. g

In the second case, where the boundary spectrum is not trivial, the existence of a projection on the
boundary eigenspace Span (g )rez is ensured by the Jacobs—de Leeuw—Glicksberg theorem provided
that £ is the generator of a relatively compact semigroup, see for instance [37, Theorem A.39 and
Proposition A.40] and the references therein. We also refer to [205, paragraphs I11.6.4 and II1.6.5]
for very classical results on the projector on the direct sum of eigenspaces associated to eigenvalues
belonging to a subset of the spectrum. We can even give an explicit expression of this projection
in terms of (gx) and (¢%) under the form of a Fejér type sum, see Theorem 5.25.

5.3. Stronger positivity.

In order to go one step further and establish the triviality of the boundary point spectrum, we
need to reinforce the positivity of the semigroup or its generator. One possible condition is based
on the following notion.

The reverse strong positivity condition

For A > 0, we recall that from (2.6), we have

(5.8) |Afl < Alfl, V[eX,

and we observe that the above inequality is an equality when Af = uA|f| for some u € S!. We
focus now on the case of equality in (5.8).

Definition 5.8. We say that A satisfies the “reverse strong positivity condition” for a subclass of
vectors C C X if for any f € C

(5.9) |Af| = A|f| implies 3ueS', Af =uAlf].

We start observing that A > 0 implies the strict positivity for non-signed vectors in Xg.

Lemma 5.9. Consider an operator A > 0 and assume X is reflexive. For f € Xg such that
+f ¢ X4, there holds
|Af] < Alf].

Proof of Lemma 5.9. Let us consider f € Xy such that fi # 0. We claim that |Af] < A|f].
Observing that

Afy =Af+Af_ > Af,
we deduce Afy > (Af)4, and similarly Af_ > (Af)—. We consider the case (Af)+ > 0 and we
argue similarly as in the proof of Lemma 4.5. By definition, for any ¢ > 0, we have

0<((Af)4,0) = sup (Af,oh) = (Af,9%) = (f, A™)7)
0<y<o

< <f+aA*¢*>: <Af+7’lr/)*> < <Af+7¢>7
where the strict inequality comes from the fact that ¥* > 0 because ((Af)+,¢) > 0, so that
A** > 0 and finally (f_, A*1)*) > 0 because f_ > 0. We have thus (Af); < Af;. Similarly, we
establish (Af)_ < Af_ when (Af)_- > 0.
As a conclusion, in the three cases Af =0, (Af)y+ # 0 and (Af)_ # 0, we have

Af] = (Af)4 + (Af)— < Afs + Af- = Alf],
which is the desired strict inequality. O
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We believe that a similar result also holds true for complex vectors in a general Banach lattice
framework. We do not try to prove such a statement but we rather establish the corresponding
complex version for our examples of concrete Banach spaces in which the definition of the absolute
value | f] of a vector f € X is more tractable.

Lemma 5.10. Consider an operator A > 0 on X C L] (E) for some locally and o-compact metric
space E. For f € X such that |f| > 0, we have

|Af| = Alf| implies JueS', f=ulf|,
and thus (5.9) holds.

Proof of Lemma 5.10. We assume by contradiction that Vo € S, |f| > Re(vf), in particular
writing f = g+ ih, g,h € Xg, we have g,h € X\{0}. On the one hand, because of A > 0 and A is
linear, for any v = e® € S!, we have

Alf| > ARe(e™f)) = cosa (Ag) — sina (Ah).
On the other hand, in the Banach lattice we consider here, there exists 5 : E — R measurable such
that |Af| = e’ Af and thus

Alf| = |Af| = Rel Af| = cos 3 (Ag) — sin 3 (Ah),

and a contradiction. We have established that there exists v € S! such that |f| = Re(fv). Now,
we have

V(Re(fv))? + (Sm(fv))? = [ fo] = ] = Re(fv),

which in turn implies Sm(fv) = 0, since Re(fv) > 0. That is here that we use the assumption
|f] > 0 and not only f € X;\{0}. We conclude that |f| = fv and thus that f = u|f], Wlth
wi=v"!eSh
A similar result also holds in the Radon space of measures. For a measurable space (E, &), we call
transition kernel, a mapping @ : E x & — [0, oo] such that

(1) VB e &, v Q(z,B) is measurable;

(19) Vz e E, B Q(x,B) is a measure.

We recall the classical Markov-Riesz representation theorem which claims that for any linear and
positive operator B : Cy(E) — Co(E) there holds

/ o(2)Q(z,dy), Vo€ Cyo(E),
for a transition kernel @ such that in the condition (i) above the mapping is furthermore continuous.

Lemma 5.11. Consider an operator A >0 in X = M* = MY(E, &), for some Borel space (E,&)
where E is a locally and o-compact metric set. For f € X such that |f| > 0, we have (5.9).

Proof of Lemma 5.11. By definition, the operator A is the dual of a positive operator on Cy(E).
Using the representation formula recalled above for that adjoint operator, we get

(Af)(dy) = [E Q(x,dy) f(dx), Vfe M,

for a transition kernel (). We deduce that

(Af, ) = /E 6(0)Qr.dy) (),

for any bounded Borel function ¢ : F — C. In particular, the strict positivity A > 0 translates
as Q(r,+) > 0in M! for any x € E. We fix now ¢ € Co(FE) such that ¢ > 0 and f € M* such
that |f| > 0, and we observe that from the Radon-Nikodym theorem, there exist two measurable
functions o, 3 : E — [0, 27) such that f = e'®|f| and Af = e??|Af|. We next compute

(Alf|—1Afl,0) = Re{(Alf],¢) — (Af, e F )}
= / %e{l elile(@)— B(y))}¢ Q(z, dy)| f|(dz)
EXE

- / {1=cos(a(z) — B(y)) }6()Qx, dy)| f|(dx).
ExXE
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In the case of equality A|f| = |Af|, we must have 1 — cos(a(y) — B(x)) = 0 for p-a.e. € E and
|fl-a.e. y € supp f = E. We deduce that 3 is a constant function, so that Af = e"?|Af| = uA|f],
for the constant u = e*? € S*. O

The reverse Kato’s inequality condition

We recall that it has been stated in section 4.1 that the generator £ of a positive semigroup S(t)
satisfies Kato’s inequality (4.3) which in a complex framework writes

(5.10) VfeX, Re(signf)Lf <L|f|
We also observe that if f = u|f| for some u € S, we have

Re(sign f)Lf = sign(u™" )L™ f) = LIf],
which is the case of equality in Kato’s inequality.

Definition 5.12. We say that L satisfies a “reverse Kato’s inequality condition” for a class of
vectors C C D(L) if for any f € C the case of equality in Kato’s inequality

L|f| = Re(signf)Lf
implies
JueC, f=ulf]
In some situation, we may prove directly that the “reverse Kato’s inequality condition” holds by

reasoning at the level of the operator £, see for instance [207, Proof of Theorem 5.1]. That is also
a consequence of the strong positivity of the semigroup as we see below.

Lemma 5.13. Consider a semigroup S and its generator L. On the set C of vectors f € X\{0}
such that

(5.11) IxeC, Lf=Xf, LIf]=ReN)|f],

there is equivalence between:
(i) S(t) satisfies the “reverse strong positiwity condition” for some (and thus any) t > 0;
(ii) L satisfies the “reverse Kato’s inequality condition”.

Remark 5.14. When X C L}, the “reverse Kato’s inequality condition” (ii) implies the “reverse
strong positivity condition” (i) on the class C of vectors such that f € D(L), 0 < |f| € D(L).
Assume indeed that L satisfies (i) and consider f € C such that |Sif| = S¢|f| for any t > 0. By
differentiating, we get

(5.12) (sign /)Lf = L|f].

From the “reverse Kato’s inequality condition”, we deduce that f = ul|f| for some u € St, so that
(i) holds.

Proof of Lemma 5.13. In what follows, we fix f € X\{0} such that (5.11) holds, and we compute

(5.13) Re(sign f)Lf = Re(sign f)(Af) = (ReA)|f| = L|f].
For any ¢ > 0, we also have S;f = e f, S;|f| = M| f|, and thus
(5.14) |Sef| = Sl fl-

Assuming the “reverse Kato’s inequality condition”, we deduce from (5.13) that f = u|f| for some
u € S, thus S; f = uS;|f| for some u € S, which is the conclusion of the “reverse strong positivity
condition” when (5.14) holds.

On the other way round, assuming the “reverse strong positivity condition” for some 7' > 0, we
deduce from (5.14) for T' > 0 that there exists v € S! such that

A f = Srf =vSr|f| = ve™ | f].

That implies that f = u|f| with u = ve~*S™NT | which is nothing but the conclusion of the
“reverse Kato’s inequality condition” when (5.13) holds. O

We summarize the material developed above in the following main result of the section.



ON THE KREIN-RUTMAN THEOREM AND BEYOND 59

Theorem 5.15. Assume that S is a positive semigroup on X with X C Li (E) or X = MY(E) for
some locally and o-compact metric space E and denote by (E)) a sequence of increasing compact
sets such that E = lim Ey,. We furthermore assume that for any k > 1 there exists T > 0 such that
St is strictly positive on Ey, in the sense that

(5.15) Vfe X \{0}, fig, #0, Vo € X' \{0}, suppop C Ex, (Srf,¢) > 0.

Then L satisfies the “reverse Kato’s inequality condition” on the set C of eigenvectors introduced
in Lemma 5.13.

Proof of Theorem 5.15. Let us consider f € X\{0} such that (5.11) holds, so that S;|f| = e(®eV?| f|
for any t > 0. On the one hand, we may fix k > 1 such that |f| £ 0 on Ej. Then for any ¢ > k,
there exists Ty > 0 such that (5.15) holds, so that

(RN f1,0) = (1|11, 8) > 0,
for any ¢ € X/ \{0}, supp¢ C E,. That implies |f| > 0 on E, for any £ > k, and thus |f| > 0.
Next, as in the proof of Lemma 5.13, we observe that
|STef|:STe|f|v Ve k.

Repeating the proof of Lemma 5.10 and Lemma 5.11, we deduce that there exists uy € S' such
that St, f = ueSt,|f] on Ey, or equivalently there exists v, € S such that f = v,|f| on E,, with
vy = upe SN Because Ey O Fi, we have established that f = v1|f| on E which is the
conclusion of the “reverse Kato’s inequality condition” when (5.11) holds. g

5.4. On the triviality of the boundary spectrum. As in section 4.3, we still assume the
existence (C1) of a solution (A1, f1,¢1) € R X X4 x Y, to the first eigenvalue problem (4.1) and
that £ enjoys the weak maximum principle (4.12) and Kato’s inequalities (4.13) as formulated in
condition (H1') as well as the strong maximum principle (H4). Because we deal with complex
eigenvalue, we also assume that the complex Kato’s inequality variant (5.10) holds.

We introduce a first additional assumption:

(H5) the“reverse Kato’s inequality condition” (as defined in Definition 5.12) holds true for the
class C defined in Lemma 5.13: for f € X\{0} such that
(5.16) INeC, Lf=Xf, L|f|=ReN)|f| = Re(signf)Lf,
we have

JueC, f=ulfl|

On the other hand, we do not need the structure assumption (X3).
We are then able to make a more accurate analyse of the geometry of the spectrum.
Theorem 5.16. Consider an unbounded operator L on a Banach lattice X which satisfy (C1),

(H1), (X2), (H4), (4.13) and (H5). Then the conclusion (S32) about the uniqueness of A1 as
the eigenvalue with largest real part holds: X}(L) = {\1}.

Remark 5.17. (1) It is worth emphasizing again that (4.13) is true when L is the generator of
a positive semigroup and that (5.16) is true when Sc(T') satisfies the “reverse strong positivity
condition” for some T > 0 as a consequence of Lemma 5.13, see also Theorem 5.15.

(2) During the proof we use similar arguments as in [207, Theorem 5.1].
(3) Condition (H5) is reminiscent of PDE arguments as we may find for instance in [207, Proof of
Thm. 5.1] or in the discussion in [227, 4th course] about an uniqueness argument due to L. Tartar.

Proof of Theorem 5.16. Consider an eigenvalue A € C with normalized eigenvector f € X\{0},
so that || f|| =1, Lf = Af. Thanks to the complex Kato’s inequality, we have

(ReA)|f| = Resign(f)(Af) = Resign(f)(Lf) < L|f].
We consider two cases:
When the above inequality is not an equality, we have

(ReA)(| f1, 1) < (L|f, P1) = (| f], L7¢1) = M| f], ¢1),
and thus el < Aq.
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When on the contrary the above inequality is an equality, then |f]| is a positive eigenvector asso-
ciated to the eigenvalue fteA. Lemma 4.15 implies e = A\; and Lemma 4.16 together with (2.1)
imply |f| = f1. In other words, f satisfies (5.16) and thus f € Span(f;) from assumption (H5),
in particular A = A;. U

When L is the generator of a positive and irreducible semigroup S, we may introduce the alternative
assumption:
(H5') the semigroup S is aperiodic as defined in (4.9), namely
Vfe X \{0},Vee Y \{0}, 3T >0,Yr >T (S.f,¢) > 0.
Theorem 5.18. On a Banach lattice X, consider a positive and irreducible semigroup S which

satisfies the aperiodicity condition (H5') and such that its generator L satisfies (C2). Then the
conclusion (S32) holds: S5(L) = {\1}.

Remark 5.19. [t is worth pointing out that since (H5') is stronger than (H4), see the points (2)
and (8) in Lemma 4.6, we can use Theorem 4.11 and replace in Theorem 5.18 the assumption that
(C2) is satisfied by the assumption that (C1) and (H1') are satisfied, together with the structure
assumption (X1).

Proof of of Theorem 5.18. We introduce the notations Sy = Sie=™t and £ := £ — A;. Assume
that f =g+ 1ih € X, g,h € Xg, is an eigenfunction associated to the eigenvalue A = A\ + i € C,

a > 0, so that
~ 2771'(

L(g+th) =ia(g+ih) = ; g +ih),
0

for some tg > 0. On the one hand, because « # 0, we must have g # 0 and h # 0, and because of

alg, 1) = (Lh,é1) = (h,L*¢1) = 0,
and ¢1 > 0, we have g4 # 0 and g_ # 0. As a consequence and because of (4.6), there exists
¥ € X \{0} such that (g+,1) = 0. On the other hand, we compute

Sty (g +ih) = et (g + ih) = g + ih,
from what we deduce §t0 g = g, because S; is real. On the other hand, because S; is positive, we
have B B

9+ = (5t09)+ < Sto 9+
and next B B
(91,9+) < (b1, St09+) = (S, 01, 9+) = (D1, 9+5),

so that the inequality is an equality (remind again that ¢; > 0), and thus

§tog+ =9+
We conclude that for any ¢ € Y, \{0}, we have

(Skto91,®) = (g4,0) =0, VE>0,
what is in contradiction with (H5"). We have established that EJ}; (L) ={\i}. 0

We end this section with a third situation where the triviality of the boundary spectrum is an
immediate consequence of Theorem 5.5 and Theorem 5.6.

Theorem 5.20. (1) We make the same assumptions as in Theorem 5.5 and also that there exists
M > 0 large enough such that A — L is invertible in B(X) for any A € C, ReX = Ay, |\ > M.
Then A1 is the unique eigenvalue with largest real part as formulated in (S32).

(2) We furthermore assume that the hypothesis of Theorem 5.6 are met and that A\ — L is invertible
in B(X) for any for any X € C, ReX > N\ — ¢, |N\| = M. Then a (non constructive) spectral gap
(S33) holds.

We summarize the main results established in this section as follows.

(C3) the first eigentriplet problem (4.1) has a solution (A1, f1,¢1), furthermore this one is
unique, f1 >0, ¢1 > 0, \; is algebraically simples (for both £ and £*) and ¥5(£) = {\1}.
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5.5. Ergodicity. Thanks to the above analyze, we are able to formulate some convergence results
on the trajectories associated to a semigroup. More precisely, assuming the existence and unique-
ness of the first eigentriplet (A1, f1,¢1) for the generator £ of a semigroup S and still denoting
the rescaled semigroup S; := e~** §(t), we wish in particular to establish the following ergodic
property

(CE2) for any f € X, there holds

(5.17) §tf—><f,¢1)f1, as t — oo,
in a sense to be specified.

We start with a simple result which take advantage of some dissipativity property of the semigroup
formulated by a ”reverse positivity condition”. We next present some more involved results which
use directly the spectral information. It is worth emphasizing that our results in this section do not
use any spectral gap property what contrasts with the results we will present in the next section.

Theorem 5.21. Consider a positive semigroup S on a Banach lattice X such that its generator
L enjoys the conclusions (C2) of existence, uniqueness and strict positivity of the first eigentriplet

(M1, f1,$1) and let us set S, := e~MtS,. We denote X the space X endowed with the norm [-], with
[f]:= ([, b1). Assume furthermore that

(1) for any f € X, the trajectory (§tf)t20 is continuous in X and belongs to a compact set of a
normed space X1, with X1 C X;

(2) (S:) satisfies the reverse positivity condition for semigroups

(5.18) ISef| = S| f|, YVt >0, implies 3T >0, Jur € S*, Spf =urSr|f|.
Then, the ergodicity property (CE2) holds in the sense of the norm of Xj.

Let us comment on hypotheses made in the statement of Theorem 5.21. Hypothesis (1) can
be obtained as a consequence of a Lyapunov (or growth) condition reminiscent of the structure
condition (HS3) introduced in Section 3.3 and an irreducibility condition. Typically, we assume
first

IS fII < MILfIT+ K[S(E) fo,
with [g]o := (|9, %0o), o € Y1 \{0}, what can be established under the very general condition (ii)
of Theorem 3.4. Next we need to be able to prove that ¥y < r¢; for some r > 0. In concrete

situations, we may take vy with compact support and then the above inequality is a consequence
of the standard strong maximum principle. We deduce

IS@FIl < MIFI+ Kr(S(t)f], é1)

< MI[flI+ Er{S®)|f],¢1)
= M| fll+ Kr(|f], é1),

so that (S;) is bounded. The hypothesis (1) is in fact a bit more demanding, but also quite natural.
Assume that S, enjoys the splitting structure introduced in section 3.1 and section 3.3, so that
(5.19) S=V+K,
with

Vi=Sg+ -+ (SgA) VD s 8g K= (AN x5 Sp(t) =e MSp(1).
In some applications, we typically have

V@) foll < @DIfoll, 1S54 |2y < ©

with © € L} (R4) N Co(R4), &1 C X compact. In that situation, we deduce (1).

Proof of Theorem 5.21. We fix f € X and without loss of generality, we may assume that (f, ¢1) =
0. We observe that

(5.20) (1Sef1,61) = (1Si—sSs fl, d1) < (Se—s|Ssfl, 61) = (ISs ], 61),
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for any ¢ > s. We deduce that (§t) is a dynamical system with compact trajectoires in A}

and H(f) := (|f|,¢1) is a Lyapunov functional. As a consequence, from the La Salle invariance
principle, we have
(5.21) inf (|S,f —gl,d1) =0 as t — oo,
gEWH
with
(5.22) wi ={g € X; (9.01) =0, Vt €R, H(Syg) = inf H(5.1)}.

We next characterize wy. Picking up g € wy, we observe that

(|Segl, é1) = (g, é1) = (lgl, Sié1) = (Silgl, 1), V>0,
so that N N
(Stelgl — |Stgl, ¢1) =0, Vt>0.

In particular, using that |Syg| < S|g|, we have
(5.23) Silgl = [Skgl, Vi >0.

Because of the reverse positivity condition for semigroups (5.18), there exist 7' > 0 and ur € S!
such that

ng = ’L(,T§T|g|.
As a consequence, by definition of the set wy, we have

0= {g,61) = (Srg, $1) = ur(Srlgl, ¢1) = ur{|gl, é1)-

Because ur # 0, we conclude that ¢ = 0. In other words, we have established that wy, = {0} and
together with (5.21), we obtain (5.17). O

We present a more concrete situation where the previous result can be invoked. Although the
hypotheses are somehow restrictive, it is yet useful in many applications and its proof is very
simple.

Corollary 5.22. Consider a strongly continuous and positive semigroup S on a Banach lattice X
such that its generator L enjoys the conclusions (C2) of existence, uniqueness and strict positivity
of the first eigentriplet (A1, f1,¢1). Assume further that the reverse Kato’s inequality condition (as
defined in Definition 5.12) holds true for the (large) class

C:={f e D(L); LIf] = Re(signf)L[},

that X C L (E,&,p) and that the space X* defined in (4.19) satisfies X* C L . with strongly
compact embedding for some k > 1. Then the ergodicity property (CE2) holds in the sense of
strong topology of L}, .

Proof of Corollary 5.22. Because of Step 3 in the proof Theorem 4.20, we see that condition (1)
in Theorem 5.21 holds with X; := X*. On the other hand, because of Remark 5.14 and the
reverse Kato’s inequality condition in C, we see that condition (2) also holds, so that we may apply
Theorem 5.21 and conclude. g

We present now a variant of the previous result which provides a convergence for various topologies,
and relies on the (very general) assumption that the boundary spectrum is trivial rather than on
the reverse positivity condition.

Theorem 5.23. Consider a positive semigroup S on a Banach lattice X such that its generator L
engjoys the conclusions (C3) on the existence, uniqueness and strict positivity of the first eigentriplet
problem (A1, f1, d1) and triviality of the point boundary spectrum. Setting Sy = e~ MtS,, we assume
that we are in one of the following situations:

(1) S is strongly continuous and the trajectories (gtf)tZO are relatively compact for all f € X, and
we denote by I the strong topology of X;

(2) X =Y', Y separable, and the trajectories (Sif)i>0 are bounded for all f € X, and we denote
by T the weak xa(Y',Y") topology;

(3) X C LL.(E,&,pn), and we denote by T the weak topology of Lén ;
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(4) X C L., S is strongly continuous, and for some k > 1 the space X* defined in (4.19) satisfies

loc?
Xk c LY with strongly compact embedding, and we denote by 7 the strong topology of L}m,

loc

Then the ergodicity property (CEZ2) holds in the sense of the topology .

Remark 5.24. The case (4) of Theorem 5.23 enjoys some strong similarities with the main con-
sequences of the General Relative Entropy technique developed in [241], see in particular [241,
Theorem 3.2], [241, Theorem 4.3] and [241, Theorem 5.2]. In particular, the aperiodicity condition
that the point boundary spectrum is trivial may be compared with the fact that the first eigenvector
f1 is the unique (normalized and nonnegative) vector f € X with vanishing dissipation of entropy
D(f) =0 as defined in [241] or more generally that Span(f1) is the unique invariant space on which
the functional D vanishes. The present formulation is more abstract and probably more general.
The drawback is the condition X* C Ll _ with strongly compact embedding which can be avoided
in [241], by using some weak compactness argument and the lower semicontinuity property of D.
That is explained by the fact that our proof uses rather the La Salle invariance principle (similarly
as in the proof of [140, Theorem 3.2]) instead of a entropy dissipation argument.

In the case when the boundary point spectrum is not trivial but a discrete set, the same method
of proof as for Theorem 5.22 allows us to accurately describe the periodic long time behaviour of
the semigroup.

Theorem 5.25. Consider a positive semigroup S on a Banach lattice X such that its generator
L enjoys the conclusions (C2) on the existence and uniqueness of the first eigentriplet problem
(M1, f1,$1), as well as (H1") and (H4). Suppose furthermore that X andY both enjoy the structure
conditions (X2) and (X38), that A1 is an isolated eigenvalue and that the boundary spectrum is
not trivial, i.e. Eﬁ # {\1}. Setting §t = e MS,, we assume that we are in one of the situations
(1), (2), (3) or (4) listed in statement of Theorem 5.23. Then X} = {\ + ika, k € Z} for some
a > 0, there exists a sequence (g, Vi )rez such that Lgr = (A1 +ika)gr, L = (M +ika)yy and
{9k, Vr) = 1, and for all f € X, in the sense of the topology 7, the projection

n 14
nf = tim =3 3 (e

£=0 k=—¢
1s well defined and
§tf—§tﬂf—>0 as t — 4o00.

Remark 5.26. In Theorem 5.25, the assumptions that A1 s isolated and EJIS # {\1} might seem
difficult to check in practice. We indicate here some ways to verify them.

(i) The condition that \1 is an isolated eigenvalue is for instance guaranteed under the assumptions
of Theorem 5.6 or Theorem 6.5.

(ii) The condition that %}, is not restricted to {\1} can be guaranteed by verifying that (CE2) does
not hold. Indeed, if ¥}, = {\1}, then Theorem 5.23 imposes (CE2) to hold.

The result in Theorem 5.25 can be compared for instance to [37, Theorems 14.19], although our
hypotheses are slightly more general. OQur proof is also more direct than in [37] and it additionally
provides an explicit expression of the projection on the boundary eigenspace Span(gi)rez. The
proof of Theorems 5.23 and 5.25 relies on the theory of almost periodic functions which dates
back to H. Bohr. There is a large literature on the subject and we refer for instance to the book
of Corduneanu [102] for a comprehensive introduction. There are several equivalent definitions
of almost periodic functions and we will use the following one. A function f € Cp(R, X), i.e. a
bounded continuous function from R to X, is said to be almost periodic if the set {f(-+7), 7 € R}
is relatively compact in Cp(R, X'). The set of almost periodic functions is a sub-algebra of Cy(R, X),
and also the closure of the space of periodic functions in C,(R, X). We start with the proof of
Theorem 5.23 and Theorem 5.25 in the case when S satisfies the condition (7). Then we deduce
the cases (2), (3) and (4) from the case (1).

Proof of Theorems 5.23 and 5.25 in the case (1). Step 1. Let f € X. Since the trajectory (gtf)tZO
is relatively compact, we infer from [183, Theorem 8] (with U(7,t) = S; and thus no periodicity



64 C. FONTE SANCHEZ, P. GABRIEL, AND S. MISCHLER

condition on U) the existence of an almost periodic eternal solution g of the rescaled semigroup S ,
i.e. a function g : R — X such that g(t + 7) = S;g(t) for all £ € R and 7 > 0, such that

Jlim 18/ — g0 =0.

The end of the proof consists in characterizing the function g in the two cases (1) and (2). For
A € R, we define the Bohr transformation of the almost-periodic function g by

1

T
exlg) = lim = /O e Mg(t) dt,

which is known to exists, see [102, Theorem 3.4], since e~**g(t) is also almost periodic. Since
e~ tg(t) is besides an eternal solution of the semigroup e~***S; with infinitesimal generator £, =
L — A1 — i)\, we have that

T
£ / Mg (t) dt = g(T) — g(0).

Dividing by T the above expression, passing to the limit T — 400 and using that £y is a closed
operator, we get
Lyca (g) =0.

In other words, we have established

Lea(g) = (A +iM)ea(g)
and A1 + A is an eigenvalue of L if ¢x(g) # 0.
Step 2. We deduce that if the boundary spectrum is trivial, as in Theorem 5.23, then necessarily
ex(g) = 0 for all A # 0. By the uniqueness theorem, see for instance [102, Theorem 4.7], we
get that ¢ is constant. Due to the conservation law (S:f, #1) = (f, 1) and the simplicity of the
eigenvalue 0, we get that g = (f, #1)f1 and the result of the case (1) in Theorem 5.23 is proved.
Step 3. In the case of Theorem 5.25, the boundary spectrum is not trivial and we know from
Theorem 5.5 that EJIS(E) is an additive subgroup of iR, made of algebraically simple eigenvalues.
Due to the assumption that A is isolated, this subgroup must be discrete and EJIS (L) is thus given
by {\1 +iak,k € Z} for some « > 0. As a consequence, any A such that ¢y(g) # 0 is necessarily

of the form A = ak for some k € Z. By the uniqueness theorem, ¢ is then a a-periodic function
which is given, due to Fejér’s theorem, by

: 1 S : ikt
g(t) = Jim ~% > car(g)e™".
=0 k=—t
Consider (gx, ) two positive direct and dual eigenvectors of £ associated to the eigenvalue ik
such that (gr,®r) = 1. From the conservation laws (S;f, 1) = (f,¥r)e’®** and the algebraic
simplicity of the eigenvalues iak, we get that car(g) = (f, o) gk, and the result is proved. O

Proof of Theorems 5.23 and 5.25 in the case (2). Since Y is separable, we can find a sequence
(pn)n>1 C Y which satisfies ||¢,| = 1 and span(yy,) is dense in Y. We can then define on X
the norm || - ||« by setting

(5.24) £ =D 27" pn)l.

On bounded subsets of X, the topology of this norm is the same as the weak-* topology, or more
explicitly it is worth emphasizing

fo=f xo(YY) & (sup|[full <oco and | fn — flls = 0).

Since by assumption the trajectory (§t f) is bounded, it is weakly-* relatively compact, and so
relatively compact in (X, | - |«). It is also clear that the semigroup S is continuous for the weak
norm || - |[. The normed space (X, || - ||«) is not a Banach space, but the proof of Theorem 5.25
actually only requires, for applying [183, Theorem 8], that the closed balls of X are complete metric
spaces, which is the case for the distance induced by || - ||«. Applying the case (1) of Theorems 5.23
and 5.25 then yields the result. O
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Proof of Theorems 5.23 and 5.25 in the case (3). We consider f € X and, repeating the proof of
Step 2 in Theorem 4.20, we get that (Sif):>0 belongs to a weak compact set G of qubl' We define
the norm ||- ||« by (5.24) for a sequence (@5, )n>1 C Co(E) which satisfies ||on ||~ = 1 and span(ey,)
is dense in Cy(F). This norm induces a metric on G which is topologically equivalent to the weak
convergence on Lél. The trajectory (S; f) is then relatively compact in (G, ||-||,) and the semigroup
S is continuous for the weak norm || - ||l.. We conclude as in the proof of the case (2). O

Proof of Theorems 5.23 and 5.25 in the case (4). From the step 3 of the proof of Theorem 4.20,
we know that for any f € X* the trajectory (gtf) is compact for the strong topology of Lén' We
may then conclude similarly as in the case (1), using that X* is dense in X for the norm of L;Lbl' O
5.6. A word about spectral analysis argument. The aim of this section is to recall some
more or less classical results which makes possible to slightly improve the conclusions of the results
presented in the previous section by additionally assume some spectral gap at the level of the

operator or the semigroup. More precisely, we are interested by some accurate versions of a partial,
but principal spectral mapping theorem which asserts that

(5.25) S(e£) N BY(0, e"t) = tZENA g >,

for some k < A1, and even more precisely, we wish to establish the following geometric (or expo-
nential) asymptotic stability

(CE3) there exist some constants K < A; and C > 1 such that for any f € X, there holds
(5.26) IS@®f = (f:00) il OIS = (f.o0) Al V20, ¥VfeX,
with the decay rate function O(t) := C elr= )t
In order to discuss the several results we present, we recall the splitting framework
(5.27) S=V+W=xS,  [VOlax) + IIWE)|ax) e

for the same k € R as above. We start by recalling the spectral mapping theorem for the point
spectrum, and its proof, which is instructive.

Lemma 5.27 (Spectral mapping theorem for point spectrum). For a semigroup (Si)i>0 with
infinitesimal generator £ we have

Sp(S) \ {0} = e, Vit > 0.
Proof of Lemma 5.27. The inclusion e”7(£) C $p(S;) \ {0} is clear. Now let & € £p(S;) \ {0},

that is § € C\ {0} such that Sy f = {f for some f € Xc \ {0}, and let A € C such that § = eM and
¢ € X' such that (¢, f) # 0. For any k € Z we have £ = e 2™ and so

. t
0= O g f = (£ -2 2’;”) / e MG, fds.
0

If the last integral is non-zero for some k € Z, we deduce that A 4 % is an eigenvalue of £ and
2ik7

the result is proved. Assume by contradiction that fot e~ M558 fds = 0 for all k € Z. This
means that the continuous ¢-periodic complex-valued function s — e~**(¢, Ss f) has all its Fourier
coefficients equal to zero, which is not possible since this function is not equally zero (its value at
s =0 is not zero). O

We next present a very classical result about the exponential stability of f; which is based on the
quasi-compact semigroup framework of Voigt [321] (see also [13, B-IV-2] and [139, Section V.3])
and which is a more accurate version of Lemma 2.7 and Theorem 5.7.

Theorem 5.28. Let (S¢)i>0 be a positive irreducible semigroup on a Banach lattice X satisfying
the hypotheses of Lemma 2.7 and Theorem 5.7, in particular (H2) holds for a constant kg € R
and there exists T' > 0 such that the splitting

(5.28) Sy =V + Kr,

holds with ||[Vr|lzx) < e, & < ko, and Ky € J#(X). Then there exists a unique solution
(M, f1,61) to the eigentriplet and the exponential stability (1.7) holds (without constructive esti-
mate).
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Remark 5.29. In the splitting framework (5.27) the critical hypothesis Ky € £ (X) may be
obtained by assuming (and proved in the applications) that

W)l x,) S e, VE>0, X CX compact.

In fact, in many applications, we are also able to establish X1 C D(LP), for some B > 0, without
too much more work.

Theorem 5.28 is in fact nothing but [37, Theorems 14.18] (see also [326, Section 2], [139, Theo-
rem V.3.7] or [13, C-IV, Thm. 2.1 & Rk. 2.2]). We give however a short proof of Theorem 5.28
since it is simpler and more direct than the ones we usual find in the literature and in particular
does not refer to subtil results about the spectrum and its essential part.

Proof of Theorem 5.28. First step. From Lemma 2.7, we already know that (H1), (H2) and (H3)
hold. Together with the irreducibility which is nothing but (H4) from Lemma 4.6, we may apply
Theorem 4.11 and conclude to the existence, uniqueness and strict positivity result about the
eigentriplet solution (A1, f1, ¢1).

Second step. We claim that 3(L£) N {z € C, Re(z) > Ko} is also made of a finite number of
isolated eigenvalues with finite geometric multiplicity. We indeed set By := e"°7. Since for any
A€ Bj, = {z € C, |z| > Bo} the operator A — Vr is invertible, we see that A € Bf is in the
spectrum of St if and only if 0 is in the spectrum of I — (A — V) "1K7, or in the spectrum of
I — Kr(\ — Vr)~L. Indeed, solving (A — S)f = g is equivalent to, on the one hand,
(I=A=Vr)'Kr)f = (A= Vr) "y,
and in the other hand,
(I = Er(A=Vr) (A= Vr)f = g.

So if A € X(St) N Bf, then 1 € B((\ — V)" Kr). Since (A — Vp)"1K7 is a compact operator,
the classical Fredholm alternative (see for instance [67, Thm. 6.6]) asserts that its spectrum is
made of eigenvalues with finite geometric multiplicity, and then so does for 3(St) N Bg, . We can
also prove, by adapting the proof of [67, Lemma 6.2], that these eigenvalues are isolated, and thus
Y(Sr)n B, is made of a finite number of isolated eigenvalues with finite geometric multiplicity.

Since eT>(£) € ¥(Sr), we deduce that X(£) N{z € C, Re(z) > Ko} is also made of a finite number
of isolated eigenvalues with finite geometric multiplicity.

Third step. We prove the existence of a spectral gap and we conclude.

Since Z(L£)N{z € C, Re(z) > o} is finite, A; is simple, and the boundary spectrum of L is a group,
we deduce the existence of € > 0 such that (L) N {z € C, Re(z) > A\; — e} = {A\1}. The spectral
mapping theorem in Lemma 5.27 then ensures that X(S7) N {z € C, |z| > eM=aT} = {eMT}
and that eM7 is simple with eigenspace spanned by fi. The restriction S of St to the invariant
subspace X| := {f € X, (¢1,f) = 0} thus has a spectral radius smaller than e*1==)T. The
spectral radius formula (see [301, Thm 10.13] for instance) then ensures that

lim_ || [1/" = r(S#) < eI
n—oo

This guarantees, for any n € (0,¢), the existence of a constant C;, > 0 such that for all f € X |
and all¢t >0
le S fl| < Cre™™ || £,

and the proof is complete. O

Let us now present a variant of another classical result known as the Gearhart-Priiss Theorem in
[160, 293], see also the contributions of Herbst [190] and Greiner [13, A-IIL.7] as well as the more
constructive proof [139, Theorem V.1.11] based on techniques developed in or related to [330, 57].

Theorem 5.30. Consider a positive semigroup S on a Banach lattice X such that its generator L
satisfies the conclusions (C2) about the existence, positivity and uniqueness of the first eigentriplet
(M, f1,01). We assume furthermore that X is an Hilbert space and that there exist k < A1 and
R > 0 such that

(i) sup.ea,\ By IRc(2)]l2(x) < o0;
(i) £(L) N Ay C Sa(L) N Bp.
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Then the exponential stability (1.7) holds (without constructive estimate).

Proof of Theorem 5.30. The spectral information (C2) and (ii) together imply (C3) (because of
Theorem 5.5) and that there exists k* € (k, A1), such that (L) N Ag+ = {A1}. The operator £
on Xg := (vect{f1})" thus satisfies sup,ea,. IRc(2)|l2(x,) < 00, and we conclude thanks to [139,
Theorem V.1.11]. The lack of constructively here only comes from the fact that our assumptions
do not provide any information on the spectral gap A\; — x > 0. O

Remark 5.31. Except of the Hilbert space framework, the assumptions made in Theorem 5.30
are slightly weaker than those of Theorem 5.28, and are indeed established during the proof of
Theorem 5.28: such an information at the level of the resolvent is a bit easier to establish than a
similar estimate at the level of the semigroup. In the splitting framework (5.27) and its resolvent
counterpart (2.22), we typically only have to show
(5.29) sup  [V(2)[|(x) < oo,  lim sup W)l zx) =0,

k<Rez<k1 T k<Rez<k, |Smz|>r
for some k < A1, and W(z) € #(X) for any z € A,. That last claim is classical (see for instance
[172]) and we only briefly sketch the proof. On the one hand, from the first and the last estimates,
we deduce that (L) N A, C X4(L) thanks to Theorem 5.6. As in the proof of Theorem 5.6 and
with the usual notations, we also have

(I -W(E)Re(z) =V(z), VzeA,,

where I —W(z) is inwertible and ||(I —W(2)) " |gx) < 2 for any z € C such that k < Rez < k1,
|Smz| > R and R is large enough. We immediately deduce that the condition (i) in Theorem 5.30
holds.

We end this section by a more recent result which is similar to the Gearhart-Priiss Theorem but
is not restricted to an Hilbert space.

Theorem 5.32. Consider a positive semigroup S on a Banach lattice X such that its generator L
satisfies the conclusions (C2) about the existence, positivity and uniqueness of the first eigentriplet
(A1, f1,01). We further assume that L = A+ B with 0 < A € #(X), Sg > 0 and the associ-
ated operators V. and W defined by (3.14) satisfy (5.27) for some k < A1 and that the resolvent
counterpart W defined by (2.22) satisfies (5.29) and more precisely

sup () W(2)llz(x) < o0,
r<Rez<k1

with o > 1. Then the exponential stability (1.7) holds (without constructive estimate).
The proof of Theorem 5.32 is a mere adaptation of [250, Theorem 3.1] (see also [245]) and it is
thus skipped. The needed estimates are a bit stronger than those of Remark 5.31, but in the

applications, they are not really more demanding. They also holds at the level of the resolvent
instead of what is assumed in the statement of Theorem 5.28.

We conclude by emphasizing again on the fact that all the above results are not constructive. We
propose in the next part an alternative approach which is constructive.

6. QUANTITATIVE STABILITY

In this section we establish some quantitative stability results in the spirit of the Doblin, Harris,
Meyn-Tweedie theory for Markov semigroup.

6.1. About quantified positivity conditions. We briefly discuss some positivity conditions
related to the strong maximum principle and barriers techniques. The issue is about how quantify
the strong maximum principle

fe X \{0}, (k1 =L)f>0 imply f>0or f>0
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or the related strong positivity of the associated semigroup. A possible way can be achieved
with the help of a barrier functions family G C X1 and a second weaker (semi)norm [-] used for
normalization. Let us then introduce the two conditions

(6.1) VR>0,3g;€G, Vfe Xy, [fl=1, [[fI<R,
we have

(i) St f > g1 (for some T > 0)

or

(ii) f > go if (k1 — L)f > 0.
Point (ii) is a quantified version of the strong maximum principle when G C X, and it is always
a consequence of the positivity condition (i). Assume indeed that (i) holds (for some T' > 0) and
that f satisfies the requirements (6.1) and (k; — £)f > 0. We then write

d

E( (Lfnl)tf) _ e(Lfnl)t(‘C _ ﬁl)f < 07

so that
febmmllp—emmlgf>e Ty = g,

with go given by condition (i). The reciprocal implication is not clear, see however Lemma 4.6-(3).

Let us now make a list of possible quantified positivity conditions of Doblin-Harris type for a linear
(and continuous) operator A : X — X:

(P1) 3go € X \{0}, Fvpo € Xi\{0}, V f € Xy, Af = go(f, vo);

(P2') 3go € X \{0}, Fvo € X, |,V f e Xy, Af > go(f,vo);

(P3') 3go € Xy, o € XUN{O}, V f € Xy, Af > go(f,vo);

(P4') 3go € Xy, o € X\, Vf € Xy, Af > go(f, o).

We summarize some elementary relations between these conditions and those listed in Section 4.2.
Lemma 6.1. We have (P2 ) = (P2) = (P1), (P%) = (P3) = (P1), (P{) = ((P4), (P3),
(P?)) as well as (P4) = ((P3), (P2)).
We also have: A satisfies (P2') iff A* satisfies (P3); A satisfies (P3) iff A* satisfies (P2 ); A
satisfies (P4') iff A* satisfies (P4').
We finally have: A satisfies (P2 ) implies 3go € X4+\{0}, Ix > 0, Ago > Kgo
Proof of Lemma 6.1. We assume Af > go(f, o) for any f € X and some gy € X, 1) € X’,. For
any ¢ € X'\{0} and f € X, we have

<A*¢7 f> = <¢7 Af> > <¢7g0<f7 ¢0>>7

which implies A*¢ > 1o(®, go). We thus deduce that A satisfies (P2’) (resp. (P3’), (P4)) implies
that A* satisfies (P3") (resp. (P2'), (P4)). O

We conclude this introductory section by emphasizing on the fact (as already mentioned above)
that S satisfies (Pi’) implies Rz (\) satisfies (Pi’) for any A > Ay and i =1,...,4.

6.2. Asymptotic stability under Doblin condition. We start with a simple situation. We
assume the Doblin condition, namely

(6.2) 3T >0, 3¢ >0, 3go >0, Vf>0, Srf > go(vo, f),

together with the companion positivity condition

(6.3) Jro >0, {(é1,90) > r0,

as well as the strong additional boundedness assumption

(6.4) dRy >0, ¢1 < Rovo.

When ¢ :=1 € X’ C L*, the condition in (6.4) is automatically satisfied with Ry := ||¢1]] = 1.
In the case when S} enjoys a splitting structure similar to (5.19) and more precisely

157 (®)ell < 6 1)|¢] +/O Ot — 5)[S™(5)¢]go ds,
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with © € L*(R;) N Cp(R4), we deduce that

L= ]l = 15" () || < ©() +/0 O(t = 8)[n]gy ds, Vit >0.

Passing to the limit ¢ — oo, we get (6.3) with ro := [|©]| . Another condition can be formulated
as follows. We assume that D(L£>°) C L], _ and the splitting property £ = A+ B with A € Z(X),
RN € B(X)NHB(X) for any A > k, with k < kg < A1, and the additional regularity condition

(6.5) (Rp=(NA N - LY — LYy, YA> k.

0

The dual eigenvector ¢, satisfies
()\1 — B*)¢1 = A*qbl, /\1 > R,
and then ¢; = (Rp= (A1)A*)N ¢1, so that (6.3)-(6.4) holds with the normalization condition rq := 1
and RQ = H(RB* ()‘)A*)N”e@(Léo,L;‘LQ'
0]

We are then able to formulate a first quantified stability result.

Theorem 6.2. Consider a semigroup S on a Banach lattice X such that its generator L enjoys
the conclusion (C1) on the existence of the first eigentriplet (A1, f1,¢1). We assume furthermore
the Doblin condition (6.2)—(6.4)-(6.3). Thenthe exponential stability (1.7) in the norm [-]y, holds
true, with constructive constants.

The proof closely follows the usual contraction argument in the Doblin result, see for instance
[240], [153, Theorem 11] or [77, Theorem 2.1]. We do not explicitly assume the irreducibility of
the semigroup, but the Doblin condition (6.2)—(6.4)-(6.3) is in many aspects a strong positivity
condition. In particular, our result implies the uniqueness of the first eigentriplet (A1, f1,¢1) and
the triviality of the boundary spectrum.

Proof of Theorem 6.2. The two conditions (6.2) and (6.4) together imply the modified Doblin
condition

3T >0,3g1 >0, Vf>0, Srf>gi¢n, f),
with g1 := go/Ro. Take f such that (¢1, f) =0, so that (¢, f+) =r = (¢1,]|f])/2 > 0 and thus

Srfe > g1(1, f+) =101
We write
ISt fl < ST f+ —ro1l + St f- —rg1| = Srlf| = 2rag:.
We deduce
(@1,1571) < (S5on,1f1) — 21, 91) = (M7 = (61, 91) ) (61, 1)

In other words, setting S, := e~*1%S,, we have

(St fler <V [flons

with v < 1 which depends explicitly of rg, Ry, T" and the estimates on A;. We then classically
deduce the exponential convergence in the [-];, norm. Now, the dual condition associated to the
Doblin hypothesis (6.2) is

vwEX-Ii-a 5;1/121/10<¢790>
In particular, the first dual eigenvector ¢, satisfies

(6.6) p1=e MTSnp1 > e M g (b1, g0) = e M rorho.

Together with condition in (6.4), we see that [-]y, and [-]y, are equivalent norm, and we immediately
obtain the exponential convergence in the [-], norm (with constructive constants). |
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6.3. Asymptotic stability under Harris condition. The Doblin condition (6.2)—(6.4)-(6.3) is
too much demanding for many applications. In this section, we make the following somehow more
general Harris type condition

{3T>0, VA >0, 3ga > 0 such that

(6.7) V>0, ||fl| < A[lf]g, there holds St f > galfls,,

that we complement with the following Lyapunov condition

(6.8) ISFIl < ALl FIl+ K flgs
with S7 = Sre=T ~p € (0,1), K > 0. We replace the positivity condition (6.3) by
(6.9) Ira >0, (¢1,94) >ra.

As we have seen several times, condition (6.8) is some kind of regularity hypothesis which is natural
under a splitting structure on the semigroup Sg.

Theorem 6.3. Consider a semigroup S on a Banach lattice X such that its generator L enjoys
the conclusions (C1) on the existence of the first eigentriplet (A1, f1,¢1). We assume furthermore
the Harris condition (6.7) together with the Lyapunov condition (6.8) and the positivity condition
(6.9). Then the exponential stability (1.7) in the norm of X holds true, with constructive constants.

Of course, in order that Theorem 6.3 really gives a constructive convergence result, we have to
establish (6.7), (6.8) and (6.9) in a constructive way.

Proof of Theorem 6.3. On the one hand, we have

(6.10) [S7flor < (STlfl, 61) = (If1, S561) = [Flor-
On the other hand, we wish to establish the coupling property
(6.11) [S7fl6r < valflon i 1] < Alflg, and (f, 1) =0,

for any A > K/(1—+r) and some g € (0,1). In order to do so we fix A > K/(1 —~r) and we set
A’ :=2A. We next consider f € X, such that (f,¢1) =0 and || f|| < A[f]4,, so that

£l < LF < Alflg, = A'lflg,-
Using the Harris condition (6.7), we deduce
Srfe =g, 9= 3¢ [fls,.
Similarly as in the proof of f of Theorem 6.2, we next compute
ISt f| < [Stfs —9gar| +|Srf- —Dgar| < Sr|f| — 20gar
and then
[Sfles < (Srlfl - 29941, 61)
= (If],Si61) — 29(gar, é1)
= (1= ga, 01))fon,
which in turn implies (6.11) with vz =1 — e~ "7
Now, the two estimates (6.10) and (6.11) together give

rAr.

(6.12) St flon <l flos + 2151

From (6.12) and the Lyapunov condition (6.8), we deduce that
urtt = MU”

with

wo_ (ISR _ [ 1Sur sl _ ( ol K)
ur .=\ 'C = 'C nd M := 2 .
<[S?~f]¢1> <[San]¢1> ! = om

The eigenvalues of M are
(T ++/T? - 4D),

N =

Mt 1=
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with
T:=ttM =~ +~vu, D:=detM =~pyg — (1 —~g)

N

‘We observe that
Yeye > D >vpvw — (1 —vu)(1 =) =T — 1,

so that
(va —72)? =T? —dypyy < T? —4D < T? —4(T — 1) = (T — 2)?
and finally
a = max(|py|, |p-]) <max(ym,ye, [T —1],1) = 1.
We conclude that | M"|| < o™, from what we immediately conclude. O

Remark 6.4. It is useful to emphasize that the existence of fi1 is mot required in the proof of
Theorem 6.3 for proving that ||M™|| < ", and this estimate can actually be used to derive the
existence of f1. Indeed, it ensures that (||§an0||)n is a Cauchy sequence for any fo € X since for
any p € N we have that f = fo — §pr0 verifies

(f,01) = (fo, d1) — (fo, Sirdr) = (fo, d1) — (fo, d1) =0

and we then have

||§an0 - §(n+p)Tf0|| + [ganO - g(n+p)Tf0]¢1 S an(HfO - §pr0|| + [fO - §prO]¢1)

Choosing fo € X1 such that [fole, = 1, we deduce that (§an) converges to a fized point f1 of §T,
which is not zero because

[f1]¢1 = hm[ganO]qbl = [f0]¢1 =1,
and fi1 is the unique fized point with normalization [fi]e, = 1. Besides, fi € X because of the
positivity of S and fy. This ensures that

[Stfilen = (Sefi,d1) = (f1. 57 1) = (fr,61) = 1

for any t > 0. Since on the other hand

SrSifi = Sevrfr = S,Srf1 = S.fi,
we deduce from the uniqueness of the fixed point that gtfl = f1, which yields that f1 € D(L) and
Lfi=Mf1.

6.4. Quantified isolation of the first eigenvalue. In terms of the geometry of the spectrum,
an immediate consequence of Theorem 6.3 is that the conditions (6.7), (6.8) and (6.9) ensure the
existence of a spectral gap, namely the existence of € > 0 such that

S(L)NAN e ={\}.
We relax (6.7) into the time-averaged condition

47 >0, VA >0, g4 > 0 such that

(6.13) T
V=0, |lfll < Alf]g, there holds / Sefdt > galfle,.
0

It is worth emphasizing that (6.13) does not imply anymore the existence of a spectral gap, and
there can be a non-trivial boundary spectrum, see Section 9.2 for an example. However, it is strong
enough for guaranteeing that \; is isolated from the rest of the spectrum, in the sense that

(6.14) (L) N B, e) = {\1}

for some € > 0. In particular, if not trivial, the boundary spectrum must be discrete from Theo-
rem 5.5 (under the additional assumptions listed in the statement of this last result).

Theorem 6.5. Consider a semigroup S on a Banach lattice X such that its generator L enjoys the
conclusions (C1) on the existence of the first eigentriplet (A1, f1,¢1). We assume furthermore the
time-averaged Harris condition (6.13) together with the Lyapunov condition (6.8) and the positivity
condition (6.9). Then (6.14) holds true for some constructive constant € > 0.
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Proof. First, we readily deduce from (6.13) and the inversion formula (2.13) that
{VA >0, 3ga > 0 such that

(6.15) - _
Vf >0, HfH < A[f]¢1 there holds R(/\)f > gA[f]¢1a

for any A > Ay, where R(A) := (A—A1)Rz(A) and §a := (A— A1 )e *Tg4. It is worth emphasizing

that R(A)f1 = f1 and 1 € 2(R(\) € B(0,1). Next, we claim that the Lyapunov condition (6.8)
ensures the existence of A > \; such that

(6.16) IR < ALIF+ B [fo,
for all f € X and some v} < 1 and K’ > 0. Indeed, by iteration of (6.8), we have

Q n K
1Sar Il < ALNFI+ 7= [flers
YL

for all integer n, from which we deduce

CK
1—1L

151 < eyt 1 + o1

for all t > 0 and where C' = supg<; < |S;||. We finally infer from the inversion formula (2.13) that

~ Ci(A—X\1) Cs
R(A <
IR < 55 o I+

1 [f]¢1a
L
for all A > A; and some C7,C5 > 0. Then we only need to choose A close enough to A; so that

% < 1 and we obtain (6.16).
YL

We have proved that R()\) satisfies (6.16) and (6.15), and that the positivity condition (6.9) is

also assumed. We can thus apply the proof of Theorem 6.3 to the operator R instead of S and we
obtain the existence of constructive constants e € (0,1) and C > 1 such that

IRVl < Ca™(If]l, Yn=>1,
for any f € X, (f, ¢1) = 0. By the spectral radius formula, we deduce

S(RN) n{z€C, |z| > a} ={1}.
The spectral mapping theorem for the resolvent, which ensures that
~ A=\
S(R(A 0} = ————
(ROD\ 10} = 55z

then yields (6.14) for some constructive € > 0. O

6.5. The weak dissipativity case. In this section, we consider a weak dissipative semigroup
(S;) as considered in Section 3.3 and in a sense we make precise now. We consider four Banach
lattices X3 C Xo C X7 C Xo = X. We first make the same kind of Harris type condition as in the
previous section, namely

Hypothesis (H) (Doblin-Harris) condition (6.7) holds for the same time 7" > 0 and for both
norms || || = |- llx, and || - || = || - || x, as well as the companion positivity condition (6.9) holds;

Instead of the strong Lyapunov condition (6.8), we assume

Hypothesis (L) (weak Lyapunov) there exist a constant K > 0 such that

ISFIl+1Sfllo < Iflli+ E[flgy, Y f € Xu,
ISflls+11Sflle < Iflls+ K[fle,, VfeXs,

with S = Spe~MT;
Hypothesis (I) (interpolation) there exists an increasing function £ : Ry — Ry, A — &y, such
that

Alflle < 1 llo + &Il flls, YA>0, &/A—0 as A —0.
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Theorem 6.6. Consider a semigroup S on a Banach lattice X such that its generator L enjoys
the conclusions (C1) on the existence of the first eigentriplet (A1, f1,¢1). We assume furthermore
the three above conditions of weak confinement (L), Doblin-Harris strong irreducibility (H) and
interpolation (I). Then, there exist some constructive decay rate functions © and © such that

(6.17) 15" fllx, S O fllxs, V=1,

and

(6.18) IS™fIl S O fllx,, ¥ =1,

for any f € X3, (f,¢1) = 0. More precisely, the decay rate functions © and O are defined by
(6.19) o(t) == iI;f@Q(t), o(t) := t=1o([t/2)),

for a constructive constant ¢ € (0,1), the infimum being taken over all the decreasing function
ARy = Ry, t— A, and Oy is defined by

L
(6.20) O(t) i~ )1\1;%(6 At X ).

The proof follows closely the proof of [77, Thm 4.8]. We start with the following key argument of
non expansive mapping result on a well chosen norm.

Proposition 6.7. Consider a positive semigroup (Si) which satisfies both above conditions of weak
confinement (L) and Doblin-Harris strong irreducibility (H). There exist some equivalent norms

Il-1ls to |- |lx and || - ||s to || - s such that Sy is a non expansive mapping for the two new norms
Il llx and || - ||3- More precisely, there exists o > 0 such that

(6.21) ISFIh +alSflo < Wfll, Vf € Xy, (f,é1) =0,

(6.22) ISfllls +llSFllz < iflls,  VfeXs, (f,é1) =0

Proof of Proposition 6.7. We define

(6.23) A= Lf)or + 8l1Fllo + Bl £l

with 8 > ¢ > 0 conveniently chosen. We take 8 := (1 —vg)/K, 6 := (1 — vy )/A. We define ||| - ||
in the same way. In what follows, we then only establish (6.21), the proof of (6.22) being exactly
the same.

We fix f € Xy, (f,¢1) =0, and we recall

(6.24) 1561 < [Flor-

We also recall that from (6.11), for any A > 0, there exists yg = vu(A) € (0,1) such that the
following coupling property holds

(6.25) [Sflos <vulflar i [fllo < Alflo,-
We fix A > K and we observe that the following alternative holds
(6.26) [fllo < Alfls,

or

(6.27) [£llo > Alflg,-

Case 1. Under condition (6.26), we use (6.25) and the first estimate in (L), and we deduce

IS5 = 1S1o: + 315 Fllo + 8IS Sl )
vi(flos + Bl + BEflo, = (B = )IISfo-

From our choice of 8 > 0 we have vy + SK = 1, and we conclude that (6.21) holds with « :=
B—46>0.

Case 2. Under condition (6.27), the first Lyapunov condition in (L) implies

IN

- - K
1Sf 1+ 15 f o < Ll + = 1 lo-
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Together with the non expansivity estimate (6.24), we get
[Sf1o1 + BISFI1 + BlISFllo < [Floy + BIF 12 + 811 fllo,

and we conclude to (6.21) again. O

The subgeometric convergence result is a straightforward consequence of Proposition 6.7 and an
interpolation argument.

Proposition 6.8. Assume that S satisfies the hypotheses of Theorem 6.6. Then (6.17) and (6.18)
hold true with the same decay rate functions © and © given by (6.19) (up to a modification of the
constant ().

Proof of Proposition 6.8. We recall that we have already proven (6.21) and (6.22). From (6.21)
and the interpolation condition (I), we deduce

ISFIl + Al SFll < £l + ExallSflls-

We observe next that from the very definition of the ||| - ||; norm
ISFll -+ SISF > ZalISFll,  Za =1+ mh e (1,2,
for some k > 0 and any A € (0, A\g), Ao > 0, and that from the very definition of the || - ||s norm
abx[[Sflls < BEMISS s,

for some B > 0. The three above estimates together imply

ZISF I < Sl + BEISS -

Using the second estimate (6.22) and repeating the same proof, we have

Z>\n+1 |||§n+1f|”1 < |||§nf|”1 + Bg)\n+1|||f|||37

for any n > 0 and for any A,4+1 > 0. The discrete Gronwall lemma implies

(6.28) IS™Fll < Anllf s+ Aknén Bl flls, ¥n >0,

k=1
where we have defined
n n
Api= Tl ar, Ak =An/Ax= ] @ a:=25"
k=1 i=k+1
Observing that

~

t
Apm < e "Eidi < R AM-A0) wigh  A(8) ;:/ A, ds
0

and A := \; if s € (i — 1, 4], we immediately conclude that the first estimate (6.17) holds true. We
come back to the first inequality in (6.21) that we iterate and sum up in order to obtain

n

IS™flll +a > 15" fllo < IS/ £l

k=[n/2]+1
for any n > 1. Together with the non expansion inequality
15" flon < [S*flos S 155 Fllos ¥n =k,
and the first estimate (6.17), we deduce
(n = [n/2] = 1)a[S" flo, < O(n/2)II s,
which is nothing but (6.18). O
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7. PARABOLIC EQUATIONS
In this part, we consider a general elliptic operator in divergence form
(7.1) Lf:=0i(ai;0;f) +b:0:;f +0:i(Bif) +cf, fe€ H& (Q),

where Q € R? is a bounded domain (i.e. an open and connected set) or Q = R%, and we always
assume d > 3 (in order to simplify the discussions when using the Sobolev inequality),
We also always assume at least a boundedness and ellipticity condition on the (a;;) matrix, namely

(7.2) aij € L®(Q), I >0, VE€RY a6 > v|E)?,

and some conditions on the coefficients b;, 8; and ¢ which will be described below.

We aim to establish the existence of (A1, f1, ¢1) solution to the first eigentriplet problem
(7.3) MER, 0<fieH), Lfi=Mfi, 0<¢1€H), L1 = i,

and the existence of some (constructive) rate function © such that the rescaled semigroup S

associated to the generator £ = £ — Ay satisfies

(7.4) IS = (£ 610 f1llme < @IS = (fodn)fulla,
for any t > 0 and any f € H, with H C Hy C L?.

7.1. Diffusion with rough coefficients in a bounded domain. In this section, we consider
the general elliptic operator in divergence form (7.1) in the case of a bounded and smooth enough
domain Q C R? with general elliptic condition on ai; as formulated above. We further assume

(7.5) bi,B; € L"(), ce L"), r>d,
as well as
(7.6) c+divB <c¢p and c¢—divb < ¢,

for some ¢y € R.

In that situation, the first eigentriplet problem (7.3) in a slightly less general framework (all the
coeflicients belong to L™) is considered in [227]. We explain with all details the existence proof
by following more or less the arguments presented in [227] and next we present a proof of the
geometric part and the stability part by taking advantage of the abstract material developed in the
previous sections. It is worth emphasizing that our proof of the uniqueness of the first eigenfunction
significantly differs from the one presented in [227] which is based on a dissipativity argument,
probably related to the reverse Kato’s inequality condition. The framework considered here is the
usual generalized solutions or weak solutions framework which goes back at least to Stampacchia
[305, 306], but it is reminiscent of previous contributions by Friedrichs [150, 151], Garding [158], De
Giorgi [116], Nash [267], Morrey [259], Moser [260, 261, 262], Ladyzhenskaya, Solonnikov, Ural’ceva
[220, 218], Oleinik, Kruzhkov [272] and many others. Lot of the functional arguments are picked up
from the book of Gilbarg and Trudinger, and more specifically from [162, Chapter 8], and also in
recent notes by Kavian [206] and Vasseur [315]. It is worth emphasizing that the present analysis
does not apply directly to elliptic operator in non divergence form, although this framework is
considered in [227]. We expect that all the results developed below can be generalized to a non
divergence form framework, for example the one developed in [43], but we do not follow this line
of research in the present work.

The proof of (7.3) and (7.4) are straightforward consequences of the abstract results developed
in the previous sections once we have been able to check that the corresponding hypotheses are
fulfilled. In the sequel, we will then show how these hypotheses are met in the present context.

Condition (H1). We recall that a weak (or variational) solution to the elliptic equation
Lf=geHT(Q), feH;),

is a function f € H}(Q) such that

(7.7) De(f,w) = {g,w), Ywe Hy(9),
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where the (negative) Dirichlet form D/ is defined by
De(fow)i= = [ (@sdif + sinow+ [ (b0fu+ cfw)
Q Q

for any f,w € HZ(). Most of the time, we will simply write
(7.8) (Lf,w) = (g,w), Yw e Hy(Q),

instead of (7.7). For the reader convenience, we repeat here some estimates picked up in [306]. For
A €R and f € H}(Q), we start with

(A=L)f, ) = /Qaijaz'fajf'f'/ﬂ(ﬁi—bi)aiff-f—/ﬂ(/\—C)J&

> |fvetlie + vV = 118 =0l f 2V fllee = IVer fllZz + Al flIZ-
1% 1
> Vel + 21V — oo l18 — bl 13 — IVEr FIRe + Al I3,

using the Cauchy-Schwarz inequality and the Young inequality, and next

M

(A=OL0) = Ifvelie + IV + (- 5

v 1
+ZCQ||f||2L2* - EHW = b\ g_p>nefll3e — Iverle >nfllie

v M
VeI + 2V I + (0= 5

v

— M) fl72

Y

M) flZ2

v 1
+(ZCQ - 2—V|||ﬁ = b1 pzarllie = llesLeysarllpare) |1 fIIF 2

using the Sobolev inequality (with associated constant Cq) and the Holder inequality. Choosing
M > 0 large enough in such a way that the last term is positive, and next x; > 0 large enough,
we deduce for instance that

(7.9) (A=O)f, ) 2 Ifve=lzs + %Ilvfllzb +IfIZ2, VA > ke

Thanks to the Lax-Milgram theorem and the above coercivity estimate, we deduce that A — L is
invertible, and more precisely the mapping (A — £)~! : H=! — H}(Q) is well defined. We also
claim that A — £ enjoys a weak principle maximum, and more precisely

(7.10) fEHJQ), (A=L)f>0 imply f=>0.

Indeed, for such a function f € Hg(£2), we take w = f_ € H}(Q), as a test function, and elementary
Sobolev space calculus together with the previous estimate yields

0 < <()‘_£)f7f*> = _<()‘_[')f*7f*>
< =lf-vellze - %va—”%? —[I7=11Z= <0,

so that f_ =0 and f > 0. We thus deduce (A — £)~* : L2 — L2, and from J.-L. Lions theory
on parabolic equation (see for instance [226, Chapter 3]), we next deduce that £ is the generator
in L? of a positive semigroup S, so that (H1) holds. It is worth emphasizing at this point that
the semigroup S built thanks to Lions’ theory is defined by S(t)fo = f for any fo € L%, where
fe&:=0C(0,00); L) N LE ([0,00); H}) N HL ([0, 00); H™') is the unique (variational) solution
to the equation

T
(7.11) (F(T), 9(T)) 12 — (for 9(0)) 2 = / {09, Py + De(f, g)}ds,

for any T'> 0 and g € £. Choosing g = f in the above equation, we classically compute

1 1 K
101 = 5005 = [ De(r.pas =0, vi>o,
which together with (7.9) imply

1 [ty t) — t ¢
+/ Y9 flgaas < ~(HO=F0 I )2+f°)L2+%/0 1fI2ads, Vi 0.
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When fy € D(L), the RHS is bounded and there thus exists a sequence ¢, — 0 such that
|V£(tn)|lL2 is bounded. That implies fo € H}(Q) and thus D(L£) C Hg (). Similarly, we may
consider the dual Dirichlet form D*(f,g) := D,(g, f) and build an associated positive semigroup
S* thanks to Lions’ theory described above. More precisely S*(t)gg = g for any ¢ > 0 and go € L?,
where g € £ is the unique (variational) solution to the equation

(000 F0)12 = (00 SO = [ LS b2,y + D" (g )},

for any t > 0 and f € £. Now, we fix T > 0, gr € L? and we set g(t) := S*(T — t)gr, so that g is
a solution to the backward evolution equation

—Og=L"g, 9(T)=ygr,
with
L*g = 0;(a;;0;9) — 0i(big) — Bi0ig + cg.
The variational formulation of this last problem is

T
(7.12) (97, F(T)) 12 — (9(0), £(0)) 12 = / {0, 9) sy — D*(g, f)}ds,

for any f € £ Summing up (7.11) and (7.12) with f(t) := S(t)fo for fo € L? and g(t) :=
S*(T — t)gr for gr € L?, we deduce

(S(T)fo,g7)2 = (S*(T)gr, fo)L2-
In other words, we have established that S* = (S¢)* and thus that £* is the generator of the
semigroup S*.
Condition (H2). Let us consider a ball Br, R > 0, such that Byg C Q and next the solution
(713) fo € H&(Q), (lil — ,C)fo = ]'BR7
which exists from the above discussion. We next recall some classical results. On the one hand, from
[305, Section 3 & Section 4] or [162, Theorem 8.15] (see also the original papers [116, 267, 260]),
the following global L> De Gorgi-Nash-Moser type estimate
(7.14) [ fllze@) S Nf+lle2) + 9l Lrreo)

holds for any subsolution
fEHy (), (A-L)f <geL*Q).
The local estimate variant [162, Theorem 8.18] (or weak Harnack inequality)

(7.15) IfllLr(Bor) S igf fHlgllprz@), Ypell,27/2),
R

also holds for a nonnegative supersolution
fEH(Q), f>0onBircCQ, (A\—L)f>geL*Q),

from what one deduces that a strong maximum principle [162, Theorem 8.19] holds, and more
precisely, for any f € Hg(£2), we have

(7.16) Lf<0inQ, f>0inQ imply f=0or f>0a.e. in Q.

When indeed f # 0, we may choose Bsr C €2 such that || f||z1(p,,) > 0 and thus infp, f > 0 from
(7.15) (with ¢ = 0). We conclude that f is positive thanks to a connexity argument. Although
the statements in [162, Chapter 8] are written assuming L bound on the coefficients b, 3, ¢, it is
observed at the end of [162, section 8.5] that the theory may be extended under less restrictive
conditions on the coefficients as those assumed here. This theory is developed in [305] although
the above strong maximum principle is not explicitly written. On the other hand, the following
Holder regularity estimate [305, Théoreme 7.1] and [162, Theorem 8.29] (see also the original papers
[116, 267, 260]) of De Gorgi-Nash-Moser type

(7.17) [fllca@) < CIA=L)fllL=
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holds true for some o = a(a;;) € (0,1) and C > 0. These last two pieces of information together
and the fact that fp # 0 imply that there exists a constant 6 > 0 such that fo > 61p,,, and thus

Lfo> (k1 —07")fo.

That is condition (i) in Lemma 2.4, so that condition (H2) holds thanks to Lemma 2.4. Presented
in that way, the above estimate is not really constructive, but the constant 6 := infg,, (k1 —L) 115,
can also be considered as a geometric quantity associated to geometric properties of the operator
and the domain.

First constructive argument for (H2). In the case when L is self-adjoint, that corresponds to
the case a;; = aj; and b; + 3; = 0, we classically know (that has been recalled in Section 2.3, see
(2.35)) that
1= in M = inf
rexi\oy |IfIIP rerd. £l 2=
from what and the Sobolev imbedding, we get

A1 > inf vCq — |le—1._ 2 MY > M,
vz ind {0 = llele a1 = M)

/{an-Vf+cf2},
o

by choosing M large enough. That gives an explicit lower bound on ;.

Second constructive argument for (H2). We give another constructive argument without
assuming any self-adjointness property. We rather assume

(718) (&bl — C)Jr S Ml(Q), b; + B; — ajaij S Ml(Q)

We fix ho € CZ(2) such that colp, < ho < colp,,,, with Bg, C Q and ||hol|z2 = 1. We next define
fo as the (positive) solution to

(7.19) fo € Hy(Q), (k1 — L) fo = ho,
so that fo € C¥(Q) from (7.14) and (7.17), and similarly
(7.20) fo € Hy(Bay), (1 = £)fo = ho,

so that fo € C%(Bs,) from (7.14) and (7.17). We observe that 0 < fo < fo thanks to the weak
maximum principle. We then compute

1 =||holZ> = / ho(ki = £)fo= | folra = L%)ho < || foll=ll(r1 = £7)hol|arr,
20 Bs,

where the last term is finite because of the additional hypothesis (7.18). We conclude to a first

constructive lower bound || fol[z(B,,) = c1 > 0. Because of the Holder continuity, we also have

”fOHLl(ng) > ¢o with constructive constant co = ¢a(c1, o, d) > 0. Thanks to (7.15) (with g = 0),

we obtain

fo = 1B, 31;52 fo=1s,,,CunllfollLi(ss,,.)

v

1p,,,Cunll follLi(,, ) = Cuwrrcacy ho.

Because all the inequalities are constructive and proceeding as above, we deduce that condition (ii)
in Lemma 2.4 holds and thus also (H2) with constructive constant kg := k1 — C;}Icg_ teo. F inally,
because of (k1 — L) fo = 0 on Q\Bs, /2, we may apply the Harnack inequality [162, Corollary 8.21],
and we classically deduce there exist constructive constants C' > 0 and C, > 0 for any ¢ > 0 such

that
(721) Cg]-wg < fO < Ca
with w, = {z € Q; §(z) > o} and d(z) := d(z, 9Q) is the distance to the boundary function.

We can also get a constructive argument for (H2) by asking that condition (i) in Lemma 2.4 holds.
We may for instance verify that the dual counterpart of the above constructive argument holds
when (c+ 9;3;)— € M* and b; + 3; + djaj; € M?'. More precisely, we establish in a similar way as
above that the solution to the problem

(7.22) Yo € Hy(Q), (k1 — L")ho = ho,
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satisfies

(7.23) Koo < Lo < Kito,

for some constructive constants kg < k1. Similarly as above again, there exist constructive con-
stants C' > 0 and C, > 0 for any ¢ > 0 such that

(7.24) Col,, <t < C.

Third constructive argument for (H2). We write
(7.25) Lf = a0} f +bidif +éf,

with b; = b; +0ja;;+ B; and ¢ := ¢+ 0;5;. We further assume lN)lv, ¢ € L*°. In that case, we may also
obtain an explicit lower bound on A; by proceeding in the following way. We define fo(z) := x(|x|)
with x € CLHRL)NW2®(Ry), L1753 < X < g5, X' < 0on [0,1], x(s) :=n?*(1—5)?/2 on i, 1],
tn = 1—1/(2n), for some n > 1 to be chosen. As a consequence, X" = n? on [1,,1], [x'| < n on

[tn,1] and x > 1/2 on [0, ¢,,]. Denoting s := |x|, we compute
0ij = Tidj\ | 5 . .
Lo = ag{x"($)iii; + X ()} +ble) - 2 (5) + ela)x(s):

For n large enough, we get

Lfy > n*v—n2A—-nB—-C>0 on B\B,,,
Lfo = —A{IX =+ X' (s)/sll=} = BIXllL= — C = kox on B,,,
with A := ||a||p~(B,), B := ||l~)||Lao(Bl), C := ||é|po(B,) and ko € R_. As a conclusion, we have

again established condition (ii) in Lemma 2.4, so that condition (H2) holds.

Fourth constructive argument for (H2). We present a last situation when we are able to
prove a quantitative version of condition (H2). We assume that a € C°(Q), divB € L"/?, as
well as b; € L™ and ¢ € L™/? in the definition of (7.25). We define hy and fy as in the second
constructive argument for (H2), so that (7.18) holds. Choosing p € (1,2) defined by 1/p :=

1/r+1/2>2/r+1/2* we observe that

k1 fo — bidifo — éfo — hollee S Kallfollre + 10ill-10i follzz + 1€l Lrrzll foll o= + 1Rl 2
S lhollze,

~

from equation (7.19) and the coercivity estimate (7.9). From the Calderon-Zygmond regularity
theory [80] or [162, Theorem 9.14], we also know that

(7.26) I follw= ) S llaij03; foll Loy
Writing a;; a}’j fo = k1fo— b;0;fo — éfo — ho and using the two above estimates, we deduce
(7.27) [ follw=1(0) < llhollL2(@)-

On the other hand, from (7.8) and the Poincaré inequality, we have
1= [holl72 = (w1 — £) fo, ho) S IV foll 2] Vho| 2.
Together with the estimate (7.27) and the Gagliardo-Niremberg inequality

1/2 1/2
IV fllee S DA A2,

we obtain a lower bound | fol[r~ > Cp > 0. We then conclude as in the second constructive
argument for (H2).

Condition (H3). Because of Rellich-Kondrachov theorem on the compact embedding Hi C L?,
the mapping (A — £)~! : L? — L? is compact for any A > k1. As a consequence, introducing the
splitting £ = A+ B with A := k1 — kg, k5 € R arbitrary, the operator Rg(\) = (A+r1 —rp—L) 7!
is bounded uniformly on A > kp and it is compact for any A > k. We deduce from Lemma 2.8-(2)
that (H3) holds for both the primal and the dual problems.

We may thus apply Theorem 2.21 and deduce the existence of a solution (A1, f1,¢1) to the first
eigentriplet problem

(7.28) MER, 0<fieHy, LA=Mf1, 0<¢1€HY, L =\,
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where both equations must be understood in the variational sense as a consequence of the discussion
at the end of the proof of condition (H1).

Condition (H4). The strong maximum principle holds as already mentioned in the paragraph
dedicated to condition (H2). As a consequence and thanks to Theorem 4.11, we know that the
first eigentriplet problem (7.3) has a unique solution (A1, f1,¢1) which satisfies f1 > 0, ¢1 > 0,
N(L — A\)* = Span(f1) and N(L* — \1)* = Span(¢) for any k > 1.

Condition (H5). Consider f € D(L£>) such that 0 < |f| € D(£>) and
L|f| = Re(signf) L,
so that multiplying both term of the equation by |f| and integrating, we have
Re(LF, f) = (LIfL11)-

We next compute

Re(Lf, ) = - /Q ary Re(D; fOLF) + /Q (b — Br)Re(Fors) + /Q AfP,
and

LI = — / ar; 03| F10k] ] + / (b — Br)Re(Fon ) + / AfP,

where in the last equality, we have used that 0| f| = ‘—}tl%e( fOkf). From the three above equations,
we deduce

/Q 0131051 F10k | f] — Re(d; f0,.F)) = 0.

Introducing the real and complex part decomposition f = u + iv, and similarly as in [207, Proof
of Theorem 5.1], we next compute

;| £ |0k f| — Re(9; fOx[)

= # [uv(Opud;v + pvdju) — u?0jvov — v26ju8ku}
= #(uajv — v0ju)(ulkv — vORu),

so that from the ellipticity condition on a, we have udyv — vdyu = 0 a.e. on . On the other
hand, from De Girogi-Nash-Moser regularity estimates (7.14) and (7.17), f has Hélder regularity.
In particular both functions u and v are continuous. Because |f| # 0, one of the two function is not
identically vanishing, say for instance v Z 0. There exists some points xg € €2 such that v(zg) # 0,
say for instance v(zg) > 0. Denoting by w the connected component of the set {x € Q; v(z) > 0}
containing xg, we have V(u/v) = 0 on w. Hence u = av on w for some a € R, which implies that
there exists o € S! such that f = o|f| on w. If w # Q, we would have |f| = 0 on dw N Q # 0,
which would be a contradiction with the fact that |f| > 0. We conclude that w = Q and thus that
f = ol|f], which is nothing but the reverse Kato’s inequality condition (H5).

At this stage, we may use Theorem 5.16, in order to get the conclusion (C3) on the triviality of
the boundary punctual spectrum.

In order to go one step further and establish the asymptotic stability of f;, we may use the two
following approaches which are consequences respectively of Lemma 7.1 and Lemma 7.2.

Lemma 7.1. For any R > 0, the set
K:={feD(L);[f/I<R, [Lf]<R}

toc (), where [g] := gL -

1s strongly compact in L
Proof of Lemma 7.1. Consider f € K so that f € H}(2) and

9i(aij0;f) + b0 f + 0:(Bif) + cf = g € L*(Q).
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From the renormalization theory of elliptic equations and the GRE trick (see for instance [241] and
the references therein) for any renormalizing function H € C%(R), there holds

H'(u)fi¢p1aVu-Vu = div(ag1V(H (u)f1)) — div(f1H(u)aVer)
+div((b+ B)H (u) fré1) + gH' (u) f161,

with u := f/f1. Considering H € W2 the even (and convex) function such that H(0) = 0 and
H" := 1y, j,41], so that in particular |H'(s)| < 1, and integrating the previous equation, we deduce

v / Vul2fin < / gl frdn < | fillo~R.
|ul€[n,n+1]

We proceed along the line of the proof of [58, Theorem 1]. For a fixed w CC €, we define
B, = {z € w; |u(z)| € [n,n+ 1]}. Using that fi > 0 and ¢;1 > 0, there exists a constructive
constant C,, g > 0 such that

/ |Vul? <C2, Vn>0.

n

From the Cauchy-Schwarz inequality, we have

(7.29) / |Vu| < Cymeas(B,)"/?, ¥n > 0.

n

On the other hand, denoting by 1* := d/(d — 1) the Sobolev exponent, we have

/ |[Vu| < C’W,R(Tfl*/ |u 1*)1/2.

Summing up and using the Cauchy-Schwarz inequality again, we have

%:I/BH V| < CMR(;”_N)IM(%:I/BH |u1*)1/2
< Con(S0™) 2
n>1

Together with (7.29) for n = 0, we deduce
IVl 1) < CLp(L+ I Vull12).
Because 1*/2 < 3/4 < 1 (recall that d > 3), we can kill the last term, and we obtain the estimate
IV fllerwy <C", VfeEK,

for some constant C" := C[] p > 0. We classically conclude thanks to the Rellich-Kondrachov
theorem. O

From the above lemma and Theorem 5.23, we deduce that S(¢)f — (f, ¢1)f1 in the L;l norm sense
as t — oo for any f € L?(Q2). The alternative approach is based on the following result.

Lemma 7.2. Setting k := ko — 1, there exist A,a, R > 0 such that
(1) sup.ea, (NIRB(2)|| @ (L2:m2) +5UP.en,\r Re()@(L2:m1) < 00,
(ii) Z(£)N A, C X4(L) N Bg,
where B:=L— A and z =z + 1y, x,y € R.
Proof of Lemma 7.2. Let us consider an a priori solution to the stationary problem
feEH}, z=x+iyeA,, (L+z2)f=gcl?

This one satisfies
- [@r+8p- i+ [b-vii+erar?| =] [ of
Using the elliptic condition, the Cauchy-Schwarz inequality and triangular inequalities, we get
|[of| = |[avsvisteray+amlrP|=| [v-Vi7 =51 VF+ et o)

2 I € 1 O 1( R0 P PO s T8

v
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Using next similar arguments and those introduced in the paragraph dedicated to condition (H1)
and with similar definition for the constant M := M (b, 8, ¢) > 0, we deduce

7 |l v
[of] = (% == a7+ 519113
Defining the sectorial set
S={z=az+iyeC; |yl >2x_+ M},

we have established the a priori estimates

—1/2
e < (ol -3l
— Yy —1/4
Vol < 22 (M e ) g

for any z € S. We classically and immediately deduce that p(£) D S and the resolvent estimate
IRe() z(L2,m1) < (‘—g‘ —r_ — M)_1/2 + (‘—g‘ —r_ — M)_1/4 for any z € S, and in particular the
estimate (i) holds true.

On the other hand, because £ has compact resolvent as established just above or during the proof
of (H3) and using the Fredholm alternative, we have ¥(£) = X4(£) and X(£) N A, is finite for
any k € R, what is nothing but the property (ii). O

From the above lemma and Theorem 5.30 or Theorem 5.32, we deduce that S(t)f — (f,¢1)f1 in
the L? norm sense as t — oo for any f € L?(Q) with exponential rate.

We may summarize our analysis in the following result.

Theorem 7.3. Consider the elliptic operator (7.1) in a bounded domain and assume that the
coefficients satisfy (7.2), (7.5), (7.6) and (7.18). Then the conclusions (C3) holds as well as
(CE2) in L}, norm and (CE3) in L? with non constructive rate.

It is however worth emphasizing again that the above approach is definitively not constructive. We
propose now an alternative approach which is constructive.

Quantitative estimate of stability.

Using the Doblin-Harris type approach presented in Section 6, we are able to establish a rate
of convergence to the principal dynamic, at least in a regular framework. We thus make some
regularity assumptions on €2 and additional regularity assumptions on the coefficients.

- For the domain, we assume that that there exist constant rq > 0 such that for any x € ) there
is y € Q such that x € B(y,rq) C Q, in particular, for any = € 09 there is y € Q such that
x € 0B(y,rq), B(y,rq) C Q. We also assume that Q is CH.

- For the coefficients, we assume a;; € C(Q), b;, & € L®(Q), where b; and ¢ are defined in (7.25).

Theorem 7.4. Consider the elliptic operator (7.1) in a bounded domain and assume that the
assumptions of Theorem 7.3 hold together with the above additional regularity assumptions on the
coefficients and the boundary. Then the conclusion (CE3) holds with constructive exponential rate.

The proof of Theorem 7.4 follows from Theorem 6.3. We split the proof into several steps.

- Step 1. Regularity estimates. Thanks to De Giorgi-Nash-Moser regularity technique for
parabolic equations developed for instance in [219] (in Russian), [312, Theorem 1.3, Theorem 2.2]
as well as more recently in [206, Lemma 2.7] and [173, Theorem 1.1], there exists a = a(a;;) €
(0,1) and for any 77 > Ty > 0 and any o € (0,1), there exist constructive constants C; =
Ci(llfllpser2, T, 7,7) such that any solution f € L>(0,00; L*(2)) to the parabolic equation 9, f =
Lf satisfies

(7.30) I fll Lo (1o, 1% ) < C1y I fllee (T, m]xw,) < C2,

with w, == {& € Q; d(z,09Q) > r}. More precisely, in order to establish the second estimate
in (7.30) with constructive constant, one may observe that the proof of [173, Proposition 2.4]
may be repeated in order to get that solutions to the parabolic equation considered in the present
framework fall into De Giorgi classes as defined in [173, Definition 2.3], and thus [173, Theorem 1.1]
applies.
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On the other hand, in this context and because of the regularity assumptions, we may establish
a more accurate regularity estimate. More precisely, by gathering the Sobolev inequality and the
Calderon-Zygmond estimate (7.26), we obtain the classical constructive regularity estimate

(7.31) llullcory S Nullwzatiy S (k1 — L)ull a1,

see for instance Theorem 7.10, Theorem 7.25 and Lemma 9.17 in [162]. Iterating the same kind of
arguments, we get

(7.32) l[ul| o) < Cll(k1 — £)*ull L2(a),
with constructive constants C' and k.

- Step 2. Harnack estimate. We claim that for any 0 < ¢ty < T and ¢ > 0, there exist a constant
Cy > 0 such that, for any fy € L?, the associated solution f := S fy satisfies

(7.33) sup fr, < Cqy mf fr.

The proof mainly follows form Aronson-Serrin [23] (see also [262, 198, 200, 216, 199, 311, 312, 217]
for similar results). First, we know from [23, Theorem 3] that

7.34 max f < C'min f,

( ) (p)f Q(p) d

for any p > 0, t > 0 such that Q*(3p) C (0,00) x Q, where Q(p) := [t — p%,t] x C(p), Q*(p) :=
[t —8p%,t—Tp?] x C(p) and C(p) is a cube with length p. To avoid technical issues we assume that
w, is convex. In other case, the geometrical condition given above implies that there is N € Z
such that any two points x,y € € can be connected by a polygonal path of at most N segments,
and we can argue as follows for any segment. We define D := sup, ,cq d(a,b) the diameter of
and we choose 1’ < ¢/7 such that

D

U

|+ 1)) < T —t.

For any z,y € w,, we also define N, = LMJ Since w, is convex, ' < p/7, we have that

the family of cubes {C(z;,2r")}i—o,n. of center z; and length 2r' for z; = = + (z—y) satisfy that

C(z,6r") € Q and C(xy,2r") N C(xiy1,27") # O for any ¢ = 0,...,N.. As a consequence, we can
apply Aronson-Serrin estimate (7.34) for each cube to obtain

max fi, < Cov min fy,
C(z;,2r") (xi,2r") o

with ¢; = to + 7i(2r")2. Taking y; € C(z;,2r") N C(xit1,2r"), we deduce

max fy, < Cov min fi. . < Cofs, ) < Coyypr max o, < ) t.
ot 2r’)f1 r/ C(mi,Qr’)le r f,+1 (i) r Clanr s f1+1 2r Clarrn QT,)fwrz

By induction, we obtain

. N,
fto( ) < Cmax ftl = r/ C(IH;?}QT’) ftNC < Cgr/fth (y)v

with tn, = to + TN.r"? < T. Note that in any case the constant Cs,s is the same since it only
depends on the length 27’ and the coefficient of the equation. We have thus established (7.33) with
Cy = OQLTWHI,

On the other hand, we state an improved version of the already mentioned stationary Harnack
inequality. Because of the interior ball condition the Hopf Lemma (see for instance the proof of
[162, Lemma 3.4]) claims that for any ¢ € (0,rq/2] there exists a constructive constant a > 0 such
that if u € W2P(Q), p > d, is such that

u > 1w95 (Kjl - ‘C*)u’ > 0)
then u satisfies

(7.35) u > x(x) = e~ (20=8)* _ g=a(20)” o Wo-
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Let us give two applications of the above sharp regularity and positivity estimates. First, recalling
(7.24) and using (7.31) and (7.35), we deduce that there exist two constructive constants ¢; € (0, c0)
such that

(7.36) c0d < Yo <c1d on Q.

Consider now f; € Hg(€) the positive first eigenfunction with normalization ||fi| 2 = 1. Using
the estimate of regularity (7.32) on the iterated equation (k1 — £)¥f; = (k1 — A1) f1, we have

I fillze@) < If1llcorq) < Ch,

for some constructive constant C; € (0,00). Next using the elementary inequality

1=AﬁsmmwmmsaMhu

[ =g = [ 5

1/01 - Cl|w§| 2 1/(201),

we deduce

v

|92 sup f1

IV

by choosing ¢ € (0,7q/2) small enough. Then, from the Harnack inequality [162, Corollary 8.21],
we deduce

inf f1 > Cysup f1 > Cp(2C1|Q)) 7"

Wo wo
Finally, from the above Hopf lemma and the above Lipschitz continuity, we have established
(737) 605 S f1 S 015 on Q,

for two constructive constants ¢; € (0,00). The same arguments on the normalized and positive
first dual eigenfunction ¢, lead to the same estimate

(738) 605 < QZ51 < 015 on {.
In particular, for any such g € (0,rq/2), we have

(7.39) (¢1,10,) = 1o,
with constructive constant r,, what is nothing but condition (6.9) in the Harris theorem that we
will use below.

- Step 3. Splitting of £. We introduce the splitting £ = A + B, with Af = . #1,,f, # >0
large enough and ¢ > 0 small enough that we fix just below. Using (7.9), we observe that

(Bf, f)r: = (Lf, flrz — AN fllr> + A f?

c
wQ

v C
— IV FILa + (51 = ) f2e + A\ fII7 < r0l FI1Z2,

IN

by choosing first .# > k1 — kg and next ¢ > 0 small enough in order to be able to throw away the
last term using the negative first term and the Sobolev inequality. We deduce

(7.40) Sp(t) : L* — L* with bound O(e"™").

On the other hand, denoting f; := S, (¢)f for f € L?(Q) and recalling that 1y defined by (7.22)
satisfies (7.23), we have

d
G [1ston < [ islon< [151€700 < [ 1fibvo
so that

(7.41) /|ft|¢o Semt/|fo|¢o'

Arguing in the same way for Sz and using (7.36), we have established

(7.42) Sc(t),Sp(t) : Ly — L} with bound O(e"?).
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For a solution to the evolution equation 0;f =Cf, C = L or C = BB, we also classically compute

& [ru = 2 fenr
= 2 [(V-aVin+ [ £
Thanks to (7.23) again, we have
(7.43) G [Poo< -2 [[9sP0 -+ [ Pon,

from what we deduce
Sc(t), Sp(t) : L2(8) — L(8) with bound O(e"!/?).
In the sequel, we will need the following version of Nash inequality.

Lemma 7.5 (weighted Nash inequality). There exists a constructive constant C such that

(7.44) 1fllz20) < CNIIVf||£§25)||f||ZT2, vV f € H'(S).

Proof of Lemma 7.5. For € > 0, we define

1
o) = 5 /B SO, ba) = (B(z. ) = /B R

and B(z,¢) := {y € ; |z — y| < e}. It is worth emphasizing that

(7.45) et <o (z) <et, Ve,
For f € H(6), we compute

1
If = fellZ2(s)

o(y)d 25 d
old.(2) /B(“)(f(y)—f(x)) (y)dy| 3(w)da

3(y)
[ tacdio) = s S b)dedy

2 /O v /Q /Q V(1 = D)z + ty)|? (i((zi))zi(x)dxdydt
+&? /1;2/Q/Q|Vf((l—t)x+ty)|2i((zg)é(x)dxdydt
= / v / / IV f(2)2 5(52)1@26(2)(1 d_zt)ddt

+£2 //2//|Vf |22d+1) 5(z )%dtdm

where for the last inequality we have used the first inequality in (7.45), the fact that §(z) < 26(z)
when 0 < ¢ < 1/2 and the fact that §(y) < 2§(z) when 1/2 < ¢t < 1. Using the second inequality
n (7.45), we straightforwardly obtain

1f = fellZa) < CiellVFlTae, Ye>0,

for a constant C7 > 0. On the other hand, we also observe that

I fellpee < d+1 1fllzs-

IN

IN

N

Writing now
=i =)+ ffe

and using the above two estimates, we deduce

I£117 £z 1 = fellzz + 1A N fellzoe
||f||Lz 4 61/2||Vf||Lz +Coe™ I f117s

IN

IN

< ||f||L2+ - VAl + Coe T £y
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and we obtain the weighted Nash inequality (7.46) by choosing € := (|| f[|2,/[|V f]|2,)/ 2. O
S S
Defining
wim [Iffindoe >, oi= [ frundse 2,

with k := k14, coming back to (7.43) and using (7.36), the Nash inequality (7.46) and the estimate
(7.41), we get

V() < —21/00/|Vft|25€72m£
42
- d+1
o2 (132 0>)
2 L2(s
< —2ueeCly d+1 © T
ot BT
(17013 gy 02+)
U(t)1+a
< —C—%5—
_pd2 g ,d42 2
with C:= 2vCy e, "4e; ¥ and a:=1/(d + 1). Integrating in time, we deduce
Oél/a U(O)Q

U() < Ol/atlT, vVt > 0.

We have thus established that there exist constructive constants K > 0 and « > 0 such that

Kt

(&
(7.46) 15e(8) i) < Ko 1 rwys ¥ f € LH(8o).

From that last result, the estimates (7.36) and the properties of A, we deduce that for N > 1 large
enough

(7.47) (SgA)N) L LY(6) — L2(5) with bound O(e").

We refer to [172, Proposition 3.9], [248, Proposition 2.5] and [207, Lemma 2.4] for details.
- Step 4. Lyapunov condition. We may next write

5,5 =V 4+ Wk §£,
with
Vi=Sp 4+ (Sp ANy = (S54)0N)
On the one hand, using that A : L? — L? is bounded and (7.40), we deduce that
V. L? - L? with bound O(e"),

for any x € (ko — k1,0). On the other hand, using that A : L2 — L? is bounded as well as (7.42)
for S, (7.47), (7.38), (7.36) and (7.40), we deduce that

W Sp Lél — L?, with bound (’)(e’”),

for any k' > k1 — kg. We may thus fix t = T large enough such that the following Lyapunov
inequality holds

~ 1
(7.48) 1T fllz < 5l Fllee + Mzl fllzy

which is nothing but (6.8) in the hypothesis of the Harris theorem.

- Step 5. Harris condition Let A > 0 and consider 0 < f; € L? such that | foll2 < A{fo,%0).
We set f; := e S, (t)fo. From the first inequality in (7.23), we have

d , ~ =~ ~
E<ft7w0> = <ft7(£ _)\l)w0> > _()\l_ﬁo)<fta¢0>7
and then, thanks to Gronwall lemma again, we obtain,

<ﬁ7 ¢0> > e_()\l_KO)t<f07 ¢0>
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This estimate, together with the previous step, shows that

Wo

Futayiods = [ Futayiods = [ Fu(epiods

> o= a0l fo4h) — || fro |2l ol oo w2
> e (mmmollo( iy ahg) — e fola 4o oo ||

(emtramrodto — Aem=rodo || oo ]'/2) { fo, o).

Choosing ¢ > 0 small enough, we get

V

Y

~ 1
Jo(@)bodz > v(fo,v0), 7= 56_(A1_'{°)t°-

We

As a consequence, there is x{o € w, such that

~ 1 1 ~
fy> — de > —— / de > 1 .
a2 oy [ Fo@ie 2 g [ FuGervds 2 ot vo)
On the other hand, from the Harnack inequality (7.33) established in Step 2, we know that for any
T > tg exits C'y such that

ﬁo (x{()) < sup J?to <Cpyg 1L£lf ]?T.
The two last estimates together with (7.38) and (7.36) imply the Harris type estimate

(7.49) fr=S8(T)fo > galfo, d1),

with g4 := 1,,,, which is nothing but (6.7) in Harris theorem.

oy
CulQcie
- Step 6. Conclusion. Because of the constructive estimates (7.39), (7.48) and (7.49), we may
apply the Harris type Theorem 6.3, and we conclude to the exponential stability (1.7) in the norm

of L?(£2) with constructive constants.

7.2. Diffusion in R? with strong potential confinement. We consider in this section the
elliptic operator

(7.50) Lf:=Af+b-Vf+ecf, feHY(RY,

with b € LS (R?), ¢ € L2 (R?) and a confinement condition that we impose through the properties
of the potential function ¢, which is roughly speaking ¢ — —oo as |z| — co. More precisely, we

assume
(7.51) oir € LY? meas{o; > K} < 0o, YK <0,

with either o1 := ¢ + |b|?/k for some constant k € (0,4) or either oy := ¢ + divb/2. When we
assume that

c~—lz|” and b~ zlz[P7! as |z| = oo,

the condition (7.51) for o7 is reached when v > max(0,253) or v = 28 > 0 and some conditions on
the constants involved in the behavior of the coefficients. In that context, the condition (7.51) for
o9 is more general since it is reached when v > max(0,3—1) or v = f—1 > 0 and some conditions
on the constants involved in the behavior of the coefficients.

A similar framework is considered in [227] and for the reader convenance we just briefly check that
it falls in the framework developed before by slightly modifying the arguments presented in the
previous section. The integrability conditions on b and ¢ may be probably weaken. For the sake
of clarity we do not follow this line of research but rather focus on the new arguments which are
necessary in order to deal with the unbounded domain Q = R?.

Condition (H1). The definition of the operator is still made through the formula (7.8). Under
assumption (7.51) on o1, denoting 6; := 1 — k/4 and proceeding exactly as in the previous section
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during the proof of (7.9), for any f € H'(R?) and A € R, we have

©-orn = [ 9k [ sevre [ g-or

0, /R V12 +/Rd(A—01)f2,

by using successively the Cauchy-Schwarz inequality and the Young inequality. On the other hand,
under assumption (7.51) on o2, denoting 5 := 1, for any f € H*(R?) and \ € R, we write

-08.5) = o [ V5P + [ (-,

by performing one integration by part in the previous equation. In both cases, for and any M > 0,
proceeding again as in the previous section during the proof of (7.9), and denoting from now on
o =o;, 0 =0; we have

Y

0 0Cs
(= 0f ) 2SIV + Vo FIs + A= MR + (52 — loTomarl ors) 112
by using the Sobolev inequality (with associated constant Cg) and the Holder inequality. Taking

M > 0 large enough, and next k1 > 0 large enough, we finally obtain

(7.52) (=010 2 DIV I3+ o=+ 11, YA R

With the same arguments as in the previous section, we conclude that £ is the generator in L? of
a positive semigroup Sg, so that (H1) holds.
Condition (H2). We may for instance use the third constructive argument presented in section 7.1
and we establish

3 fo € H)\{0}, fo >0, ko €R, Lfy > kofo.
That is condition (ii) in Lemma 2.4, so that condition (H2) holds.
Condition (H3). We introduce again the splitting £ = A+ B with A := k1 — ko + 1, so that
from (7.52), the operator A — B = (A — ko + 1) + (k1 — £) is invertible for any A > kg = Ko — 1.
We claim that the operator (A —B)~! is compact for any A > k. For that purpose, let us consider
a sequence (f,) such that (A — B)f, is bounded in L? and we have to prove that (f,,) is relatively
strongly compact. When condition (7.51) holds and because of the estimate (7.52) and the very
definition of B, we have

0
(7.53) SV EnlZe + IV fulliz + 1 fall e < C,

for some constant C' € R;. Because of the Rellich-Kondrachov theorem, we just have to show that

lim sup f2=o.
R—oo p B

But that last convergence may be established using the assumption (7.51) in the following way.

We write
L5 oy
< " Ben{o>K} " BeN{o<K} "

d—2 1
<l fmeas(B5 0 (o = KYJE + o [0

for any K < 0, by using the Holder inequality. Using next the Sobolev inequality, the estimate
(7.53) and the assumption (7.51), we deduce

1

lim sup f2 < limsup inf {[meas(Bf% N{oc > K})]% + —} =0,
R—oo JBg, R—oo K<0 |K|

and the claim is proved. As a consequence, we may apply Lemma 2.8-(2) and we deduce that (H3)

holds for both the primal and the dual problems.

Condition (H4). As in [207, Proposition 5.4], we establish the strong maximum principle by
exhibiting a barrier function and using Lemma 4.9. An alternative argument should be to adapt
the proof based on the Harnack inequality as presented in the previous section. Let us then consider
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f € D(£*) N X \{0} such that (A — £)f > 0 with k large enough (k > d/2 must be suitable) and
A > A1 large enough but fixed (A > k1 is suitable). Using a very classically bootstrap argument
based on iterated application of the Calderon-Zygmond elliptic regularity theorem and the Morrey
estimate, we have f € C(R?). By assumption, there thus exist zo € R?, and two constants 7,7 > 0
such that f > 7 on B(xz,r) and we take choose zp = 0 in order to simplify the notations. We next
fix R > r and we observe that the function

g(@) =7 (90(|z]) = 9o(R)), go(s) := exp(or?/2 — 0% /2),
satisfies
()T A =L)g = (A=c)(g0 = go(R)) + (do — ob-x = *1*) go
(A + llell Lo (Bry) + o(d + b 2] L (Br) — o1 g0 < 0
on O := B(0,R)\B(0,r) for 0 > 0 large enough. We next fix 7% such that g = 7 on 9B(zo,r). We
also observe that from (7.52), A — L is coercive on O, in the sense that
VheHi(O) (A= L) h)rz2o) > b2 0)-

In particular, A — £ satisfies the weak maximum principle as explained in the proof of (7.10).
Arguing as in the proof of Lemma 4.9, we deduce that f > ¢g > 0 on O, what we also see directly
by observing that h := (g — f)+ € H}(O), (A — £L)h < 0 and using the weak maximum principle
implies h < 0, thus h = 0 and finally f > g. Because R > r can be chosen arbitrarily large, we
conclude with f > 0 on R

IN

Condition (H5). The reverse Kato’s inequality condition is proved by using local arguments, so
that it holds for the same reasons as in the previous section. Similarly, because the argument are
local, the conclusion of Lemma 7.1 holds here.

As a consequence, using Theorem 2.21, Theorem 4.11, Theorem 5.16 and Theorem 5.23, we may
summarize our analysis in the following result.

Theorem 7.6. Consider the elliptic operator (7.50) in the whole space and assume that the coef-
ficients satisfy (7.51). Then the conclusions (C3) holds as well as (CE2) in Ly, .

We do not present an exponential constructive estimate, which we believe is possible to prove, but
would require significantly more development.

7.3. Diffusion in R? with weak potential confinement. We consider in this section the same
elliptic operator (7.50) with now a weak confinement condition assuming that ¢ converges to a
constant. With no loss of generality, we may assume ¢ — 0. More precisely, we consider the elliptic
operator

(7.54) Lf:=Af+b-Vf+rcf,

with ¢ € Co(R9), b € Co(RY) and r € R, a parameter. When not necessary in the discussion we
will take r = 1. The associated first eigenvalue problem in such a situation has been studied in
[227, 8th and 9th courses] to which we refer for more details. We define

A = M (r) :=inf{sk € R; (A — L)~ well defined and positive for any \ > x}.
Proceeding exactly as in the proof of (H1) in the preceding section, we see that the operator A — £
is invertible for any A > ||c4|| L, and then its inverse is positive. Because the proof of (H2) in the
preceding section also applies here, we deduce that the infimum A\; of the set Z of real resolvent
values is well defined with A1 € (ko, k1), for some constructive constants x; € R.

We split now the discussion into two cases.
Case 1. We start considering the case b = 0. In that case, £ is self-adjoint so that A; is also
characterized by

A= sup E(f),
[fllp2=1

with
o) = (eh gy =r [ et [ 1952,

We make the following elementary observations :
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e We claim that \; > 0. Taking f,(z) := n=%?u(x/n) for some function u € H*(R?), ||ulz> = 1,

we compute
[ivnp= [ vepz= [ ver
Br B

1
i / IVul? + [[rell s / a? + lrell gz,
n B,

n

IN

for any R > 0, so that
-\ <limsup(—&(f,)) <O0.

e We claim that A\; = 0 when ¢ < 0. In that case, we have £(f) < 0 for any f € H*(R?), and we
deduce the reverse inequality A; < 0. In particular, as a function \y = A (r) of r > 0, we have
A1(0) = 0. We also claim that A (r) — oo as r — 0o when ¢, # 0. We may indeed fix f € H'(R?),
lfllzz = 1, supp f C supp ¢4, and we compute

E(f):rAdc+f2—/|Vf|2%m, as T — oo.

e We finally observe that A\; : Ry — Ry is convex since it is defined as the supremum of linear
functions r — E(f) for any fixed f € H*(R?). As a consequence, we have the following alternative:
-\ = 0;
- 3rg € [0, 00) such that A1(r) =0 for r < rg and A1 (r) > 0 for r > rg.
Concerning the value of 7o, it may happen that ro > 0, and that is the case when ¢ € L2 because
of the Sobolev inequality, or that ro = 0, and that is the case for instance when ¢ > 0, ¢(z) = ||™™
for x € BG, m € (0,2), R > 0. To prove that last claim, we may take the same sequence (f,) as

above, and we compute

e = [ vl g [ 1V Pds
By

r

1
— 2| "™ u? — 2 / |Vul|*dz > 0,

nm

v

BR/n

for n large enough (whatever is the value of r > 0).

About condition (H3). It is established in [227] that when A\ = 0, the condition (H3) is not
satisfied and there does not exist a first eigenfunction f; € L?(R?) to the operator £ defined by
(7.54). We refer to [227, 8th course] for a proof of that result. On the other hand, we claim that
the condition (H3) is satisfied when Ay > 0. Consider indeed three sequences (A,) of R, (f,) of
HY(R?) and (g,) of L2(R?) such that (A, — £)fn = €ny €ns fn > 0, || fullzz = 1, for any n > 1,
An — A1 and &, — 0in L? as n — oo. We then have

A = E(fn) = (A = L) frs fr) = (€n, fnu) = 0,

as n — 0o. By definition of £ and boundedness of ¢, we see that (f,,) is bounded in H!. As a
consequence, up to the extraction of a subsequence, we have f, — f; > 0 in L2 _ and thus next
(A — L) f1 = 0 in the variational sense and

/ ef? / ef?, IV fillze < liminf [V full 2z,

where we have used the dominated convergence theorem of Lebesgue and the fact that ¢ — 0 at
infinity in order to get the first convergence. We finally deduce

E(f1) = limsup E(fn) = M1 >0,
so that f; # 0, and the condition (H3) is verified.

As a conclusion, for a self-adjoint operator, condition (H3) is automatically fulfilled by its ad-
joint and the conditions (H4) and (H5) have been proved in a general situation, including the
present framework. The same conclusions of existence and uniqueness of a first eigentriplet solution
(M, f1, 1) as in section 7.2 hold true when A\; > 0.

Case 2. We consider the general case b € Cy(R?).
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e We claim that Ay > 0. Adapting the second constructive argument in the proof of (H2) in
Section 7.1, we consider x € C}(R4) N W°°(Ry) such that 1 q/9 < x < 1.1}, X' < 0 on [0,1],
x(s) :== (1 —8)?/2 on [n, 1] with n € (1/2,1) large enough in such a way that

(7.55) X'(s)+(d—=1xX(s)/s > 1/2, Vse€(n1),

and define fo(x) := x(|z—x0|/n) for |z¢| large enough to be chosen later. We have supp fo C By (o)
for any n > 1 and we compute

L) = 2 ' (0/n) + T/} + bla) -5 (/) + (/)

where y =z — xg and r = |y|. On Bm,(mo) we have

Cho(x) > ||X IIm 3 Hx H ||x oo

sup b = [ixllee sup e

n(20) By, (o

On By, (o) \ Byn(zo), thanks to (7.55), we have
1 XM
Lfo > — ——=— sup |b| —||x|]lc sup |c|.
@) 2 g7 = P s = Ixllo sup
Let now fix € > 0 and choose first n large enough so that

XM d=1)X/ (r)
Tl2

€
> —— inf
2(077)X

Then, using that b, c € Cp(R?), we can take |xo| large enough so that

/
ey oy~ e sup Jel > < i
B, (o) B (z0) 2 (0,m)
and .
X lloe sup [b] + sup |cf < ——.
n By, (z0) By, (z0) 2n
Gathering the above inequalities, we obtain
ﬁfO > _€f07
and the condition (H2) is verified with kg = —e. Because € > 0 can be choose arbitrarily small,

we conclude with Ay > 0.
e We claim that Ay = 0 when o5 < 0. Indeed, we have already seen that

wrpy==[ 19k [ o,

d 2 _
ISP =2(cf.f) <0

This ensures that (H1) is verified with k1 = 0 and so A\; < 0.
e We claim that A; > 0 when ¢y # 0 and r > 0 is large enough. For simplifying notations
and up to translation and dilatation, we may reduce to the case ¢ > colp(,1) with co > 0.
Adapting the second constructive argument in the proof of (H2) in Section 7.1, we consider
X € Ocl(R+) N WZ,OO(RJ’_), 1[071/2] < X < 1[0’1], suppx = [0, 1], X//(l) = 1, X/ < 0 on [0, 1] and we
set fo(z) := x(Jz]). We compute

Lfo=x"(lz]) +x'(Jz)((d = 1)/|z] + b~ &) + re(z)x(|z]).

On the one hand, we fix n € (1/2,1), 1 — 5 small enough, in such a way that
X[ Loo (1) (2(d = 1) + [blle) <174, 1/2 <X || Lo (1)

from which we deduce that

and thus 1
Lfo > > fo on B(0,n)".

On the other hand, we fix r > 0, large enough, in such a way that

.
IX"[zoe + 11X llzoe (2(d = 1) + bl ) < Ai(r) == 7o [Bnrf)x,
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and thus

Lfo = k(r) 2 k(r)fo on B(0,n).
As a conclusion, we have established that condition (ii) in the statement Lemma 2.4 holds with
ko := min(1/4, k(r)), and that ends the constructive proof of condition (H2) by using Lemma 2.4.
That implies in particular the claim since then A\; > kg > 0.

e We finally claim again that (H3) holds when \; > 0. To see that, we consider again three
sequences (\,) of R, (f,,) of H'(R?) and (e,,) of L?(R%) such that (A, — L) fn = €n, €ns fn > 0,
| fallzz =1, for any n > 1, A, \y A1 and &, — 0 in L? as n — oo. As a consequence, we have

Mo+ / Vfa? - / fub Vi / 12 = (= £)fur f) = (Ens fu) = 0.

as n — 0o. Using the boundedness of ¢, b and \,, we see that (f,,) is bounded in H'. As a
consequence, up to the extraction of a subsequence, we have f,, — fi1 > 0 in L? . We assume by
contradiction that f; = 0. We deduce that

/cf§—>0, /fnb-an—>0,

where we have used the dominated convergence theorem of Lebesgue and the fact that b,c — 0 at
infinity. We thus obtain

o<A1sxn+/|an|2:/fnb-an+/cf,3+<sn,fn>ﬁo,

and our contradiction. So that f; # 0, and the condition (H3) is verified.

For the dual problem, from the above analysis, we know that there exist two sequences (¢,,) of
HY(RY), (g,) of L2(R?) such that (A, — L*)pn = €n, €n,dn > 0 and ¢z = 1, for any n > 1,
and &, — 0 in L? as n — oo. But we face the same situation as previously, since again

An+/|wn|2 —/qsnb-wn —/cqsi (O = £)ms ) = (s ) — 0,

and thus the same conclusion, namely ¢,, — ¢1, with ¢1 € HY(R?), ¢y > 0, ¢1 Z 0.

Conclusion. The conditions (H4) and (H5) have been proved in a general situation, including
the present framework. The same conclusions as in section 7.2 hold true when r > 0 is large enough
(and thus \; > 0).

7.4. Diffusion in R? with drift confinement. We now consider the elliptic operator
Lf=Af+b-Vf+cf,

with a drift confinement as it is the case for the Fokker-Planck operator. More precisely, and for
the sake of simplicity, we assume here

(7.56) b= VU, Uz)= %(@7, >0

When v = 2 and ¢ = z, that operator corresponds to the classical harmonic Fokker-Planck operator
which is known to be related to the standard Poincaré inequality and to the standard log-Sobolev
inequality, see [27, 24, 309] or more recently [25, 207] and the references therein. When ¢ = divb,
the operator £ is on divergence form and £*1 = 0, so that (0,1) € R x L®(R%) is a solution
to the dual first eigenvalue problem. Existence of stationary solution f; (which is also the first
eigenfunction) and its stability have been widely studied. We refer for instance to [310, 299, 156, 26]
as well as to [207, 246, 172] which techniques will be adapted here.

In the present situation, we impose that the contribution of ¢ has lower influence at the infinity
that the drift term b and we assume

(7.57) ce Lﬁfc(]Rd), 3Co,Ro >0, Vo € By, |c(z)| = o(|x|2(7_1)).
We further assume that
(7.58) ¢>divb when -~ € (0,1].

The action of the drift term will be revealed through the choice of a convenient “confining space”.
More precisely, for a weight function m : R — [1, 00), we will work in a weighted Lebesgue space.
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Our analysis is based on the following elementary computation which can be readily adapted from
[207, Lemma 3.8], [246, Lemma 3.8] and [172, Lemma 2.1].

Lemma 7.7. For anyp € [1,00), any weight function m and any smooth, rapidly decaying function
f, we have

(7.59) / (Ch) FIFP 2P = —(p— 1) / VSR 2me + / FPmPer,
with
(7.60) pr:=(p—1) |V7Z|2 + am + <c - ldivb> —b- vm

m m P m
as well as
(7.61) / (Ch) FIFP 2P = —(p— 1) / IV (fm) 2] frmfP=2 + / PP s,
with

2
(7.62) i 21— HYmE 2 1)%” 4 (c— %divb) _p.Ym

p- m? P m

In order to simplify the discussion, we restrict ourself to the exponent p = 2 and to the exponential
weight function m = ¢*®° s € (0,7], a > 0. We thus work in the Banach lattice X := L2,. We
observe that

\Y%

Y sax{z)* ™% ~ salz[*71,

m

Am s—2 . 2/ \s—4 212/, 25—4 2| [25—2
—— = sad(2)*" + (s — 2)alz[*(@)* 7" + (sa)[a[*(2) 7" ~ (sa)[a] 7,

divb = d(z)" 7% + (v = 2)]a[*(2) "™ ~ (d + v = 2)[2]" 72,

\V4
b T — (a2 a(e) 2 ~ salal 2,

so that the contribution of (¢ — divb/2) is always negligible at infinity, and we get

(7.63) @i ~ 2(sa)?|x|**7% — sa|z|*TT 2
We denote
ad = sa>0 if se€(0,7),
d = ay—2(ay)?>0 if s=~vandac(0,1/(vV27)).

We then face to three cases :

(i) v > 1 : taking s € ((2 —7)+,7), we have ¢; ~ —a'|z[*T772 — —oco with s +v —2 > 0;
(ii) v =1 : taking s =7, a < 1/(v/27), we have ¢; — —a/;

(iii) v € (0,1) : taking s = 7, a < 1/(v/27), we have ¢; ~ —a/|z[>*Y~2 — 0 with 2y — 2 < 0.

Condition (H1). In any of the above cases, we have from (7.59)

(A= L)f. ) = / 9 fPm? + / (A — 1) f2m?,

for A € R, with inf(A — ¢1) > 0 for A > k; and k1 > 0 large enough. We deduce that A — £ is
coercive for A > k1. With the same arguments as in section 7.1, we conclude that £ is the generator
in L2, of a positive semigroup Sg, so that (H1) holds.

Condition (H2). When ~ > 1, the same arguments as in Section 7.2 imply that condition (H2)
holds for some rg € R. When « € (0,1], we have £*1 = ¢ — divb > 0 from (7.58) and (H2) holds
with Ko = 0.

Conditions (H4) and (H5). The strong maximum principle holds here because for instance we
may apply the same barrier function argument as presented in Section 7.2. The reverse Kato’s
inequality condition is proved by using local arguments, so that it holds for the same reasons as in
the previous section.

Condition (H3). We define the multiplication operator A and the elliptic operator B by
A:=Myxgr, B:=L-A,
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for M, R > 0 and xg(z) := x(z/R) with xy € D(R?), 15, < x < 1p,. We fix kg < ko in case (i),

kB = —a’/4 in case (ii) and kg := 0 in case (iii), and we set o’ := a’/2. Choosing M, R > 0 large
enough, from Lemma 7.7 and the discussion which follows, we deduce that
(7.64) (B=a)f.f) <~ [V a" [ £, + Laglal " m?

for any o > kg and any nice function f. We classically deduce that @ — B is coercive and thus
invertible. We discuss the three different cases.

- In the first case v > 1, so that s + v — 2 > 0, we see that the operator Rg(«) is compact from
Rellich-Kondrachov theorem, so that also W(«) := Rp(a)A for any o > k. We may thus apply
Lemma 2.8-(2) and we deduce that (H3) holds for both the primal and the dual problems.

- In the case v = 1, so that 2y — 2 < 0, the operator Rg(a) is not compact anymore. However,
for any sequence (f,) which is bounded in L2, we define the sequence (g,,) by g, = Afn, and
(gn) is bounded in L2 with /i := e¥®)" & € (a,1/1/27). Using the dissipativity estimate (7.64) in
L2 we see that B — « is dissipative in L for any o > kg, and more precisely the sequence (hy,)

defined by h,, := Rp(«a)g., satisfies

/|Vh 12m? +a”/ 2(1p, + 1pc|z[2)m? g/gim?

Using that |2]27=2m?/m? — oo as |z| — oo, that implies that (h,,) is relatively compact in L2,.
More precisely, the above estimates show that W(a) := Rp(a)A : L2, — HE N L2, with m¥ :=
m'/2m!/? and in particular we have established that W(a) := Rp(a)A is a compact operator in
L2, uniformly on o > kp because of the Rellich-Kondrachov theorem and the fact that m = o(m?).
Since Rp(«) is bounded in %(L2,) uniformly for any « > 5, the operator £ satisfies the splitting
structure (HS1) and, applying Lemma 2.8-(2), we deduce that (H3) holds for both the primal
and the dual problems.

At this stage, when v > 1, we obtain a solution (A1, f1,$1) to the first eigentriplet problem (7.3)
by using Theorem 2.21.

Condition (HS3). In the case v € (0, 1), the same as in the case v = 1 holds except that Rg(«) is
not uniformly bound in %(L2)) for o > kp because we are in the critical case 5 = ko. We do not
know how to adapt the stationary approach in that situation and we thus aim to use a dynamical
approach through the use of Theorem 3.4 with the above splitting £ = A+ B and N := [d/4] + 1.
We set X = X; := L2, and X; := L. The proof of condition (HS3) is an immediate consequence
of the following estimate.

Proposition 7.8. We define Oc(t) := e=t""*"" . For N := [d/4] + 1, there hold
(1) Sp € Li®(#B(X1));
(ii) SAO;" € L*(B(X,)) fori=0,1 and any ¢ € (0,¢%);
(iii) (SpA)NO ! € L*(B(Xo, X1)) for any ¢ € (0,(/2).
The proof of Proposition 7.8 is similar to the proofs of [207, Lemma 2.1], [207, Lemma 2.2], [207,

Lemma 2.3] and [207, Lemma 2.4]. For the sake of completeness we however present the main lines
of the proof. We start with a technical result that we will use during the proof of Proposition 7.8.

Lemma 7.9. Consider two Banach spaces Xo, X1 and a function u : Ry — B(Xo) + B(X1)
which satisfies

(a) uO~t € L>=(0,00; B(Xo) N B(X1));
(b) ugp € L*>(0,00; B(Xo,X1));

for any exponentially decaying function © = O = e, V¢ € (0,¢*), and for the power function
p:=1t"% with * >0, ¢ € (0,1] and o > 0 fized. Then

(c) there exists N such that u*N)® e L>(0, 00; B(Xo, X1)),
for any © = O¢, ¢ e (0,¢7/2).

Proof of Lemma 7.9. A similar argument is developed in [172, Lemma 2.17], [246, Lemma 2.4],
[248, Proposition 2.5] and [207, Lemma 2.4].
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Step 1. Consider two functions v and w which satisfy the estimate (a). For X = X, or X = X,
we compute

IN

lv*wt)|x-sx

/ ot — $)w(s)] v ds
0

IN

t
/ CLO(t — 5) CLO(s)ds < CLCE1O(1),
0

with obvious notation and where we have used that ©(t — s) O(s) < O(t) for any 0 < s < . Since
for any ¢’ € (0, (), there exists a constant C' such that tO¢(t) < C O (t) for any ¢t > 0, we see that
the function v * w satisfies the same estimate (a) for any © = ©¢, ¢ € (0,¢).

Step 2. Consider two functions v and w which satisfy the estimates (a) and (b) with o > 1. We
compute

t/2 t
o s w®)lxgox, < / lo(t — $)w(s) | x0mx: ds + / lo(t — $)w(s) | xosx2 ds
0 /2
t/2 ¢
< Ci(t—s)"*CyO(s)ds + CYO(t —s)Chs “ds
0 t/2

1/2
=[Oy + O CY0(0) o / (1— 7)< dr,
0

with obvious notation and we have used that © is a decaying function. As a consequence, the
function v * w satisfies estimate (b) with an exponent o — 1 instead of a.

Step 3. Consider two functions v and w which satisfy the estimates (a) and (b) with « € [0,1).
We compute

t/2 t
o wlxx, < [ )l ds+ [l = o)l d
0 t/2
t/2 t
< CYO(t —s)Cys™“ds+ Ci(t—s)"“CyO(s)ds
0 /2
t/2 ¢
< 01”03”1@(16/2)/ s*ads+cglcgv@(t/z)/ (t— )~ ds
0 t/2

-«

v w v w t
= [ Cm‘*'cmco]@(t/Q)l_aa

with the same obvious notation and we have used again that © is a decaying function.

Step 4. Tterating n := [a] times steps 1 and 2, we get that u(*™) still satisfies estimate (a) and
satisfies the estimate (b) for the exponent o — [a] € (0,1). We then conclude that (c¢) holds with
N:=n+1andany C € (0,¢*/2) by using the third step. a
Proof of Proposition 7.8. We classically establish that B generates a positive semigroup Sp in both
spaces X; and we thus concentrate on the announced estimates. On the one hand, proceeding as
for the proof of (7.64), we have

(7.65) [ Bz nm < ~a” [ 17108, + Lol 2)m,

for any nice function f and any weight function m = mg, with m,(x) := )’ g € (a1, as),
0 < a1 < ay < 1/(v/27), where we define a”’ := a7y/2 — (ay)?. That exactly means that B is weakly
dissipative in L}, as defined in (3.19). From the discussion in Section 3.3, we deduce that Sp is
a semigroup of contractions and satisfies the associated decay estimate (3.23), (3.24), and more
precisely

(7.66) 1S8() ey, <Ifllcy,, . IS8 fllLs

™maq

<o)l

for any a,a’ € (a1,as), a < a’, ¢ € (0,6), G == (a/ —a) =2/~ (a/y(1 — a'v))/ =7, We refer
to [207, Lemma 2.1] for details. Using that A : L' — L. is bounded, that establishes (ii) in Xo.
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Similarly, starting from (7.61) and proceeding as in the proof of (7.64), we get

(7.67) (Bf, ez, < —/IV(fm)l2 - a”/f2(131 + 1pgla] T 7)m?,

for any nice function f and any weight function m = m, as above. Throwing away the first term
at the RHS and arguing as we did in L} , we obtain that Sg satisfies

(7.68) 1S5 fllzz,, < 1fllzz,,» IS5 flcz, < OcOIflLe,

for any a,a’ € (a1,az). Using that A: L2, — Lizg is bounded, that establishes (i) and (ii) in X;.
On the other hand, throwing away the second term at the RHS in (7.67), for any trajectory
ft = Si(t) fo, fo in the domain of B in L2, we have

1d 2.2 2

—— dr < — \Y% dx.

537 [ gimde <= [ V(i) s
Using Nash’s inequality which for some constant Cy € (0, 00) stipulates that

/ g?de < Cy (/ |Vg|2dx) (/ |g|dx) . Vg,
R4 Rd R4

with ¢g := fym and the first estimate in (7.68), we deduce
(7.69) F'(t) < —2CN FO) "Y1 G@)Fi < =20 F(t)~*? G(0)' 4,
with Cy = C;,lfz/ ¢ and where for brevity of notations we have set
F@) = 1oy G = Lfullzagm.

Integrate the differential inequality (7.69), we find

1S5(t) foll 72 < Y follpy,,  VE>0,
and using that A : L' — Ll | we next obtain
(7.70) Sp(t)AtY* € L=(0, 00; B(Xo, X1)).

Setting with u(t) := Sp(t).A, we see that u satisfies (a) in Lemma 7.9 thanks to (ii) in X, and X;.
Furthermore, u satisfies (b) in Lemma 7.9 thanks to (7.70). Using Lemma 7.9, we conclude that
condition (iii) holds. O

We come back to the proof of (HS3). Gathering (i) and (ii) in X; in Proposition 7.8, we get that
(SpA)Y % Sp € L(B(X1)) for any £ € {0,-,N — 1}, N := [d/4] + 1. Using that © € L(0, c0)
and (iii) in Proposition 7.8, we deduce that (Sg.A)*N) € L(0, 00; B(Xo, X1)).

We may now handle the existence part of the first eigenvalue problem. On the one hand, recalling
(H2), we have L*tg > 0 with 19 = 1 so that the condition (i) in Theorem 3.4 holds. On the other
hand, the condition (ii) in Theorem 3.4 is an immediate consequence of (HS3) as emphasized in
Remark 3.5-(1). As a conclusion, the hypotheses of Theorem 3.4 are thus met, and we deduce
that there exists (A1, f1) € Ry x L2, . solution to the first eigenvalue problem. Because the strong
maximum principle (H4) holds, we have f; > 0 on R%.

In order to prove the existence of a first positive eigenfunction for the dual problem, we argue in
the following way. We start observing that we have the alternative: A\; =0 or A; > 0.

- In the first case, we may argue as in Remark 4.17. We indeed have in the same time L£L*1g > 0
and (L*g, f1) = (o, Lf1) = 0, so that L*¢y = 0 because fi > 0. The function ¢; := 1)y is thus a
solution to the first dual eigenvalue problem.

- In the second case A\; > 0, we may argue as in the case v = 1 above. On the one hand, the
operator Rp(a) is uniformly bounded in L2, for any o > kp := A\;/2 > 0 and on the other hand
the operator W(a) := Rp(a)A : L2, — H}! N L2, is uniformly bounded for any o > kg with
m = o(mf), so that H}, N L?, C L2, is compact. We may thus apply Theorem 2.21 and we
conclude to the existence of a solution (A}, f1, #}) to the eigentriplet problem.

The conditions (H4) and (H5) being true in a general situation as well as the conclusions of
Lemma 7.1, as an intermediate conclusion, we have established under the general condition v > 0
in (7.56) that yet the same conclusions as in section 7.2 hold true.
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Quantitative stability. We now establish a quantitative stability estimate using the Doblin-
Harris approach presented in Section 6 and yet used in the case of a bounded domain in Section 7.1.
We first consider the more difficult case v € (0,1), so that A\; > ko = 0, and then explain the
modifications to be made in order to deal with the case v > 1. As explained just above, \; = 0
corresponds to the conservative case (A1, ¢1) = (0,1) which has been considered in [207]. We thus
focus on the case A\; > 0 for which an adapted version of Theorem 7.3 already imply the exponential
asymptotic stability (CE3) in L2, with non constructive rate. We do not develop further this
argument but rather establish a a constructive sub-exponential asymptotic stability.

1

Stepl - Lyapunov condition. We take m = e*l” with 0 < @ < 4~'. From Lemma 7.7 or a

direct computation, we have
L'm = Am+ (¢ —divh)m —b-Vm
(Cl@)" ™2 + |e| — 20" (@)*"*)m
Colp,, —a" () "2m,
for three positive constants C = C(d), Cy = Co(c,C,a,v), 00 = 0o(c,C,a,v) and with a* :=
(ay — (a7)?)/2 > 0. We now set m; := m and mgo = a*(2)2?"2m. We fix T > 0 and for

0 < fo € L, we denote f; := S(t)fo. Recording that A\; > 0 and using the above pointwise
estimate, we deduce

(7.71) /f:rm1 +/OT/ frmodt < /fom1 +C4 /OT ; fedt.

Because the same kind of pointwise estimate holds for £*mg, we have

/meoS/ftmo-f—Cl/tT/Be fsds

and integrating in time, we get

/meO / /ftmodt+00/TS 5, fsds.

Coming back to the first estimate, we deduce

<
<

T
(7.72) /me1+T/meo < /f0m1+(01 +COT)/O . fedt.

Step 2 - Pointwise estimates on ¢;. We define B := £ — Cyx,, which is the generator of a
positive semigroup of contraction in L}, because of the above discussion. For A > 0,0 < g € L},
and 0 < L the solution to (A — B)f = g, we compute

Jom=[s0=8ym= [ 0w +mo) = [ e,

from what we deduce
IRs)fllzs,, < Iflley,, V€ L.
1

. . . . . v —
Now, we consider two weight functions m; and ms with m; = e**l" 0 < a; < a3 < v, we
denote mg := aj(z)?>?~?m; and we compute

IARBNfllLy,, < CollRe(N L, (B2
CilIRe(Mfllzy,, < Cillfllzy,

IN

By duality, we obtain

(7.73) [Rs- (A )¢HL°@ < H¢||L°° ,and R ANl < Cillgllr=_,,

S
for any A > 0 and ¢ € L;’j,l. We also deduce from Proposition 7.8 the regularization estimate
0
(A*Rp-)N : L2 _, — L>. Let us now consider now 0 < ¢ € Lifl the first eigenvector for the
1

dual problem built in the preceding paragraph. From the eigenvalue equation

B g1+ A*p1 = L 1 = M ¢,
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we deduce that ¢1 = (Rp«A*)¢1, and iterating
¢1 = (Rp- A )N 61 = Rpp- (AR )V A% 1.

From the above regularization estimate and the first estimate in (7.73), we thus deduce that
¢1 € L. Moreover, normalizing ¢; and using the second estimate in (7.73), we may obtain
1

(7.74) I¢ullzee ., =1 and [|gllz=_, < Ci.
™
We deduce
L - ( |91 |¢1|)
= max(sup —,sup —
By, ™3 Bg, ™3
< max(sup@,cm sup ﬂ)v
B, ™3 Bg, M3

|¢1]

m3

there exists xp € Bg such that ¢1(zg) > 1. On the other hand, using standard regularity result
for elliptic equation in the ball Bag, we obtain that ¢; € C%(Bg) N W?P(Bg) for any p € [1,00)
with constructive bound. Making use next of the Harnack inequality as at the end of Section 7.1
or using barrier functions as in in the proof of [207, Lemma 6.2], we classically deduce that

(7.75) $1 > z1p,, Yo >0,

for a constructive constant z, > 0 (where we emphasize here and below ¢, always denote the

normalized by (7.74) eigenvector).

Step 3 - Doblin-Harris estimate. We fix T' > 0 (for instance T := 1) and A > 0 arbitrary. For

0 < fo € LL such that || fo|lz: < A||f0||Lé) , we denote f; := S (t)fo. On the one hand, we have
m 1

[ o= [foor and [ fim<cr [ fam

for any t € [0,T], the second estimate being an immediate consequence of (7.71). On the other
hand, we define (r) := supy, <, (m(z)/¢1(z)) and we compute

5, ftgr = /ft¢1 —/BC fedn 2/ft¢1 —E(p)/ftm

> /fo(bl —CT€(p)/fom2 (1 - %E(P)) /f0¢1 > %/fo(bla

for any t € (0,T), by choosing p := p(T, A) > 0 large enough. In particular, there exists zo(t) € B,
such that

= 1 by choosing g2 := max(gp, 1) with Ciel@—as)el — 1. As a consequence,

so that supp,,

1 1
ft,xo(t) >0 = §m/ﬂ)¢1-

Next, arguing exactly as in Section 7.1 or as in the proof of [207, Lemma 6.2], we deduce

(7.76) Srfo > nr.alp, [folzs

for some constructive constant 1y 4 > 0.

8. TRANSPORT EQUATIONS

The main aim of this part is to analysis the long time asymptotic of the solutions to the transport
equation

(8.1) O f +divy(af) =X [f]-Kf in (0,00) x O,

on the function f = f(t,y), t >0,y € O, with O C RP, D > 1, a smooth open connected set. We

assume that a = a(y), a: O - RP, K = K(y), K : O — R and that the collision operator K is
linear and defined by

(3.2) (Hg)(y) = /O kg. dy.,
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for some kernel k : O x O — R4 and for any (conveniently) bounded function g : @ — R. Here
and below, we use the common shorthands

g« 1= g(y*)7 k= k(yay*)a ky = k(y*7y)

When O # RP, the equation is complemented with a boundary condition which imposes the value
of the trace v_ f of f on the incoming subsets of the boundary and takes the form

(8.3) (v-H)ty) = Z[f (L, ), 1. f (¢ )](y) on (0,00) x X_.

Let us explain the meaning of the different terms involved in (8.3). We denote by ¥ := 9O the
boundary set, by do, the Lebesgue measure on ¥, by n : ¥ — SP~1 the normal outward vector
field, we write n = n, = n(y), and by X_ the incoming, ¥, the outgoing and ¥, the singular
subsets of the boundary defined by

Yy ={y €% *a(y) ny >0}, Xo:={ye;aly) ny =0}

We denote vf = f|(0,00)xs the trace of f and v+ f := 1(g,00)xx, 7f the trace restrictions on the
incoming and outgoing sets. We then assume that the boundary operator & splits into two pieces
Z(g,h) = Zo(g) + Xx(h), where

(3.4) Fo9)1) = [ rog.dy.. (Ash)w)i= [ rohia.on,.do.,

o o
for a domain kernel ro = ro(y,ys), ro : - x O — Ry, a boundary kernel ry = rs(y,y.),
ry X x Xy — Ry, and for any (conveniently) bounded functions g: O — R and h: Xy — R.

In the next sections we will first consider the trace problem for a general force field a and next the
well-posedness for the transport equation with given inflow at the boundary and with reflection
condition at the boundary. We will also revisit the characteristic method for general force field
a. We will next consider the Krein-Rutman problem still for a general force field a, but making
strong simplification assumptions on the kernel operators J# and #. We will next explain how
the classical age structured equation falls into the present framework. We will come back to more
specific physical situations concerning the growth-fragmentation equation and the kinetic relaxation
equation with more general and physically relevant hypothesis on the kernel in parts 9 and 10.

8.1. The trace problem.
In this section, we are concerned with the trace problem associated to a (mainly stationary) trans-
port equation for a general vector field a : O — RP for which we only assume

(8.5) a € W5, (0),

where we recall that O c RP, D > 1, is a smooth open connected set. The regularity needed on
the domain is formulated in the following way: we assume that there exists n : O — RP |y — n(y)
a vector field belonging to W1°°(0) and which coincides with the previously defined unit outgoing
normal vector field on ¥ and satisfies ||n||= = 1. In that situation, it is well-known that the above
vector field is the restriction of a vector field a € VVI})(} (RP) (where we abuse notations denoting

the restriction and the extension in the same way). We also consider the associated differential
equation

dy
(8.6) o — oY), Y(O)=y,
and then define the characteristic flow Y; = Y (¢,y), for any y € O, which is the solution to (8.6)
on a maximal time interval (t_(y),t+(y)) where t_(y) < 0 < t4(y) are defined by t_ := —tp and
t4 :=tg, the backward exit time is defined by
(8.7) tb(y) :=sup{T > 0; Y_+(y) € O, ¥Vt € [0,7]} € (0, +00]
and the forward exit time is defined by
(8.8) te(y) :=sup{r > 0; Yi(y) € O, ¥Vt € [0, 7]} € (0, +o0].

The real number tp:(y) := tp(y) +t¢(y) € (0, 00] corresponds to the “life time” of the characteristic
flow in O going by y. The construction of the flow (¥;) is classical when a is a Lipschitz function and
we refer to [127, Theorem I1.3] for a more general situation which corresponds to the assumptions
we will make in the present work (see also Lemma 8.14 below).
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For a solution ¢ : O — R to the transport equation
(8.9) a-Vyg=G@G,

for a given source term G : O — R, we wish to define the trace vg of g on the boundary set X.
Similarly, for a solution g : (0,7) x O — R, T € (0, +0o¢], to the transport equation

(8.10) Og+a-Vyg=0G,

for a given source term G : (0,7) x O — R, we wish to define the trace vg of g on the boundary set
(0,T) x X. Tt is worth emphasizing that the trace will be in fact only defined out of the singular
set Yo and thus only on the boundary set X\ X.

We start by recalling several possible definitions of the trace of a function g satisfying (8.9) when

(8.11) ae W (0), gelIPf (0), Gell

loc loc loc(@)ﬂ $,p,q € [1700]
Here and below, we denote by L(E) the Lebesgue space of measurable functions g : £ — R with
typically E = O or E C 8O, and by L°(E) = L°(E, ) C L(FE) the subset of almost everywhere

finite measurable functions on a measurable space (F, A, u).

Definition 8.1. We say that a function g on O satisfying (8.9) and (8.11) admits a trace if one
of the following assertions holds true:
o Extension of the restriction on the boundary. There exists yg € L] (X\Xo), r €
[1,00], such that
In|\zo 7 79 n LITOC(Z\ZO)
for any sequence (gn) satisfying

(8.12) gn € CHO), gn— g in LP

loc

(0),  a(y) Vygn =G in L

loc

(0).
e Characteristics. There exists a measurable function vg on X\Xg such that for a.e. y € O
satisfying t_(y) > —oo, there holds

(8.13) o) =200V (- ().0) + | iy) G(Y (t,y)) dt.
and for a.e. y € O satisfying t4(y) < 0o, there holds
(8.14) o) =9V (04 0)) -~ [ " v )
o Green formula. There exists vg € L], .(X\Xo), r € [1,00], such that
(8.15) /O(Gw + gdiv(ap)) dy = /ng paly) - n(y)doy,

for any ¢ € CL(O\%y).
e Renormalized Green formula. There exists a measurable function vg on X\Xo such
that

(5.16) | (30 G o+ sl divian)) dy = [ Bog)pa-nda,
o )
for any o € CHO) and any B € C*(R) such that B € C.(R).

Remark 8.2. (1) In order that the first definition makes sense, we implicitly assume that there
exists at least one sequence (gy) which satisfies (8.12). That last fact corresponds to the density
of CL(O) in the Sobolev space {g € LP(0O); a(y)-V,g € LI(O)}, which is true as we will see in
Lemma 8.5 below under the regularity assumptions made on a and O. It is worth emphasizing that
the last convergence in (8.12) may require additional integrability assumption, typically a € W15(0)
with 1/r > 1/p+1/s. Such a definition has been introduced in [33] for a C' wvector field a. It is
also the point of view adopted dy Cessenat in [91, 92] in the case of the neutronic operator, see also
[115, chap. XXI] or Agoshkov [2, 3, 4].

(2) In order that the second definition makes sense, we implicitly assume that the set of points
y € O such that the characteristic Yi(y) hits the boundary on ¥ has zero measure in O. It is
indeed the case thanks to the Sard theorem under enough regularity assumption on a and O, see
[33, Proposition 2.3]. It is worth emphasizing that what we really need in order to write (8.13)
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and (8.14) is that t — G(Y (t,y)) € L' (t_(y),t+(y)) for a.e. y € O. We also mention that this
characteristics description leads to a layer cake formula linking the integral of a function on the
domain to the integral of its trace on the boundary. Such a definition has been widely used in kinetic
theory for constructing DiPerna-Lions renormalized solution, see [126, 181, 16] and the references
therein. For the classical kinetic operator this trace approach is developed by Arkeryd, Cercignani
and co-authors in [81, 88, 14, 15] while for more general (regular) vector field, the approach has
been developed in [33, 314, 39, 166] and more recently by Arlotti et al. in [18, 19, 20, 21, 22].

(3) In order that the third definition makes sense, we need that a-n~vyg € L (X) and p > §'.

In some situation, this third definition is in some sense the weakest: it makes sense also when
vg € ML (3\X0) for instance and can be relevant under the weak assumption a,diva € Lﬁ;c(@) as
it is the case in the early works on weak solution to the Vlasov-Poisson equation in [289, 176, 1, 327].
It is also easier to handle than the two first definitions because of the way it connects the function

g and its trace.

(4) We will adopt the last definition which extends up to the boundary the renormalization technique
introduced in [127]. It is more general and adapted to the weak regularity assumption made on the
vector field a than the two first definitions and we recover the third definition by just letting 5(s) — s
when the conditions of integrability make the limit well defined. Such a kind of definition has been
introduced in [242, 244] for kinetic equations and in [66, 9] for transport equations.

We start with a trace result in a L*° framework. We denote by C;W (R) the space of continuous
functions 8 : R — R with piecewise continuous derivative.

Theorem 8.3. Assume that g € L>®(0), a € WE(O) and G € L. _(O) satisfy the transport

loc loc
equation (8.9) in the distributional sense. Then, there exists a unique function

vg € L= (X\Xo; doy), [[vgllze~ < [lgllze,

which satisfies the renormalized Green formula
(8.17) L@@ o+ sa)aivian) dy = [ Blag)oa-nds,

for any ¢ € CH(O) and any B € CL,(R). As a consequence, renormalization and trace operations
commute:

(8.18) vB(9) = B(vg), VB ECh(R).

Remark 8.4. (1) Because of the very general assumption (8.5) made on the vector field a : O —
RP which is exactly the one made in the DiPerna-Lions theory for transport equation in the whole
space developed in [127], the above trace result slightly improves the similar trace result established
by Boyer in [66, Theorem 3.1], where an additional assumption a-n € L$(0Q), ¢ > 1, is made.

(2) An alternative approach has been developed by Ambrosio and co-authors by assuming weaker
bound on Da but stronger bound on a. More precisely, denoting by My the set of vector fields
a € L*(0) such that diva € M (0), it is established in [9, Proposition 3.2] that there exists a linear
and bounded mapping Tr : Mo (O) — L*(00) such that Tra = n-ajpo when a € CY(O). The proof
relies on Ambrosio’s extension to a BV framework in [8] of the famous Di Perna-Lions improvement
[127, Lemma I1.1] of Freidrichs’ type Lemma on the estimate of the commutator between directional
derivative and convolution (see Lemma 8.5 below). Moreover, it is also established in [9] (see in
particular [9, Theorem 4.2]) that

(a(9) = B ) ), v e CU(R),

for any a € BV(O) N L>*(0) and g € L>®(0O) such that ag € My,. The above formula is then
nothing but (8.18) when a € WH1(O) N L>(0).

Before coming to the proof of Theorem 8.3, we state one technical but fundamental result. We
define the mollifier (p:):>0 by

(8.19) pe(z) = & p(z/e), 0<pe D(R?), suppp C By, / p(z)dz =1,
RN
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and for any u € LL _(0), v. € C.(RP), suppv. C B., we introduce the convolution-translation

function u *. v. defined by

(u*e v:)(y) := /(9 u(z) ve(y — 2e n(y) — z) dz.

Lemma 8.5. For g € L} (0), p € [l,00], a € WLp/((’)) and G € L (O) satisfying (8.9) in the

loc loc loc
distributional sense, the sequence (ge) defined by g. := g * p salisfies

g- €EWLX(0), G.:=a-Vg. —a-Vgin L (O),
as € — 0, and

g =g in LY (0), ifp< oo,

loc

ge =g in Li.(0), (ge) bounded in LS, (0), if p= oco.

We skip the proof of Lemma 8.5 since it is very similar to the proofs of [127, Lemma II.1], [243,
Lemma 1] and [66, Lemma 3.1].

Proof of Theorem 8.3. Let us fix x € D(O) such that 0 < y <1 and denote R > 0 a real number
such that supp Y C Br. We observe that xsign(a-n) € L'(X). From Gagliardo trace theorem [155,
Teorema 1.11], there exists 1 € W(0) such that 1) = ysign(a - n) and supp ) C Bg. Denoting
T; : R — [—1,1] the truncation function which is odd and is defined by Ti(c) = o A 1 for any
o > 0, we see that vT3(v) = T1(y¥) = 1, and thus we may assume 1 € L*°(O) up to replacing
¥ by Ti(1)). As a consequence, there exists a sequence (i) of W1>°(0) such that 1, — 9 in
WLL(0), with (%) bounded in L>°(0), suppyx C Bg, and v — xsign(a - n) in L1(X), with
(v¢r) bounded in L>®(X).

Let us then consider the sequences (g.) and (G¢) defined in Lemma 8.5. The classical Green
formula for Lipschitz functions writes

[ (0= g)? - nl o
= /E(ga\z — ge1x)? @ nipy doy + /E(gam —gex)? [la-nlx —a-nyy) do,
— [ (200 = 92 (62 = G ndy + (g2 — g div(avi)) dy

+ [ (g = 9o o nlx = 0] do

<AlYrlr<llglle=llGe = GerllLr(r) + [Prllwr / (laf + |dival)(ge — gor)* dy

Br
+2|lgll7 = ll(a-n)vr — xla - nlllLr (),

for any e > 0 and k > 1. We deduce that (g.|x) is a Cauchy sequence in L*(|a - n| x do). From the
fact that (ge) is bounded in L>°(0), we deduce that the sequence (yg.) is also bounded in L (X%).
As a consequence, there exists a function yg € L>°(3) such that vg. — ~vg in L?(|a-n|x do). Next,
we may write the Green formula

/[GEQP‘FQEdIV(a@)} dy:/"/gaipa'nde,
o by

for any test function ¢ € C}(0), and we may pass to the limit as ¢ — 0. We deduce that the
Green formula

(3.20) /O (G +gdiv(ap)) dy = / Y9 paly) - nly) doy,

holds for any ¢ € C}(O). That clearly uniquely defines the trace function g on X\ X.

Now, on the one hand, from the DiPerna-Lions renormalizing theory [127, proof of Corollary II.1],
we know that 5(g) € L>°(0O) satisfies the transport equation

(8.21) a(y) - VyB(g) = f'(9)G in D'(0),
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for any renormalizing function 8 € Lip(R) and any test function ¢ € CL(O). Using the already
established trace result, we know that there exists v8(g) € L (3\X) such that

(8.22) /O [8'(9)C ¢ + Blg)div(ap)] dy = / v8(9) pa - ndo,,

for any test function ¢ € C}(O). On the other hand, from the classical Green formula for Lipschitz
functions and because 3(g:);s = 5(g-|x), we have

/ [8'(9:)Ge 0 + Blge)div(ap)] dy = / B(gez) pa - ndo,
(@] >

for any renormalizing function 8 € Lip(R) and any test function ¢ € C1(O). Using that

B'(9:)Ge — B'(9)G,  Blge) = B(g), B(gez) = B(19)

respectively in L{. (O) and in L{ (¥), and that the two last sequences are bounded in L>, we

may pass to the limit € — 0 in the last Green formula, and we thus get

/[ﬁ’(g)ch+ﬁ(g)div(a<p)] dyZ/ﬁ(’yg)gpa-nde.
O b))

Together with (8.22) and by uniqueness of the trace function, we conclude to v3(g) = S(vg). O

Let us state several variants of the preceding trace result. For the transport evolution equation
(8.10) a first possible trace result writes as follows.

Theorem 8.6. Assume that g € L=((0,T) x O), a € L*(0,T; W,21 (D)) and G € L\ ([0,T] x O)

loc loc
satisfy the evolution transport equation (8.10) in the distributional sense. Then,

9 € C([0,T]; Lioc(0))
and there ezists a unique function
79 € L>((0,T) x X\Xo; dt ® doy), [[vgllLe < llgllze~,

which satisfies the renormalized Green formula

(8.23) / 1 /O (8'(9) Gp + Blg) [np + div(ap)]) dydt

_ [/Oﬁ(g(t,.))wdy}:+/t:1/25(~yg)w.ndgydt7

Jor any ¢ € CH([0,T] x O), any to,t1 € [0,T] and any B € Cp,(R). In particular renormalization
and trace operations commute: (8.18) holds.

We skip the proof of Theorem 8.6 which is very similar to the proof Theorem 8.3 using the slight
modifications that one can find in [243, Theorem 2] or [66, Theorem 3.1]. Under the slightly more
regularity assumption a € Wlf)’cl([O,T] x O), Theorem 8.6 is a direct corollary of Theorem 8.3
applied to the for field (1,a(t,y)) on the open set (0,T) x O.

For some additional function b : O — R, another possible variant is the following trace result for
the stationary transport equation

(8.24) a-Vyg+bg=G

in the renormalized framework as introduced by DiPerna and Lions in [127]. Assuming a €
WEhY(0), b,G € LL_(0), we say that g € Li .(0) is a renormalized solution to the transport

loc loc

equation (8.24) if

(8.25) a-VyB(g) +b8'(9)g = B'(9)G,

in the distributional sense for any renormalizing function 8 € CL(R) the set of C*(R) functions
such that 8 admits some finite limits in +o00 and s — (s)/5’(s) is bounded on R, in particular
CH(R) € CyR). We also denote by # € CL, .(R) the C' piecewise variant of C}(R). We will
repeatedly use the family of functions 85 € CI(R) defined by Bs(s) := s/(1 4 ds%)'/2 for any
§ € (0,1]. We observe that 85(s) = (1+ ds%)73/2, so that s3'(s) — 0 as s — Fo0.

Let us start formulating some basic facts on renormalized solutions to equation (8.24).
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Lemma 8.7. Assume a € W!(0), b,G € LL (0).

loc

(1) If g € Li (O) and a(g) satisfies equation (8.25) for one renormalizing function o : R — (—1,1)
which is bijective and belongs to CJ, . (R) then B(g) satisfies equation (8.25) for any renormalizing
function 8 € CJ, .(R).

(2) If g1, 92 € L, .(O) are two renormalized solutions to the transport equations
a-Vyg; +bgi = Gi € Li,o(0),
then g := g1 + g2 is a renormalized solution to the transport equation (8.24) with G := G1 + Ga.
(3) If g is a renormalized solution to the transport equation (8.24) and ®,c € L*>®(O) satisfy
a-Vy®=c

o]

in the distributional sense, then h := ge™% satisfies

(8.26) a-Vyh+ (b+c)h=Ge™®

in the renormalized sense.

Proof of Lemma 8.7.  We briefly sketch the proof and for more details we refer to [127], in
particular to [127, Lemma II.2]. It is worth mentioning that only the case b € L>°(O) is considered
in [127], but it readily extends to our framework. Assertion (1) is just a consequence of the chain
rule B'(s) = (Boa™!) (a(s))a’(s) for smooth enough solutions and thus for any solution thanks to
Lemma 8.5 (see the proof of [127, Corollary II.1]) and to a standard approximation procedure in
order to deal with piecewise C! functions. In order to establish (2), we consider two renormalized
solutions g;, a renormalized function 8 € C}(R) and we write

a-VyB(Bs(g1) + Bs(g2)) = B (Bs(91) + Bs(92))[(G1 — bg1)B5(91) + (G2 — bg2)B5(g2)],

where we have added the two renormalized formulations (8.25) associated to S5(g;) and renormal-
ized once more the resulting solution using (1). Letting § — 0, we immediately obtain

a-VyB(g1+g2) = B'(91 + 92)[G1 + G2 — b(g1 + 92)]
in the distributional sense. For proving (3), we introduce the mollified sequence (g.) and (®.)
defined as in the statement of Lemma 8.5 so that
a-Vge +bge =G, a-VO. =c.

L .(0) as e — 0. The smooth function h. := g.e~?

with G. - G and ¢c. = cin L ¢ satisfies

a-Vyhe + (b4 co)he = Gee™ =

and then

a-VyB(he) + B (he)(b + co)he = B'(he)Gee™
for any 8 € C}(R). Passing to the limit ¢ — 0, we obtain the renormalized formulation of
(8.26). O

We now generalize the trace result to the framework of renormalized solutions.

Theorem 8.8. Assume that a € VVlicl(@), b,G € L (O) and that g € L (O) is a renormalized

loc
solution to the transport equation (8.24). Then there exists a unique function

79 € L(X\Xo; doy)
which satisfies the renormalized Green formula
(5.27) L@ G bo)e + sl divian) dy = [ o) pa-nda,
b
Jor any ¢ € CL(O) and any 5 € C}, . (R).

Proof of Theorem 8.8. We fix ; : R — R defined by £1(s) := s(1 + s?)~'/2, so that 3, € Cp(R)
and 8 : R — (—1,1) is a bijection. Since then 31(g) € L>(O) and 5'(9)(G — bg) € L .(O), we

loc

know from Theorem 8.3 that v3;(g) is well defined in L*>°(¥\Xy) through the Green formula

/ [8,(9)(G — bg) @ + Bu(g) div(ap)] dy = / v61(g) pa - nday,
(@] )
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for any test function ¢ € CH(O). We set vg := 87 ' (vB1(g)) € L(S\Zo; doy), with the convention
By '(£1) = +oo. For any 3 € CJ,, ,(R), we then deduce

v8(g) = 7[(B o By ) (Br(9))] = Bo By H(vB1(g)) = B(vg),

where we have used the renormalization result stated in Theorem 8.3 and the chain rule (1) stated
in Lemma 8.7 in the second equality and the very definition of g in the third equality. In other
words, the renormalized Green formula (8.27) holds. O

Remark 8.9. (1) We will see in Section 7?7 that under the same conditions as in Theorem 8.8 the
information on g can be slightly improved, in particular vg € L°(3\Xo).

(2) Theorem 8.8 in particular holds when we assume a € Wl’pl((’)), be LV (0), G € LL.(0)

~ loc loc loc

and g € LY (O) satisfy the transport equation (8.25) in the distributional sense. Indeed, in that

loc
situation one knows from the DiPerna-Lions renormalizing theory [127, Corollary I1.2] that g is

also a renormalized solution to the transport equation (8.25) (in the above sense).

(8) Assuming more interior integrability on the functions g, b, G and a, we may deduce more
accurate information on yg. A typical example, is that

/ val"(la - n| A 1)%da, < oo,
YXNBgr

for some r € [1,00) and any R > 0, under the additional assumption

9" (|dival + |a - VTi(a-n)| + [b]) € Lioo(0), g™ '|G| € Liyc(O).
The proof follows by choosing ¢ := Ti(a-n)x, x € CHO), 0 < x <1, and Bi(s) = (|s| A k)" in
the associated Green formula (8.16), and then to pass to the limit k — oo.

(4) Even more integrability on v,.g is available on one part of the boundary if additional integrability
assumption is made on g on the other part of the boundary. A typically example, is that

/ gl la - nlda, < oo,
Y+NBr

under the additional assumption
91" (Idival + |a| + [b]) € Lioe(0), |9 MG € Lige(O),  |19l"a -1 € Ly, (S5).

The proof follows by choosing p € CHO), 0 < ¢ < 1, and Bi(s) = (|s| A k)" in the associated
Green formula (8.16), and then to pass to the limit k — oco.

(5) The results stated in Lemma 8.7, in Theorem 8.8 and in points (1), (2), (3) and (4) above may be
straightforwardly adapted to the evolution transport equation (8.10). We refer to [243, 242, 244, 66]
where such results are established in a slightly less general framework. Let us emphasize again that
when a € V[/I}N}([O, T] x O) (what it is the case in the time independent case when a satisfies (8.5))
this extension is directly implied by Theorem 8.8 applied to the vector field (1,a(t,y)) in the open
set (0,T) x O.

8.2. Well-posedness for the transport equation with given inflow at the boundary.

We deduce from the previous trace theorems and standard tools the well-posedness for the transport
equation with several boundary conditions. In this section, we deal with the transport equation
with given inflow at the boundary. We are first concerned with the stationary transport equation

(8.28) A+a-Vg+bg=G inO, ~_g=g onX_,

for a real number A € R large enough, a given source term G : O — R and a boundary term
g— : X_ — R. As we will see, our analysis also apply to the associated dual equation

(8.29) Ap—a-Vp+ (b—diva)p=® in D'(O), ~v4p =1 onX,.
We will also consider the related evolution equation

9g

= -Vg+bg=G 0,7) x O,
(8.30) 8t+a g+bg on (0,7) x

7-g=g on (0,T)xX_, ¢(0,")=go on O,
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with given source term G : (0,7) x O — R, boundary term g : (0,7) x ¥_ — R and initial datum
go : O —R.

A possible simple framework consists in imposing the following conditions

(8.31) aeWENO), be Ll (0),

loc

and
a

{y)(b+)
The first condition on a is useful for the renormalization trick and the definition of the trace, the
second condition is needed for the existence results in a LP framework when p # oo and the last
condition is used for proving the uniqueness result. In order to be able to apply our results to
more general (and realistic) situations, we rather consider the following situation. We assume that
a and b satisfy (8.31), and defining

b_,diva € L*(0), € L' (0) + L>(0).

1
(8.32) w=wp:=b— —diva —a- V_mj
p m

for some smooth enough weight function m : O — (0, 00) and some exponent p € [1,00], we assume

o0 o0 a o0
(8.33) w_ € L*(0), be Ly, ,-1(0), W €L y-1(0) + L. (0)

In the case p = 1 and p = oo, we will additionnaly assume (w,)_ € L™ for any g € (1,00). It is
worth emphasizing that condition (8.33) automatically holds when m = 1 and a, b satisfy (8.31).
We also define the critical real number

(8.34) Ay = Ay(a,b,m) == |lw_||L=,
and we may observe that

* : —1\ __ yx*
(8.35) Ay (=a,b—diva,m™") = Aj(a,b,m),

what links up the primal and the dual problems. In order to shorten notations, we introduce the
three weight functions

mo == mlw )P, e =m(@)" V", my:=mla-n|"".
We start with a general discussion about a priori bounds, formal representation formulas and
general stability results.

A priori estimates. Consider a solution g to the stationary equation (8.28). For any renormal-
izing function $: R — R and any function ¢ : O — (0,00), we (at least) formally have

L0+ 08 @o - sla)divtap] + [ a-nstraro= [ #0)Ge+ [ la-nlla)e
o oy
Choosing 8(s) := |s|P, 1 < p < 0o, and ¢ := mP, we get in particular

1 1
(8.36) / lglPm? (A + @) + © / glPmPa - n = / Galgl2m» + 1 / lg—[PmP|a - n].
o pJs, o pPJs

For p=1 and any A > A\, we get

/ lglm{A — A} + )+ / I glms < / Glm + / lg—|ms.
o N o Y

For p € (1,00), we split G = G1 + G2 and using the Young inequality, we have

p—2 P < p D p p

for any &; > 0. For A > A7, we choose &1 := (A — )\;‘,)/2 and €9 :=1/2, we get

1
/Igl”mo +—/ [+ g[Pm5,

2P~ / 1 / B 1
< G1|PmP + - Gy |Pmt —|——/ _|PmE.
p(p)p/p Caltmt - e [, 1€ o+ [ el
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‘We thus deduce

Cp Cp
(837) Iolze, < 551Gt + Sy - lze, + 162l )
and
Cp
(8.38) lgllze,, + llv+glles, mllGlllLP +Cpllg-llce,, +1Gallre, ),

for some numerical constant C, € (0,00) and any p € (1,00) and also for p = 1 because of the
previous estimate. Finally, for A > A% and a € (0, A — A%,), we may proceed exactly as above, but
throwing also away the contribution of w,, and we may thus first write

(8.39) (A—nw_nm——)ngny(o (16l o)+ lo-la-nl 712y ).

for any p € (1, 00) large enough in such a way that the coefficient in front of ||g||’£?n(o) is positive.

Taking the power 1/p in both sides and passing first to the limit p oo and next to the limit
a A= A5, we end with

1
(8.40) l9ll 20 < max( = 1G Nz 0 lg-lLss ) )-

Consider now a solution to the evolution equation (8.30). For any renormalizing function 3 : R —
R, and any test function ¢ : [0,00) x O — (0,00), we (at least) formally have

(8.41) / / 9)Cyp — B'(9)g + B(9)[Owp + div(ap)]) dyds

[/5 9(s,v)) sydy} //579@@ ndoyds.

Choosing 8(s) := |s|P, 1 < p < o0, and @(t,y) := mP(y), we get in particular

t t
/ g(t) PP + / / a-nlviglPm? +p / / 9P
o 0o Jz, 0 Jo
t t
- / lgolPm? +p / / glglP-2Gm? + / / lgfPm?la - nl.
O 0 O 0 >_

Using the Young inequality

_ P -
p / glglP=2Gmr < 2 / lglPmt, + / lelia
@) P Jo @)

and the Gronwall lemma, we then deduce

t
(8.42) ||9(t)||i§n+/0 I lgall gy, + lvegsllZy, ) ds

t
<l + [ UG ol ) Vo
0 mo "

with k :=||{(@_)||L~. Passing to the limit p — oo, we also have

(8.43)  max(llg(t)lLg, lrv+9(®)lLs) < e maX(llgoHL:g,?SIE(IIGSHL:S + llgsllzgs)).

for any t > 0.

Representation formulas. In a smooth functions framework or still formally, one classically
knows that the solution g to the evolution transport equation (8.30) is given by

(8.44) g(t,y) = fo(Y-i(y))e™ Jo Vet @WDdsy, \ + g(t — to, yb)e” Jo® bVemrp WDdsy,

t] —

th .
+ [ 6l Yoy e B0 gy,
0
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where we recall that the characteristics Y and the backward exit time ¢y, are defined in (8.6)-(8.7)
and we denote ¢}, := min(t, t). Similarly, the solution g to the stationary transport equation (8.28)
is given by

th tp s
(8.45) g(y) = a(yi(y)))e” JoP b(Y_s(y))ds +/ G(Y_s(y))e™ Jo b(Y—r(w))dT g,
0

Alternatively, we may define a semigroup S (say on L*°(0)) by

folY—t(y)) exp(~ / b(Ys_y(y))dr), i £ € (0, (1)),

0 otherwise.

(8.46) (So(t) fo)(y) =

Given fy : O — R, the function f(¢,y) := (S(¢) fo)(y) is thus a solution to the evolution equation
Of+a-Vf+bf=0in (0,00) x O, ~_f=0o0n (0,00) x X_.
For G,g: O — R, we next define

(8.47) g:=g+ / e M8, (1)G dt,
0

with G := G — \j + a - V4§ — bg. By construction, it is a solution to the stationary transport
equation (8.28).

Stability. We present some stability and continuity results. Generalizing slightly [244, Defini-
tions 2.6 and 3.1], we say that a sequence (g,) of L(E) converges in the renormalized sense to g,
we note g, — g, if for any ¢ € (0, 1] there exists 85 € L°>°(E) such that

(8.48) Bs(gn) — Bs * a(L>, Ll) asn — oo and B1(Bs) — Bi1(g) Llloc(@) as d — 0.

We may observe that in particular g, — g weakly L*(E) or g, — g a.e. in E implies g, Lg. We
refer to [244] and the references therein for more material about the subject.

Proposition 8.10. Let us consider four sequences (gi) of Li,.(O), (ax) of VVlicl(@), (br) and

(Gy) of L, (O) such that
ax - VB(gr) + b8 (9x)gr = B'(95)Gr  in D'(O)
for any k > 1 and any B € CL(R) and four functions g € L _(O), a € VVlicl(@), b,G € L (0)

loc

such that a, — a in Wh1(O) and by, — b, Gy, — G in L\ (O). Let us denote by ¥ the boundary

loc
singular subset associated to a.

(1) If g — g a.e. in O then g satisfies (8.25) for any B € CL(R) and, up to the extraction of a
subsequence, Yg — g a.e. on S\ Xo.
(2) If gx — g weakly in Li _(O) then g satisfies (8.25) and, up to the extraction of a subsequence,

Y9k — g on X\ Zo.

Remark 8.11. Because of Remark 8.9-(5) and the time independence made on a and b in (8.33),
exactly the same stability result holds for the evolution equation (8.30) as a consequence of Propo-
sition 8.10.

Proof of Proposition 8.10. We split the proof into two steps.
Step 1. We establish (1). We fix /3 as in the proof of Theorem 8.8 and we write the Green formula

/o [B1(9%)Gr 0 — B1(9r) gibr @ + Br(gi) div(ary)] dy = /251 (vgr) pay - ndoy,

for any test function ¢ € C}(O). There exists 31 € L>(X\Xo) and a subsequence (gn, ) such that
B1(Ygn,,) — B1 weakly o(L>°, L'). Passing to the limit in the above equation, we get

/ [B1(9)G ¢ — B1(9)gb e + P1(g) div(ap)]| dy = / Brea-ndo,.
(@) b))

From Lemma 8.7 and Theorem 8.8, we deduce that 3; = B1(vg), so that Bi(vg.) — Bi(vg)
weakly o(L>, L'). Fixing now B2 := € C}(R) and repeating the same argument, we get
Ba(vgn) — B2(vg) weakly o(L>°, L'). We then immediately deduce that

(B1(vgn) — Bi(79))> = 0 weakly o(L>, L"),
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so that £1(ygn) — B1(vg) in LL _(3\Zg). We conclude by using that 3; is one-to-one.

Step 2. We establish (2). We fix 5 as defined just before the statement of Lemma 8.7 and we
write the Green formula

/[5é(gk)Gk<p+ﬁ5(gk)diV(a<p)] dy:/ﬁa(vgk)w-nday,
(@) D)

for any test function ¢ € CX(O). There exist B, 85,85 € L=®(0), 785 € L®(S\Z) and a

subsequence (g, ) such that 85(gn,) — Bs, gniB5(9n,) = Bs, B5(gn,) = B and B5(ygn,) — 7Bs
weakly o(L>, L'). Passing to the limit in the above equation, we get

a-VyBs+bs =BG in D'(0), yB;=7F; on \Zo.
From the fact that (gx) is locally uniformly integrable, we classically deduce that
Bs.Bs =g in L (0), B3G—G in Li,(0),
as § — 0. From Step 1, we deduce that g satisfies (8.25) and that, up to the extraction of a
subsequence, 735 = 765 — vg a.e. on ¥\Xy. Using the Cantor diagonal process, we obtain that
there exist two sequences (6,,) and (g, ) such that &,, \, 0 and vg,, —~g in the renormalized
sense associated to (,,). O

Existence. We establish two existence results of solutions to the transport equation (8.28).

Lemma 8.12 (Existence in LS°). We assume that a and b satisfy (8.33) with p = oo and some
weight function m : O — [1,00). For any A > X', and any given functions G € L(O) and
g— € LS(X_), there exists g € Ly (O) solution to (8.28) in the distributional sense. This solution
satisfies (8.28) in the renormalized sense, the weak mazimum principle, namely

(8.49) g>0mO if g>00n%X_ and G>0 in O,
and the L$? estimate (8.40).

Proof of Lemma 8.12. The proof follows [242, Lemma 3] using [33, Theorem 2.3]; we only sketch it.
Under the stronger regularity assumption a,b € C}(0), G € C(0), g— = g with g € C}(0),
both definitions (8.45) and (8.47) provide a classical (and thus also renormalized) solution g to
(8.28). In such a situation, we may justify the computations made in the above a priori estimates
paragraph and we conclude that g satisfies the L™ estimate (8.40). In the general case for a, b,
g— and G, we introduce some sequences (a®), (b°), (¢°) and (G®) of regular and approximating
functions so that we may apply the first step above. In that way, we build a sequence (g°)
of renormalized solutions to the approximated problem which is uniformly bounded and thus
converges (up to the extraction of a subsequence) in the weakly xo (L%, L) sense to a function
g € L*>°(0) satisfying (8.43). We then immediately conclude by passing to the limit ¢ — 0 thanks
to Proposition 8.10. g

We give a first version of an existence result in a LP framework with strong assumption on the
boundary condition.

Lemma 8.13 (Existence in LP). We assume that a and b satisfy (8.33) for some p € [1,00) and
some weight function m : O — [1,00). For any X > X5, G € Ly, (0) and g— € Lb, (¥_), there
exists g € Lb, (O) a renormalized solution to the transport equation (8.28). This one satisfies
(8.37), (8.49) and v, g € Lb, (¥4).

Proof of Lemma 8.13. We argue similarly as during the proof of Lemma 8.12. When g_ =
with g, a, b, G smooth and with compact support, the classical solution built above satisfies (8
and thus

1
(8.50) 19llze, o) S I1G1Izz,_ + lg-mllz= Nl h .

g=_
37),

For p > 1, and under the general conditions (8.33) on a and b, but still assuming g = gj»,_ and
G, g € CHO), we may introduce two sequences (a.) and (b.) of smooth functions approximating a
and b. Since the resulting solution g. satisfies (8.50), so that the sequence (ge) is bounded in L%, |,
we may argue with the same (compactness) argument as in the proof of Lemma 8.12. We then
conclude to the existence of a (renormalized) solution g € L%, & to the transport equation (8.28)

satisfying (8.37). Still for p > 1, but assuming G € L%O and g € Lb _(X_), we may introduce
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two sequences (G¢) and (¢° ) of smooth functions approximating G and g_. Thanks to (8.37), the
associated sequence of solutions (g.) is bounded (and better it is a Cauchy sequence) in L}, (O)
and we conclude again to the existence of a (renormalized) solution g € L?, (O) to the transport
equation (8.28) satisfying (8.37). Finally, in the case p = 1 and A > A}, we may find ¢ > 1 small
enough such that A > A7, For G, g € L' N L9, the last step imply the existence of a renormalized
solution g € L, (O) to the transport equation (8.28). Renormalizing the equation, we deduce
that g satisfies (8.37) for p = 1. When G,g_ € L', we introduce two sequences (G.) and (g% ) of
L'N LY functions approximating G and g_, and using (8.37) for p = 1, we deduce that the resulting
sequence (g:) is a Cauchy sequence in Ly, (O). We easily conclude again. Finally v,g € L8, _(34)
from (8.38) (see also Remark 8.9-(4)). O

Uniqueness. We present now a uniqueness result.

Lemma 8.14 (Uniqueness). We assume that a and b satisfy (8.33) for some exponent p € [1, 00]
and some weight function m : O — [1,00) as well as for p =1 and m = 1. We additionally assume

diva € L§2.(O) (what is automatically true under assumption (8.31)). With obvious notations, for

any A > max(A,(m), Aj(1)), and any solution g € L}, (O) to the transport equation

(8.51) ANg+a-Vg+bg=0 inD(0), ~vg=0 on¥_,
we have g = 0.

Proof of Lemma 8.14. ' We main follow the proof of [127, Cor. IL.1]. We fix 3 € W1°°(R), 8(0) = 0,
in such a way that 8(g) € L, , N L is a solution to

(A+b)gB'(9) +a-VB(g)=0 inD'(0), ~7-B(9)=0 onX_.

For any ¢ € C.(O) and any A > X}, . we solve in Li;f

m,p?

, M L* the dual problem

e )1/
(8.52) Ap—a-Vo+ (b—diva)p =1 inD(0), vi¢=0 onX,,

thanks to Lemma 8.12 and Lemma 8.13, where we observe that, because of (8.35), the necessary
condition on A in these results is precisely the one made here. For y € CL(RP), 15, < x < 1p,,
and R > 0, we define xg(z) := x(x/R). Using the Green formula (8.20), we have

0= [ (Do - 08— [ B+Deas @+ [ o860 (Ton

Because on the one hand ¢f3(g) € L} .y N L> and on the other hand a/R - (Vx)r — 0 a.e. and

(w
is bounded in L?;+>_1 + L' we deduce that the last term vanishes when R — oo. Using also that

bpg € L' thanks to (8.33), we may pass to the limit R — oo in the above equation and we get

0= /O (0 + b)p — 0)Blg) — /O (A + b)egB(g).

We take 3 := S5 and we observe that (b)|w||B5(g9) — gB5(g)| < (b)|¢g| € L}(O). We may then pass
to the limit § — 0 in the last equation, and we get

0= —/Owg, Vi € Cu(0),

from which we conclude that g = 0. ]
We come to the time dependent transport equation by formulating a general continuity result.

Proposition 8.15. Assume thata € Wlicl (0),be L (0), G e Ll ([0,T)x0O). Any renormalized
solution g € LL ([0,T] x O) to the first equation in (8.30), meaning

loc

2 5(9) +a-VBlo) + Blo)bg = F ()G in D(0,T) x O),

Jor any renormalizing function 3 € CL(R), satisfies g € C([0,T]; L°(O)), meaning that 3(g) €
C([0,T]; Ly (0)) for any B € Cy(R).

loc
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Proof of Proposition 8.15. The proof is a variant of the proof of [127, Thm II1.3] and we just
allude it. Because 3(g) € L*>((0,T) x O) is a solution to the transport equation with source
term B'(g)G — B'(g)bg € L ([0,T] x O), we have 8(g) € C([0,T];D'(O)) for any 3 € CL(R).

Fixing By € C}(R) strictly increasing, we deduce that 3o(g),B0(g9)? € C([0,T];D'(0)), so that

Bo(g) € C([0,T]; L% (O)), and the conclusion. O

loc

We consider now the time dependent transport equation (8.30).

Proposition 8.16 (Renormalized solutions). We assume (8.33) for some p € [1,00] and some
weight function m. For any go € L5, (0), G € Ly, ((0,T) x O), g € L5, ((0,T) x X), there ewists
a unique g € C([0,T]; Li, .(O)) satisfying the estimate (8.42) or (8.43) and being a solution to the
transport equation (8.30) in the renormalized sense, namely

(8.53) 8%—(? +a-VB(g) + B (g)bg = B'(9)G on (0,T)x O,

7-B(g) = B(g) on (0,T)x%_, B(9)(0,-) = B(g0) on O,
for any B € C, .. Furthermore, g € C([0,T]; LE,) when p € [1,00) and g > 0 if go,G,g > 0.

Remark 8.17. (1) The above result extends some previous results due to Bardos in [33, Chap. III],
Boyer in [66, Thm 4.1] and Crippa et al in [109, Thm 1.1] and [108, Thm 1.1], where the cases p = 2
or p = oo are considered with always the additional assumption a € L (in the last paper however
the present Wt bound on a is relazed into a BV condition) by adapting the Di Perna-Lions theory
developed in [127, Sec. II].

(2) We immediately deduce from the above result and Lemma 8.7-(2) a weak maximum principle:
g1 < g2 if g; is renormalized solution to the transport equation (8.30) associated to the data go;,
Gi, gi such that go1 < goz2, Go1 < Goz, go1 < go2-

(8) During the proof of the continuity in the sense of the strong topology in LP , we use the hypothesis
a{y)~t € L<<>;+>,1((’)) + LL . (O) as formulated in (8.33). In fact, when p € (1,00), we could just
assume a(y)~! € L7 ,-1(0) + LY(0). Indeed, in that case we may prove the uniqueness of the
solution and its continuity in the sense of the weak topology in LP . Next, using Corollary 8.18,
we deduce that we may associate to the above transport equation a semigroup which is weakly
continuous, and thus strongly continuous, using a general and well know result of the semigroup

theory. We have recovered in that way that g € C([0,T); L2,).

Proof of Proposition 8.16. We proceed similarly as during the proof of Lemma 8.12.

Step 1. Characteristics. We assume first a € C*(RP), go € C.(0), b € C,(0), g € C.((0,T) x o),
G € CX((0,T) x O). We use the characteristics representation (8.44). We may verify that § both
satisfies the transport equation in the renormalized sense and the boundary conditions in (8.53)
and we may justify the computations leading to the a priori estimates (8.42) and (8.43).

Step 2. Existence. In the general case, we define some regularized sequence (ac), (go.e), (be)
(ge), (G<) and thanks to the first step we deduce the existence of an associated function g. €
C([0,T); L?,) satisfies both the equation (8.53) in the renormalized sense and the a priori estimates
(8.42) or (8.43). When p > 1, the sequence (g.) is bounded in L*°(0,T;L?) and (up to the
extraction of a subsequence) we may pass to the limit & — 0 using Proposition 8.10-(2) and
Remark 8.11. We have established the existence of a renormalized solution to the transport equation
which satisfies the estimate (8.42) or (8.43). When p = 1, we may for instance proceed in the
following way by first assuming 0 < go € L},,, 0 < G € L;,,((0,T)x0),0< g € Ly, _((0,T)xX). We
may thus consider some nonnegative approximating sequences (go.c) in L, N L., G. € L% 0N Ll
ge € Lb, _NLY  such that go. " go, Ge /* G and g /' g. The same construction as above implies
the existence of 0 < g. € L°(0,T; L. N LP,) renormalized solution to the transport equation
associated to these data and such that (g.) is increasing and uniformly bounded in L*(0,T; L} )
thanks to the a priori Ll estimate (8.42). There thus exists 0 < g € L°°(0,T;L.) such that
ge /g, and we get that ¢ is a renormalized solution to the transport equation by using again
Proposition 8.10-(2) and Remark 8.11. We remove the nonnegative condition on go, G and g by
introducing the positive and negative parts of each function, using the preceding step in order to
prove the existence of two solutions 0 < g+ € L>°(0,T; LL.) associated respectively to (go+, G+, g+)
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and (go—, G_,g—), and finally defining g := g+ —¢_ which is a renormalized solution to the transport
equation thanks to Lemma 8.7 and Remark 8.9-(5).

Step 3. Continuity. From Proposition 8.15, we already know that g € C([0,T]; L°(0)). Together
with the a priori estimate (8.42) or (8.43), we also have g € C([0,77]; L .(O)) when p > 1. When
p € [1,00), we may improve the above continuity properties by arguing in the following way. We
write the renormalized equation (8.41) for the renormalizing function Sas(s) := (|s| A M)P, M > 0,
and the test function ¢ = mPxg, with x € C}(R?), 15, < x < 1z, and xr(y) := x(y/R).
Observing in particular that

t
//5M(g)mpa-VxR—>0asR—>oo
0 Jo

because of (8.42) and (8.33) by arguing as in the proof of Lemma 8.14, we may pass to the limit
in (8.41) as R — oo, and we obtain

U(DBM(Q)mpdyK B /ot/oﬁ n(g)GmP dyds — /0 t /Z Brr(vg)m¥, dods
_/Ot/OﬁM(g)m%dyds+/Ot/(9 (Br(9) — Biy(9)g)bmPdyds.

Using (8.42) and (8.33), we may next pass to the limit as M — oo in the above equation, and we
get

d _
%/ Igl”m”=—/ Igl”m%+/ pGylglP 2m”+/ lyglPmk, € L*(0,7T).
(@] (@) (@) b}

We deduce that ¢t — |[|g(t)|| e is continuous. Consider then t € [0,7] and t; — t, so that in
particular ||g, ||z, — |lg¢|lLz, as k& — oco. On the other hand, we have yet established that
1Bo(gt.) — Bo(9¢)ll 1 (0nBR) —+ 0 as k — oo for any R > 0. There exists thus a subsequence (gz,, )
such that g;, — g¢ a.e. on O. Thanks to Brézis-Lieb theorem [68], we deduce that gt,, — g¢ in L,
and it is the whole sequence which converges by uniqueness of the limit. We have thus established
g € C([0,T]; LE,) when p € [1,00).

Step 4. Uniqueness. Because of Lemma 8.7 and Remark 8.9-(5), we just have to prove that
g =0 if g is a renormalized solution associated to vanishing data go =0, G =0 and g = 0. When
p € [1,00), the previous step implies that

d
—/ lglPm? =/ lg[PmPe € L1(0,T), / |9(0)[Pm” = 0,
dt Jo o "

and together with the Gronwall lemma, we deduce that g = 0. The case p = co may be tackled
thanks to a duality argument exactly as in the proof of Lemma 8.14. g

Corollary 8.18. The semigroup Sy, defined by (8.46) extends to a positive semigroup of contrac-
tions in LY .

Proof of Corollary 8.18. We just apply Proposition 8.16 with G = g = 0. When p € [1,0),
we define in that way a mapping L2, — C(R4;L2,), go — ¢ the unique renormalized solution.
Defining then S(t)go := g(t) we have built a strongly continuous semigroup in LP. The case
p = oo is identical, except the fact that the semigroup is only weak xo (LS9, L}n_l) continuous. The
positivity has been established in Proposition 8.16 and the contraction property comes from the
estimates (8.42) and (8.43). O

Remark 8.19. It is worth emphasizing that in Bardos [33] the semigroup is defined by its rep-
resentation formula for smooth data and by Hille- Yosida theory for L? data. Here we proceed in
another way, by rather following [127, 243, 233].

8.3. Optimal weighted trace theorem and transport equation with reflection at the
boundary. We define the functions 7% as the solutions to

(8.54) METa- Vit =1 in D'(0), ~+7T =0 on X,
with Ag := 1+ ||dival|pe.
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Lemma 8.20. Each of the two equations (8.54) has a unique solution T4+ € L>®(O) and
0<7m7 <1 ae i O, 0<y17: <1 ae on 3.

Proof of Lemma 8.20. We follow a similar proof as in [66, Proposition 5.1] (see also [243, Section 5]).
We only deals with 7_ since the case of 7y can be handled in the same way. The existence of
7_ € L°°, its non negativity and the upperbound are consequences of Lemma 8.12 while the
uniqueness is ensured by Lemma 8.14. In order to prove the strict positivity we argue as follows.
We first fix A € O, |A| € (0,00) and we solve
Moy —div(ap) =14 in D'(0), 19 =0 on X,
for which there exists a unique solution ¢ € L'(0O) thanks to Lemma 8.12 and Lemma 8.14, which
furthermore satisfies ¢ > 0 and ¢ # 0. We observe that 7_¢ € L'(O) satisfies
diviaT_p) =@ —714 in O, ~(1—¢) =0 on X\X.

Thanks to the Green formula, first written for 85(7_¢) and next passing to the limit § — 0, we

deduce
Oz/w(T,gp)a-nday:/ div(m;(p)dy:/ gp—/T,dy,
b o o A

so that the last integral does not vanish. This being true for any A C O, we get 7— > 0 a.e. on O.
For A C ¥4 such that

0< / (a-n)ido, < oo,
A

we solve

o —div(ap) =0 in D'(0), ~vie=14 on X,
thanks to Lemma 8.12 and Lemma 8.14, and we get a unique solution 0 < ¢ € L'(O) such that
¢ # 0. The Green formula again implies

/ yr_(a 1) 4doy = / div(ar_g)dy = / o
A (@) (@)

so that the first integral does not vanish. This being true for any A C X, we conclude that
Y+7— >0 a.e. on M. g

Lemma 8.21 (Optimal weight). We assume that a satisfies (8.31) as well as a € Wll)’cpl (O) for
some 1 <p < oo. For any g € LP(O) satisfying (8.9) in the distributional sense with G € L?(O),
the associated trace function vg defined in Theorem 8.8 satisfies

vg € LP (S, |n-a|rdo).

Proof of Lemma 8.21.  One fixes Bp(2) = (|z| A M)P. From the DiPerna-Lions renormalizing
theory, we have

a-V(Bu(g) ") = Bule) G+ Bu(g)(r" —1) inD'(0).

Because By(g:) 77 € LY(O) N L>*(0) and a/(y) € L' + L*°, we may use the Green formula (8.20)
with ¢ = 1, and we get

[ Bt inealio = [ {(@iva)du(o) ™ - Biulo) G + Bu(g)(r - 1)}
PN O

-1
< lallze llgllee + Gz}

Passing to the limit M — oo, we obtain y_ g € LP (E,, |n - al Tda). In a very same way, we prove
Y49 € LP(Z4,|n - a| 7do). O

We give now a second version of an existence result in a LP framework with optimal assumption
on the boundary condition in the sense that it is reverse with respect to Lemma 8.21. That also
a posteriori justifies that Lemma 8.21 provides the optimal trace result in term of weight function
on the boundary.

Lemma 8.22 (Existence in LP - optimal assumption). We make the same assumption on a, b
and p as in Lemma 8.18. For any X > Agpp + 1/p and any given functions G € LP(O) and
g— € LP(3X_,7|a - nldo), there exists g € LP(O) solution to (8.28).
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Proof of Lemma 8.22. 'We only sketch the proof in the case of equation (8.28), arguing along the
lines of Lemma 8.12. We start with an a priori estimate. Observing that

div(ar™|g[’) = (diva)rtg” + (77 — 1)g” + pr(Gglg[P~> — blg” — A|g|"),

we have
/ |g|p{1+pr+“+b_ldiva—l}=/ IV—glprla'n|d0+/ GylglP=2r+.
1) p p - o

Using the condition on A, the property 0 < 77 < 1 and the Young inequality, we deduce

1 1
1 / 9P < / _glPrla - nldo + - / G,
pPJo > P Jo

We conclude in a similar way as in the proof of Lemma 8.13. g
We consider now the time dependent transport equation with positive abstract kernels

99
(8.55) ot
v-9=Z[g,v+9] +g on (0,T)xX_, g(0,:)=go on O,

+a-Vg+bg=[g]+G on (0,T)x O,

with notations introduced at the beginning of the Section. We will work in a weighted Lebesgue
space LP with the same conditions on p, m, a and b as introduced at the beginning of Section 8.2.
On the other hand, we assume

(8.56) A Lh, (0) = LY, (O) linear and positive,
(8.57) X Lh, (0) x LE _(Xy) — Lh,_(¥_) linear and positive in each variable,

where we recall that the weight functions me, me and myx have been defined in Section 8.2. More
precisely, we first assume

(8.58) I #TGNE,  < o liglt, + M, lglt, |
meo mo m
(8.59) |19, 1)l < o gl + Ballhlzy

g”ig’no + M,
with o, o, 8, €10,1], M,,, M, > 0 and
(8.60) do=(1-a, —a,)/2>0, ¥g:=1-0,>0.

For later references, we recall that Z = Zo + Zx. with Zo and X, defined by (8.4) and more
precisely

(361) Fon)w) = [ atwlrotwdu). (#sh)s) = [ hw)rs(y.dy.)

+
for some transition kernels ro : ¥_ x Z(0) — [0,00] and g : - X B(X;) — [0,00]. Let us
emphasize that when p = 1, the assumption (8.58) is equivalent to the Lyapunov type condition

A m) < a,wym+ M, m.

Proposition 8.23. We assume that a, b, & and Z satisfy the conditions (8.33), (8.56), (8.57),
(8.58), (8.59), and (8.60) for some weight function m : O — [1,00) and some ezponent p € [1,00).
We consider some data go € L}, (0), G € L ((0,T) x O) and g € L}, _((0,T) x ¥y) with either

(1) 8, € 0, 1);
or 8, = 1. In the latter case, we assume that g = 0 and we make one of the following additional
structural assumption

(2) there exist an exponent py € [1,p] and a weight function mg such that X and X satisfy (8.56)
in LE and (8.57) in LLe (O) x LEe (X.), with obvious definitions for the weight functions moo
and mox, and with Lh, C Lbo  Lb, C Lbo LY C Lbo . where iy == m(Tra- n)?/?;

(3) p=1 and Xy, is diffusive, namely Z%[Tyms] > csms a.e. on X4 with s > 0.
In the above three cases, there exists a unique solution g € L>°(0,T; L}, (O)) N C([0,TT; LEe (O))
satisfying the transport equation (8.55) in the renormalized sense as well as g € LP°(0,T; LP0 (O))

moo
and g € LPo(0,T; LPo (X)), with po = p and mg = m in the first and the third cases. ’

moo
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Remark 8.24. (1) The above result extends some previous results initiated by Bardos in [33, Chap.
III] and Beals et al in [39, Thm 1&7], where however only the kinetic case were considered. We
refer to Section 10 for a discussion about that important model.

(2) When 3, = 1, the existence part of the above result still holds (without any additional structural
assumption).

(8) Similarly as observed in Remark 8.17, a weak mazimum principle holds: g1 < g2 if g1 and g2
are the renormalized solutions to two transport equations (8.55) such that (with obvious notations)
b1 Z bg, :%/1 S %, %1 S %2, go1 S go2, G01 S GOQ and do1 S do2- That is an tmmediate
consequence of the way we build the solutions g; thanks to the iterative scheme we present in Step
2 of the proof of Proposition 8.23.

(4) Another immediate consequence of the iterative way of building the solution, together with the
fact that the characteristics representation (8.44) is the very first step of the construction, is the
validity of the Duhamel formula

Sr =85+ SgA xS,
if we denote by Sr the semigroup generated by the transport equation (8.55) with G =g = 0, by
Sp the semigroup when additionally # =0, and Af = H[f].
Proof of Proposition 8.23. We split the proof into five steps.
Step 1. A priori estimates. For a positive solution, we formally compute

1d 1 1
o g”m”z};/ (Z19,7+9] + 9-)'midoy, — p/ (7+9)"mydo,

_ s [ {1+ 6) - g

(8.62)

Using the Young inequality and (8.58), we have

Lot < = [ g+ | o)
o pPJo
< (i/+a_'f)/gp<er>mp+%/gpmp.
o P Jo

p p
When g = 0, using also (8.59) and once more the Young inequality, we then have

1d 1 M, M,
—— [ gPmP < =(B, _1/ vig)PmPa - n + —Z 4+ 4w )| e /g:l?mp
o P [ (10) (S + = o les) |

Q 1 « € ,
+~_”2+_+_9(+__1/ Pl mP (g ) ~P/P
(s lrter oy [ g (@)

for any € > 0. Making the choice ¢ := Yop’/p, we deduce

d
Llglis, +Dollally,  +9slriolly < plolty, +CollGlE,
with
M, M, -
pi= =t =t @)l Co = (Dor'/p) e,

Using the Gronwall lemma, we then obtain
(5.63) ls(oly, + [ o, +Dslvigell, )ds

< laally +Co [ NG, ds iz
When g # 0 and thus ¥y > 0, we control the ingoing boundary term by

/ (%[gal\prg] + g)pmg S (]- + 81) %[977+g]pmg + C€1 / gpmga VZ':l > 0;
_ 3 _
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and a very similar computation as above leads to the a priori estimate
t
(8.64) lg®Iz, + / D lgsllhy  + Ollvigall, ) ds
0

t
< e lgollzy, + / =) (ColGallys + Cxllgsllfy, ) ds,
0 mo
for any ¢t > 0, with

L=1-8,(14er), p=1-a,(l+e)—a, —c>

77

M. M _y
wi= 204 e)+ =t @, Co=c?/7 Cpi=C,

and where we have chosen ¢,e; > 0 small enough in such a way that 9%, > 0 and 9, > 0.

e When ¥y = 0 and thus g = 0, we further multiply the equation by m? 7, where 7 is defined in
(8.54), and integrating, we deduce

0
/ / Tra - n(yg)PmP dodt = [/ PmP 7':|::|
¥
/ / pg" (A 9] + G) mpTi—F/ / dw (am? +1— X7 — pKmP7y).

Together with (8.63) and 7. € L*°(0), we obtain

(5.65) / [ Grayrm < r (Lo, + 161 o s,
+
and
T
(3.66) | [ starmimt < r(lanlly, + 16 00.1,01, )

for some constant C € (0,00). In particular, when p = 1 and £y, is diffusive, we have

02// (749 mz<// (V+9)%5:(T4mx) = / Fs:(7+9)Tyms,
o, o, o

and together with (8.66), we deduce the additional estimate

(867 s [ [ Ggims < Cr (Il + 16 omns)
0 Ju,

Step 2. Existence. As a consequence of these a priori estimates, we may classically build a solution
through an iterative scheme. For the sake of brevity, we only consider the (more interesting and
more difficult) case by, = 1 (so that Iy = 0 and g = 0) and G = 0. For a given 0 < g9 € L? (0),
we define a sequence of solution (h,,) starting from ho = 0 thanks to the recursive definition

hy
0 8t+1 +a-Vhpy1 + Khpyr = H'[hy] on (0,T) x O,

Y_hnt1 = Zlhn,y+hn] on (0,T) x E_, hp41(0,-) =go on O.

From Proposition 8.16, there exists a unique renormalized solution h,4+1 € C([0,T); L2, (O)) to the
above equation satisfying the estimate (8.42) with g := hp41, G := A [hy] and g := Z[hn, y1+hn] €
L?, .. We observe that 0 < h,, < hy41 thanks to the weak maximum principle (see Remark 8.17)
and that h,, satisfies the estimates (8.63) and (8.66) where g is replaced by h,. Thanks to the
monotonous convergence theorem of Beppo Levi, there exists g satisfying estimates (8.63) and
hp — g in LY, ((0,T) x O). We may pass to the limit in the equation satisfied by (h,) and we
deduce that g is a renormalized solution to

gt—i—a Vg+bg=4g] on (0,T)xO.

From Theorem 8.8 and Remark 8.9-(5), the function g admits a trace yg and thanks to Propo-
sition 8.10, we have ~vh, — g a.e. on X\Xy. Because of (8.4) and the Beppo Levi theo-
rem again we deduce that Z[h,,v+hn] = %[g,v+g] a.e. on X_. Together with the fact that
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v_h, — v_g a.e. on ¥_, we have established that the boundary condition in (8.55) holds true.
It is worth emphasizing here that v, g € L' (24 ;drs(y,-)) for a.e. y € £_ because of (8.66). For
go € L2, (O), we separate the positive and the negative parts go = got+ — go— and we obtain two
renormalized solutions g* € L>(0,T; LP,) associated to go+ respectively. By linearity, the func-
tion g := gT — g~ € L*(0,T;LP)) is a renormalized solution to the transport equation and the
boundary condition is

v-9 = 7-9"—7-97 =Rolg"] = Rolg™] + Rs[r+9"] — Relr+97]
= TRolgl + Rs[v+4l,

where the last term is indeed well defined a.e. from the fact that vy g* € LY(Xy;drs(y,)) for a.e.
y € ¥_ and thus v, g = 7.9+ —v, g~ belongs to the same spaces. From Proposition 8.15, we already
know that g € C([0,T]; L°(0)) and thus using an interpolation argument g € C([0,T]; LE: (O))
for any p; € [1,p) and any weight function m; such that my/m € Lrpy/(P=p1) when p > 1.

Step 3. When (8, < 1 and p € [1,00), we have (8.64), and we may just repeat the proof of
Proposition 8.16 in order to get g € C([0,T]; LE,(O)) and the uniqueness of the solution.

Step 4. We assume 3, = 1 and the structural assumption (2). From the estimate (8.62) on a
solution g and the renormalized formulation of the equation, we deduce that

1
o dt/lglm = —/ 9,7+9 IPDWS’%—p—O/Z [v+glPomgs,
+
+ [ falal 208 o]+ Gy~ glmts).

with a RHS term in L'(0,T). As above, we thus deduce g € C([0,T]; Lt (O)) and next the
uniqueness of the solution.

Step 5. We assume (,, = 1 and the structural assumption (3). In that case, we have p = 1,
Y+g € L, ((0,T) x 4) from (8.67) and then y_g € L}, _((0,T) x ¥_) from (8.59). We may thus
justify the same computation as in Step 4 with pg = 1, and we deduce g € C([0,7T]; LL,(0)) and
next the uniqueness of the solution. O

As an immediate consequence of the above analysis, we may associate to the transport equation
(8.55) a semigroup.

Corollary 8.25. Under the assumptions of Proposition 8.23, there exists a positive semigroup
S on Lb, such that for any go € L%, (O), the function t — g(t) := S(t)go € C(Ry;LE (O)) N
L2 (Ry; LP (O)) is the unique renormalized solution to the transport equation (8.55) associated to

the initial datum go (and with G = g = 0). Furthermore the growth bound satisfies w(S) < k.

We end this section by formulating the counterpart of the above result for the associated stationary
problem

Ag+a-Vg+bg=g|+G on O,
(5.68) {g g+bg (9]

V-9 =Z[g,v+9) +9 on ¥_.

Proposition 8.26. We make exactly the same assumptions as in Proposition 8.23 on a, b, H
and % for some weight function m : O — [1,00) and some exponent p € [1,00) as well as either
B, < 1 holds or B, =1 holds with g = 0 and one of the additional structure assumptions (1) or
(2). There exists \** € R such that for any X > X\**, G € L} (O) and g € L%, _(X1), there exists
a unique solution g € LY, (O) satisfying the transport equation (8.68) in the renormalized sense
and some additional a priori estimates listed during the proof.

Proof of Proposition 8.26. We just explain the main steps. We first establish an a priori estimate.
We observe that any solution g to the stationary problem (8.68) (at least formally) satisfies

1 1
(8.60) / lglPm? (M) + / I,glPme, = / (A g+ G)glglP~2mP + L / \%g, v49]+ glPm?,
1] pPJs, 1] p

We then only consider the case g = 0. Repeating the same computations as in Step 1 of the proof
of Proposition 8.23 and with the same notations, we get

(8.70) PO = w)llgly, +0llgl, +9slvaglly, < CollGlE, .
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For A > A** := max(k,\;) and G > 0, we next consider the sequence (hy) in L, =~ defined
iteratively as the solution given by Lemma 8.13 to

My +a-Vh, +bhy = e/"?f/[hk_l] +G on O,
Yohp = Rlhr—1,v4hr—1] on X_,

for k > 1 and starting from hg = 0. We observe that (hy) is increasing and satisfies the estimate
(8.70) where g is replaced by hi. We may pass to the limit in the above equation and estimate
and we obtain a renormalized solution g € L?, | to the transport equation (8.68) and satisfying the
estimate (8.70). By linearity, the same holds without sign condition on G. Finally, considering the
three different cases as in Steps 3, 4 and 5 in Proposition 8.23, we similarly show that g € LJ?
and ;g € Lo  for suitable exponent py € [1, p] and weight function mg. For two such solutions
gi to (8.68), the function g := g2 — ¢1 is also a renormalized solution to (8.68) for which we may
justify the identity (8.69) with p = pg, m = mo, G = 0. We thus deduce that (8.70) holds with

p = po, m =myg, G =0, and we conclude that g = 0, what ends the proof of the uniqueness. [

8.4. On the Krein-Rutman theorem for the transport equation with kernel terms.

In this section we carry on our analysis of the transport equation with kernel term (8.1)-(8.3)
for which we establish a Krein-Rutman result under strong positivity assumption on the kernel
acting on the domain. As in section 8.3, we assume that a, b, # and Z satisfy the conditions
(8.33), (8.56), (8.57), (8.58), (8.59) and (8.60) for some weight function m : O — [1,00) and some
exponent p € [1,00).

On the kernel J#°, we make the additional strong positivity hypothesis: for any x € O, there exist
Tz, Mz > 0 such that

(8.71) Vf>0,¥yeBlar), A1) >n /B N
and
(8.72) Jxo, a,be€ L™(B(zg,7r0)), To:= Tz,

as well as one of the two regularity assumptions. Finally, we assume
(8.73) H € K(LF (0)) or & : Lt (O)— LP*(O)NLE (O),

with p1 > p and m1/m — oo when y — oo.
We thus consider the operator

(8.74) Lf=—a-Vf-bf+2[f]=—div(af)— Kf+ H[f]
with K > 0, which is complemented with the boundary condition
(8.75) V-f =Z%olf] + Zs[1,f] on E_.

More precisely, we define £ in the Banach space L?,(O) with domain
D(£) C {f € LNO); a-Vf € LL(0), v f = #lf. 7+ f]}.
Notice that because of Section 8.1 the trace function is well defined.
Example. The nonlocal operator with a drift
(8.76) Of=—adpf —b+X[f] nO, ~4_f=0 onX_,
with @ C R a bounded interval, a € W21 (0), o' € L>(O), b € L>®(0), and thus the boundary

loc
kernel is Z = 0. Motivated by some non-local reaction-diffusion models, this problem was recently
investigated in [99, 107, 224]. It is also used in the study of selection-mutation models in changing

environment, see the even newer works [148, 186].

Condition (H1). From Proposition 8.26, we know that for any A > A\** the stationary problem
A=L)g=GinO, ~-g=%[g,7+9] on X_,

has a unique solution. More precisely, the associated inverse operator Rz : LY, — LP and R.G > 0
if G > 0.
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Condition (H2). We first consider the case when Zo = 0 and we denote by Lo the associated
generator. We fix fo € C2?(0), such that fBo fody =1, fo > 0 on By, suppfo = By, as well as

1fo ooy =72 IVfolliewas) =€, Vee (0,1/2),
where we denote B. := B(xo, (1 —¢)rg). We also define Cy := || fol| Lo (58,) and C1 := ||V fol| oo (8,)
both may be bounded by a constant which only depend on ¢ and d. Because of (8.71), we have
H [fol(y) = mols, > %fo-

0
We observe that fo € D(Ly) and we compute
(8.77) Lo fo = —llallL8y)C118, — |Ibll o (5,)Cols, +M01B, > Ko fo,
if Ko := 10/Co — |al| Lo (B,)C1/Co — ||b]| Lo (,) > 0. More generally, we have

(8.78) Lofo > —|lallL=B,)C11s, — |lal|L<elpns. — bz 8y)fo + m018, > Ko fo,

with ko 1= —|la oo (y)Cr1e™? — ||bl| L= (5,) € R when |lal|z~e < ny. Depending on how ng > 0 is

large, we obtain in that way two constructive lower bounds of Z thanks to Lemma 2.4-(ii) and we
have thus established that Lo satisfies (H2). Because fy € D(Lo), we have S¢,(t)fo > et fy for
any t > 0, from Remark 2.5-(2). On the other hand, we observe that S;(t) > S, (t) for any ¢ > 0,
from the weak maximum principle mentioned in Remark 8.24-(3). These two last observations
together imply Sz (t) fo > et fo, for any ¢ > 0. We deduce from Lemma 2.4-(iv) that (H2) holds.

Condition (H3). We introduce the semigroup Sp associated to the transport equation

dg

5 Ta Vgt+bg=0, 7-g=2Zly.g),
which is well defined thanks to Corollary 8.25 and satisfies || Sg(t)go| 2, < €5'||gol| 2, for any t >0
and go € L, with kg := ||[(w_)| L= + M, /p because of the a priori estimate (8.63) particularized

to the present case (in particular where we can take £1 = 0 because the influx function is g = 0
here). We formulate the first hypothesis

(8.79) no > [[{@-)l|z=Co + M,Co/p + |lallLo(8,)C1 — [1b]l Lo (54) Co,

with the same definitions as above for By, Cy and C1, so that kg > kg because of (8.77). In a
second case, we assume

(8.80) Z =0, O is bounded and there exists Tp such that t,(y) < Te for a.e. y € O.

In that case, the semigroup Sg is explicitly given by

JolY-1(1)) exp(— / K(Y,_(y))dr), ift € (0,tn(y))

0 otherwise,

(SB(t)fo)(y) =

and in particular Sg(t)f = 0 for any f and any t > Tp. We immediately deduce kg = —oo and thus
Ko > kg because we have established that ko € R. We next define Af := #[f]. Using Lemma 2.8
and Remark 2.9-(2) or Lemma 2.13 and Remark 2.14-(1) depending on the assumption (8.73) made
on J, we deduce that the condition (H3) holds in both cases discussed above. Under the first

condition in (8.73), we conclude to the existence of eigenvalue triplet (A1, f1,¢1) € Rx LP, x Li;_l.
Under the second condition in (8.73), we may also get the same conclusion by by using [303, Cor. 1
of Thm. I1.9.9] when p = 1 or by observing that the dual problem is similar to the primal problem
when p > 1 and thus we may apply the same arguments for the dual problem as those explained
above for the primal problem.

Condition (H4). Let us consider A > A** and 0 < f € L?, (O) a (renormalized) solution to
M +a-Vf4bf—H[f]=F in O, v f=Rlf,%f] on ¥,

with 0 < F € LP (0). If f # 0, there exists z; € O such that fB(zl .y f(2)dz > 0. From (8.71),
T
we deduce

H(f(w) > / k(2 f(2)dz > 0, Vy e Blar,m).

B($17T1)
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Now, we argue similarly as during the proof of Lemma 8.14 and in particular we use the same
notations. For A C B(z1,71), we define the solution 0 < ¢ € Lirl N L*° to the equation

Ap —div(ap) +bp =14 in O, 49 =0 on X,
thanks to Lemma 8.12 and Lemma 8.13, and we observe that ¢ # 0 on B(z1,r1) if |A] > 0. For

the renormalizing function 5 and a truncation function y g, we compute

0 > /E a-nfs(Vf)vexr
= [ IBE+ U = Aol Laln
+ [ B0 = £+ D+ [ o8 (VO

Passing first to the limit R — oo and next to the limit § — 0, we deduce

0> /O (F + #1f)g — f1a],

so that in particular

/A fy> /B el >0

This being true for any A C B(z1,71), we deduce f > 0 a.e. on B(z1,71). By a classical continuity
argument, we conclude that f > 0 a.e. on O. We have thus established (H4) for A > \** from
what we immediately and classically deduce the general case A € R.

Condition (H5). Assume that (), f) € C x D(L) satisfies

LIfl = ReM[f],  LIf] = Re(signf) L.
From (H4) and the first identity, we know that |f| > 0 a.e. on O. Using the second identity, we
get
H (| fI] = Re(signf)-A[f]-
Writing f = €| f|, we deduce

/ Elf«|(1 — cos(a — ax))dy. =0 a.e. on O.
o
Using (8.71), we deduce
[ 110 = cos(a = au)ds. <o,
B(y,ro)

and thus a = a, a.e. on O x O. That means f = u|f|, for a constant v = S!, that completes the
proof of the fact that £ satisfies the reverse Kato’s inequality condition (HS5).

We summarize our analysis in the following result which is a straightforward consequence of the
above checked conditions together with Theorem 2.21, Theorem 4.11, Theorem 5.16 and Theo-
rem 5.23.

Theorem 8.27. We assume that a, b, JZ and % satisfy the conditions (8.33), (8.56), (8.57),
(8.58), (8.59) and (8.60) for some weight function m : O — [1,00) and some exponent p € [1,00).
Consider the semigroup Sy associated to the transport equation (8.1)-(8.3) thanks to Corollary 8.25.
We assume further that & satisfies the strong positivity conditions (8.71) together with (8.72) and
the first compactness property formulated in (8.73). We finally assume that (8.79) holds or (8.80)
holds. In both cases, the conclusion (C3) holds as well as the ergodicity (CE2) in L}, .

We do not try to improve the convergence result in the general case, but rather we aim to make
one step further in the following particular situation where Doblin approach may be used.

Doblin condition. We suppose here that O is bounded, K € L*(0), Rl = Rsl = 1, and
k(y,y«) > ko > 0. We aim at establishing the Doblin condition

Sc(T) fo > K{fo,1),
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which is (6.2) with 1o =1 and go = «1. From (8.62) we have

/f@—/fmw>me/f@
LéfawnMZewmw{Lﬁmo@

Now we define, for g € C1(O), po >0, [ o = 1, the solution ¢ to the equation
{ Orp + div(ap) = 0,
T+ = Ry[r-¢l.

and so

‘We have
d

dt

&= [ e [ Kpozr [ 1= 11 [ s

We deduce from Gronwall’s inequality that, for any fixed T' > 0,

T
Aj@wmmmwzawmféﬁ@wmmw+m/e*ﬂw“wéfmw@ﬁ

0

0 =0, and so /w(t y)dy = /wo(y)dy=1,
(@)

and

z%w*wwéﬁ@@:wmﬁy

This is nothing but the Doblin condition since ¢g is any non-negative function in C}(O) with
f(po =1.
In order to verify (6.3) in a quantitative way, we suppose that the conditions (8.33), (8.56), (8.57),
(8.58), (8.59) and (8.60) are verified with the weight function m = 1 and the exponent p = 1. Note
that in this case we have w = K > 0. The first condition in (8.33) then imposes that K € L*°(0),
and (8.79) reads

no > [[{K)|[2=Co + M, Co + |al| Lo (5,)C1 — ||bl| o= (54) Co-

We also assume that

(8.81) REL=Ryl=1,
and
(8.82) Yy, y« € O, ko < k(y,y.) < ki

for some k1 > ko > 0,

Theorem 8.28. We assume that O is bounded and that the conditions (8.33), (8.56), (8.57),
(8.58), (8.59) and (8.60) are satisfied by a, b, H and X for the weight function m = 1 and
the exponent p = 1. We assume further that J satisfies the strong positivity conditions (8.71)
together with (8.72) and the first compactness property formulated in (8.73). We finally assume
that (8.79), (8.81) and (8.82) are satisfied. Then the exponential convergence in (E3) holds in L*
with construcive constants C' and w.

Proof of Theorem 8.28. We work in X = L'(0) and we normalize ¢1 by ||¢1]/z~ = 1. We have
proved above that (6.2) holds true with ¢¥9 = 1 and go = k1 for some explicit x > 0, recalling that
the assumption that K € L is nothing but the first condition in (8.33) when m = 1 and p = 1 since
b = K +diva. Due to the normalization ||¢1| L= = 1, the condition (6.4) holds with Ry = 1. It only
remains to check the validity of (6.3) in order to be able to apply Theorem 6.2. Since we assume that
the conditions (8.33), (8.56), (8.57), (8.58), (8.59) and (8.60) are satisfied for the Weight function
m = 1 and the exponent p = 1, we have that Rp(A\1) : L' — L' with HRB()\I)”@ oy < ﬁ
This yields by duality that Rj(A\1) : L — L with |[Ri(M)|| (1) < 72pes- Since k is bounded
by the constant k1, we have on the other hand that A* = Z* : L' — L™ with ||A*[| g1, 1) < k1.
We thus get

k
L=l < —
Ko —

||L17
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which yields (6.3) with ro = k(ko — x8)/k1, and the proof is complete. O

8.5. A word about the renewal equation. We look at the case O = (0,400) and a(y) = 1,
which corresponds to the equation

(8.83) Of +0,f+Kf=0

with the boundary condition

(3.84) (=N0) = [ o)t y.)dy..
0

This age structured model is standard in structured population dynamics, and the Krein-Rutman
theorem is well-known for it, see for instance [30, 145, 169, 178, 304, 324]. The existence and
uniqueness of (A1, f1, $1) can even be obtained by explicit computations. However, it is not covered
by the cases considered in Section 8.4 because £ = 0 here.

The singularity of this transport equation lies in the fact that (H2) is only guaranteed by the
boundary condition. To fall into our splitting framework, we may replace the boundary condition
by a singular source term Af = (R f)(0)dg, where g is the Dirac mass at the origin, and write
L = A+ B with B the generator of the free transport equation with zero flux boundary condition.
This forces working in a space of measures, as in [249, 252]. We briefly present an alternative
approach, which is more in the spirit of [30, 153] and which consists in working in the Lebesgue
space L', first to solve the dual problem in L> = (L!)’ and next to use for instance Doblin’s
contraction to solve the primal problem.

We assume here that

(8.85) 0< K,ro € Li5.(0,0), (ro—aK)i e L™,
(8.86) Jm K(y) = +oeo, liminfro(y) >0,

for some « € (0, 1), and we verify the usual conditions for the direct or the dual problem.

Condition (H1). Under assumption (8.85), the age structured equation (8.83)-(8.84) is well-
posed in L' thanks to Proposition 8.23 and we may associate to it a positive semigroup S, in L'
with growth bound w(Sr) < k1 := ||(ro — K)4||L~ thanks to Corollary 8.25. We deduce that
(H1) holds for the primal problem and thus also for the dual problem thanks to Lemma 2.2 and
Lemma 2.3.

Condition (H2). The generator of the dual problem is
L = 0y¢ - K(y)¢ + ¢(0)ro(y)

with domain D(L*) C Wli’COO(O). From the second hypothesis in (8.86), there exist yo, 10 € (0, 00)
such that ro(y) > no for any y > yo. We then define

$0(y) = Lio,y0) T M0(Y1 — ¥)Liyopn)s Y1 2= Yo + 1/no,
and we compute

L = ro(y) — K 2 —[[K =r0lL=(0,40) on (0,50),
L = ro(y) =10 — Koo > —||K||Lo(ye,y)®0 00 (Y0, 41),
L = 0 on (y1,00),
so that in the three case L*¢o > koo with ko := —max(|[K — ro| £ (0,y0), [ K ||z (yo,y1))- Using

Lemma 2.4-(i), we have thus established that £ satisfies (H2) with constructive constant k.

Condition (H3) on the dual problem. We define the splitting £* = A* + B* with A*¢ :=
(RH9)(y) = ¢(0)ro(y). From the first hypothesis in (8.86), for any x, < 0 there exists y. € [0, 00)
such that K(y) > —#. for any y > y.. Defining m. := "Y1y, )+ ¥ 1}, ), we compute

Bmy = ko™ Y1, ) — Kmy < K.
Together with Proposition 8.23 and Corollary 8.25, we deduce that the operator B — k., with

domain D(B) := {f € LY(0); 9,f + Kf € L*(0), f(0) = 0}, generates a contraction semigroup
in Ly, (0), and thus a bounded semigroup in L*(O) because m,,m; ! € L>=(0O). In other words,

we have established that w(Sg) = —co. Now, we see that Rp-(\) : L= — D(B*) € W,>([0, 00))

loc



ON THE KREIN-RUTMAN THEOREM AND BEYOND 123

is bounded for any A € R and thus A*Rpg+(\) : L — L* is compact for any A € R. We deduce
from Lemma 2.8 and Remark 2.10, that £* satisfies (H3).

Using Lemma 2.8-(1), we conclude to the existence of (A1, ¢1) solution to the dual eigenvalue
problem. Now we turn to the existence, uniqueness, and exponential stability of f; € L', by
verifying that Doblin’s condition (6.2) is satisfied.

Doblin condition. Denoting S; := S, (t), we have from the characteristics method
Sif(y) = fly—t)e” Jo K<y78)dslt<y +N(t—y)e” I K(S)d81t>y

with N(t) = fooo 70(Yx)St f (y«)dy.. Iterating this formula and using the positivity of S; we get
that for any f >0

t—y
Sef(y) = < / ro(y)N(t—y —yo)e J” K(S)dsdy*)e Jo Kdsq, oy
0

iy t—y—7
> ([ oty - Ny BT KO o KO
0

Choosing tg > 2yo so that ro(y) > no > 0 for all y > t5/2, we obtain

" t0/4
Sto f(y) ZMnoe ot s </ N(T)dT) ¢ i K(S)d510<y<to/4-
0

From the expression of N(t) we get by duality, using that 7o > 701 (y,,), that

‘ [e'e] t0/4
(8.87) Stof(y) = ng e )" K(S)ds(/ f(y*)</ 5¢1<yo,oo>(y*)d7) dy*) Locy<to/a:
0 0

Applying S, to this inequality we deduce that for any t; > 0

+ [e'e] to/4
Store f(y) > mg e 2’ K(S)ds(/ f(y*)</ Sil@o,m)(y*)dT) dy*)stl Locy<to/a
0 0

t t oo t0/4
> 77% 672[00 Ke~ o' K (/ f(y) </ S:]-(yg,oo)(y*)dT) dy*) 1t1<y<t0/4+t1'
0 0

On the other hand, replacing f by S, f in (8.87) we obtain

t o0 t0/4
(8.88)  Siit, f(y) > nge2fo°K<s>dS< /O f(y*)( /0 5¢+t11<yo,oo>(y*)df) dy*) Locy<to/a-

The fact that S;o(y) > ¢(t +y)e™ Js K(y+9)ds engures that for t; > yo
Sf Liyy,00) > € TPucl0w0] Jo! K(y+s)d51[07yo].

All together, we have proved that for any tg > 4t; > 4yo we have

) to/4
Siorer F(y) > 00< /0 f(y*)< /0 S:1<y*>d7) dy*)1t1<y<to/4

for some explicit constant ¢ and all f > 0. This is Doeblin’s condition (6.2) with T' = ¢y + t1

and the functions ¥y = 50/ 4 S7ldr and go = cols, 4,/4)- We are now in position to prove the
following result.

Theorem 8.29. Under the assumptions (8.85)and (8.86), the renewal equation (8.83)-(8.84) en-
joys the conclusions (C3) and (E3) with exponential convergence in L.

Proof of Theorem 8.29. The conditions (H1), (H2) and (H3) for £* ensure the existence of
A1 > ko and ¢1 € L™, ¢; > 0, that we normalize by ||¢1]lr« = 1. If we can prove that the
conditions (6.2), (6.3) and (6.4) are verified, then the conclusions (C1) and (E3) follow by apply-
ing Theorem 6.2. Indeed, the contraction argument in the proof of Theorem 6.2 does not require
the existence of f; and it can even be used for deriving the existence and uniqueness of f1, see Re-
mark 6.4. We have already proved (6.2) with the functions ¥y = 50/4 Syldr and go = col(s, 1,/4)-

For proving (6.3), we start by recalling that ¢1 = R(\1)A*¢1 € W22 due to the informations

loc
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derived on R} in (H3). Consequently, there exists y; > 0 such that ¢1(y1) > 1/2, and we deduce
from ¢} < (A1 + K)¢1 that

1 _ v
b1(y) > 56 JU(+K)

for all y € (0,y1). Choosing in the proof of the Doblin condition ¢y such that y; < to/4, we obtain

that
Y1

(61, 90) > C_O/ e I OuE) g
2 y1/2

which gives (6.3). For (6.4), we use that
¢ =e M8 < e MTSL
for any 7 > 0 to deduce that

delMlto

4 [t
= [ NS < o
0

Finally, we check that the condition (H5’) is verified, so that (C3) is valid by virtue of The-
orem 5.18 and Remark 5.19. The condition (H5’) is actually a direct consequence of the fact
that (8.88) is verified for any ¢ty > 2y and ¢; > 0 together with the estimate

S:+t11(yo7oo)(y) >e” Jo! K(y+s)ds >0

for any t1 > yp and 7 > 0, and all y > 0. a

9. THE GROWTH-FRAGMENTATION EQUATION

In this section, we are interested in the growth-fragmentation equation with equal mitosis kernel
(9.1) Ouf(t,x) + 0y (a(x) f(t,2)) + K(z)f(t,z) = 4K (2z) f (¢, 2x)

and to its variant with an additional “growth speed” variable

(9.2) 9 f(t,z,v) +v0,(alz)f(t,z,v)) + K(z)f(t,z,v) = 4/1 K(2z)p(v,vs) f(t, 22, vi)dus,

with z > 0 and v € [1,2].
For both equations, we assume that the total fragmentation rate K is a continuous function defined
on R, such that

(9.3) Jxg >0, K =0on (0,220) and K >0 on (2zg,0).

This condition ensures that no particle of size less than zy can be produced by division, and we
thus consider the equations posed on the size space (xg,00) with zero flux boundary condition
f(t,x0) =0 or f(t,xzg,v) = 0. The growth rate a is supposed to be positive and globally Lipschitz
on [zg,00), and we assume that

cK(z
(9.4) lim () = 400
z—oo a(x)
For quantifying the positivity of the first eigenvalue, we also make the technical assumption that

(9.5) k>0, lim " K(z) = +oo.

Tr—r00
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9.1. The mitosis equation with mixing growth rate. We are interested here in Equation (9.1)
in the case where

(9.6) Jz1 >z, a(2x1) # 2a(xq).

As we will see below, this condition ensures some mixing property for the trajectories that guar-
antees the triviality of the point boundary spectrum.
We work in the space X = Ll with a weight m that can be

*K
(9.7) either m(z) =", r>1, or m(x) = exp (77/ E), 0<n<l1.

Zo

Note that due to Assumption (9.4), the weight exp (17 f;o K/a) is always stronger than z”.

Theorem 9.1. Suppose that (9.3), (9.4), (9.5) and (9.6) are satisfied. The first eigentriplet problem
admits a unique solution (A1, f1, ¢1) € Rx Xy x X/ with the normalization ||¢1|| = (¢1, f1) =1, and
this triplet additionally satisfies A1 > 0, f1 > 0 and ¢1 > 0. Besides, there are some constructive
constants C,w > 0 such that

le™ S ()f = (¢1, ) fillx < Ce™ | = (o1, Hfllx
forany f € X and t > 0.

This result is contained in the recent paper [320]. The novelty here is that all the constants are
obtained constructively, which is not clear in [320]. We also provide what seems to us to be a more
direct and comprehensive proof. We also refer to [31, 48, 76, 250] where the same result is obtained
under stronger assumptions.

Before starting the proof of Theorem 9.1, let us briefly justify the relevance of the chosen weight
functions m in (9.7). The dual operator associated to Equation (9.1) is given by

LA(x) = a(z)d () — K(x)p(x) + 2K (2)d(x/2).

For m(z) = 2", r > 1, we can compute
(9.8) L'm(x) = [r% —(1- 21_T)K(x)] m(z),
and for m(z) = exp (n [, K/a), 0 <7 <1,

K
(9.9) L'm(x) = [2 exp (— 77/ E) —(1- 77)] K(x)m(x).
z/2
Assumption (9.3) then ensures that L*m ~ —(Km as @ — +oo, with € =1 — 217" > 0 in the first
case and £ =1 —n > 0 in the second case. In both cases, we deduce that

(9.10) L'm < km+ M1, gym

for any k > 0, by choosing M > 0 and R > xg large enough, and this type of Lyapunov inequality
is pivotal in our analysis.

Condition (H1). Equation (9.1) is a particular case of Equation (8.55) with G =g =% = 0,
b = K + diva and J[g](z) = 4K (2x)g(2x). We may then use Proposition 8.23-(1) to infer the
well-posedness of Equation (9.1) in X = L} (zg, o), provided that the conditions (8.33) and (8.58)
are met, with 0 < a,, < 1, which is nothing but (8.60) when #Z = 0. To do so, we define the

function

ml

w=K—-—a—,
m

which corresponds to w; in (8.32). When m(z) = " with r > 1, we have

and for m(z) = exp (n [, K/a) with 0 <7 < 1, we have
w(x) = (1 —n)K(z).
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In both cases, the fact that a € Lip ensures that w, := w+ (1 —1/¢)a’ enjoys (w,)— € L for any
q € [1,00). On the other hand, (9.4) guarantees that K < (w4 ) and a/z < (w4 ), and finally (8.33)
is verified. The condition (8.58) is equivalent to the Lyapunov type condition

(9.11) A m] < (o, w4 + M, )m,
where Z*[m|(x) = 2K (z)m(x/2). For m(x) = 2" with r > 1, we compute
H*[m]/m =2'""K,
and for m(z) = exp (n [, K/a) with 0 <7 < 1,
X [ml() = 2exp (—n/gE 5)[((3})
z/2 @

Using (9.4), we obtain that (9.11) is satisfied, for any o, € (2177, 1) in the first case, and for any
a,, € (0,1) in the second case, by choosing M, large enough.

We can then apply Proposition 8.23-(1) for associating to Equation (9.1) a strongly continuous
semigroup S in X = L} (z9,0), and (H1) then follows from Lemma 2.2-(i). Moreover, we readily
have that k1 < k + M for any couple (x, M) such that (9.10) is verified.

Condition (H2). We aim at verifying (H2) for some ko > 0. Recalling Assumption (9.5), we
pick up ¢ > k and we consider the function

bo(w) = ze "

with n large enough to be chosen later. We compute

Lo%o(z) _alz) | L e VRS =
= (1 - ) + K () 1).

Choosing R > xq such that 2K (z)/a(z) > —2 and K(z) > e~ for all z > R, we get that

1-2-¢
E*’Qllo(x) a(x) 1—2=t o 1—27¢ Y
£ %l ) | g ( L )
volz) — «x +K(z){e m
gk 1=27¢ 1-27¢ ¢ 127t ¢ ok, 1-27¢ pe
2 e (e n — e 2n ) Z e 2n (e 2n — 1)

on [R,00). Choosing then n > £ R, we have

Lo(a)  al@)

Yo(x) 2x
on (xg, R). Gathering the two above estimates, we deduce the existence of an explicit ko > 0 such
that L*1g > kowg. We conclude by invoking Lemma 2.4-(i).

Condition (H3). We consider the weight function m(z) = 2" for some r > 1 or m(z) =
exp (n f;o K/a) with 0 < n < 1 and we define the stronger weight function m1(z) = exp (m f;o K/a)
for some n; € (n,1). We fix kg € [0,k9), M > 0, and R > z such that (9.10) is verified by my
with & = xpg. Using the splitting £ = A+ B with Af = M1, g)f, the inequality (9.10) for m;
reads B*my < kpmq and this ensures (see the proof of Corollary 2.20) that x — B is invertible in
Ll , for any k > kg, with positive inverse, and

1
-B)™! < :
s~ B iy ) <
The operator A maps Ly, into L;, with
m1(R)
A < .
Ml e, 23,0 < M

Besides, due to the derivative part 9,(a-) in the operator B, we also have that Rz (k) maps L}m
into W,;!. Finally, we have Rp(k)A : L}, — Lt N WL}, and thus Rp(k)A € #(LL), for any
K > ko > kp. We deduce from Lemma 2.8-(2) that the condition (H3) holds for both the primal
and the dual problems.
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Proof of the existence part of Theorem 9.1. We deduce from Theorem 2.21 that the conclusion
(C1) about the existence of a solution (A1, f1,¢1) € R x X4 x X/, to the first eigentriplet problem
holds true. g

Moreover, we have Ay > ko > 0 and f; € W,INLY, with m(z) = exp (n [ K/a) for any n € (0,1).
For deriving similar additional estimates on ¢1, we can check directly that the condition (H3) holds
for the dual operator L£*.

Condition (H3) for £*. We consider the weight function m(x) = 2" for some r > 1 or m(x) =
exp (n f;o K/a) with 0 < n < 1 and we define the weaker weight function mg(z) = 2™ for some
ro € (1,7). We fix kg € [0,k0), M > 0, and R > z such that (9.10) is verified by mg. Using again
the splitting £ = A+ B with Af = M1, r)f, (9.10) means that B*mg < kgmg and this ensures
that for any k > kg the operator k — B* is invertible in LS° | with positive inverse, and

mo?

1
— B! ~ 1< )
”(ﬁ ) ”“@(ngl) T K— KB

Because of the derivative part of B, we also have that Rp- (k) : L>*_, — WL, Besides, the
0
operator A* = A maps Ly°_, into L>_, with
0

m(R)

m()(x()) '

HA*HK@(L:_I,L:A) <
0

Finally we have that Rp-(k)A : L, — L , N WL, Consequently ¢ € L>_, N W,5> and
mo 7n0

R M
(0.12) Iillzm . = [l — B A% e, < 70

mgt ~ mo(xo) Ko — KB ol

We also easily deduce quantitative estimates of ¢; in VVI:(L):O from the identity
1

o P (@) + K @)or(x) — 2K ()6 (x/2))

¢ (x) =

Condition (H4). The operator L satisfies the strong maximum principle. Let A € R and
feXinD(L)\ {0} such that (A—L)f >0, i.e.

A (@) + (@f) (0) + K(2)f(2) > 4K (20) f(2)  Va > a.

Denoting by Ay a function such that A/ (z) = H%I()w), we get that

(9.13) o) f(z) > 4 / M W=ANE K(29) F(2y) dy.

xo
Since K (2y) > 0 for all y > xo, f € X+ \ {0}, and a(x) > 0 for all z > xy, we deduce from (9.13)
that the set {x > zo, f(x) > 0} is an interval of the form (z, +00). Using again (9.13) we remark
that we must have 2 = max(zg,2/2), which enforces = x¢ and finally f > 0.

Proof of the uniqueness and positivity part of Theorem 9.1. We deduce from Theorem 4.11 the va-
lidity of the conclusion (C2) about existence, uniqueness and positivity of a solution (A, f1, ¢1)
to the first eigentriplet problem. O

For deriving the exponential stability, we start by verifying a quantified irreducibility and aperi-
odicity condition on S, given in the next lemma, which then allows us to prove that the Harris
condition (6.7) is met.

Lemma 9.2. Assume that (9.6) is satisfied. Then for all e > 0, Ry > xg, and Ry > xo + €, there
exists T > 0 such that for any T > Ty, there exists cp > 0 such that
Ra
S7¢ > c11(4y,Ry) ¢pdx, V¢ =>0.

10-‘1—5
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Proof. Throughout the proof we denote by ¢; any positive constant that depend only on ¢. It is
proved in [320, Proposition 5] the existence of (z2,x3) C (z9,00) such that for all Ry > x¢ there
exists Ty > 0 such that for any T' > Ty and any ¢ > 0

(9.14) Sré > CTl(zo,Rl)/ ¢(w)dz.

We may now extend the integral to [zg + ¢, Rg]. The Duhamel formula
Sr = Sp, + Sp, Ao * Sz
for the splitting £* = Aj§ + B with Aj¢ = £ *[¢] and Bie = b¢/ — K¢, also reads

t
(9.15) S;p(x) = $(Xy(w))e™ Jo KXslDds 4 9 / K(X;—o(2))8: (X (x)/2)e Jo " KX @)ds' gg.
0

where X;(z) is the solution to the characteristic equation
X, (z) = a(Xy(2)) with Xo(z) =z

Applying (9.14) to S} ¢, that we bound from below by the first in Duhamel’s formula (9.15), we
obtain
Xt(rg)

xrs3 '
S}th(b > ch(ro,Rl)/ ¢(Xt (x))e_ Jo K(XS(z))dex > CTCtl(zoaRl) /X (z2) ¢(y)dy
T2 t(T2

Choosing to such that Xy, (z2) = x5 we get that for all T' > Ty + ¢

Xty (x3)
Si6 2 erlpony [ ola)d.

T2
Iterating this argument and using the strict positivity of a we get for any Ry > x9 the existence of
a time t; such that for all T' > Ty + t1

R2
(9.16) S7¢ > erl(zy,Ry) ¢(z)dw.

T2
For decreasing the lower bound of the integral from x5 to ¢ + ¢, we iterate once Duhamel’s
formula (9.15) to get

t
S;‘¢(x) > 2/ K(ths(x))(b(Xs (Xt,s(x)/2))e_ fot—s K(XS'(I))dS’_f; K(XS,(m))ds/ds
0

and then, using (9.16),

t Ro
Stiid > crerl i / [ R G0t (Yo ) /2))d ds.

We can assume that xo > 2x¢ and Ry > 2x5. The fact that xo > 2xg ensures, due to Assump-
tion (9.3), that K is bounded from below by a positive constant on [z2, X (Rz)]. We thus deduce,
by using of a change of variables, that for any ¢t > 0

R2/2

Sk > CtCT1($07R1)/ B(y)dy.
Xt (Xt (r2)/2)

Since Xy(x) — = when t — 0, we deduce for all ¢ > 0 the existence of ¢ > 0 such that

R2/2

St110 > cierlizg py) / B(y)dy.
x2/24¢

Since Ry > 2x5, we deduce by combining the above inequality with (9.16) that for all T > Tp+t1 +¢

R2
S1¢ > c11(4y,Ry) / o(x)dx.
12/2+<
Let us take ¢ = xo. Since the sequence (u,) defined by ug = z2 and u,41 = u,/2 4+ xp converges
to 2xg, we obtain by an iteration argument the existence of a time ¢, such that for all T > Ty + ¢,
Ro

Si6 2 crlony [ dla)dn

2I0+6
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Using a last time the argument with ¢ = ¢/2 yields the desired result. O

We now prove another positivity result which allows making the time 7' independent of R; in
Lemma 9.2.

Lemma 9.3. Let Ry > 2xg. Then there exists tg > 0 such that for any R > R, we have

Sty L(@o,R1) = CR1(20,R)
for some cr > 0.

Proof. Since a is Lipschitz continuous, we can find to small enough so that X;,(z) < az for all

x> g, with a > 1 to be determined later. Then for any ¢ € (0,o] and any = € (20, £) we have

by using the first term in (9.15)

St*l(zoaRl)(x) 2 ctol(zo,Rﬂ(Xt(x)) = ¢t > 0.

Iterating once (9.15) and keeping only the second term we get that for any ¢ € (0,¢y] and any
x € (220, 2)

t
1 a0 (0) 2 €ty [ Loy (Xa(Xima(2)/2)) ds = it
0

Choosing « > 1 such that % > 2xp and 2@% > Ry we deduce that for any t € (0,tg] there exists
¢t > 0 such that

St 1(zo,Ry) = Ctl(zg,20-2Ry)-
Dividing [0, ¢o] into n sub-intervals [£t,, £t1¢,], 0 < k < n — 1, and iterating the above inequality
with ¢ = to/n, we deduce for all integer n > 1 the existence of ¢, > 0 such that
StoL(wo,R1) = Cnl(zg,(2a-2)mRy)

and the proof is complete since 20072 > 1. O
With Lemmas 9.2 and 9.3, we are now in position to prove the convergence result in Theorem 9.1.

Proof of the exponential stability part of Theorem 9.1. We apply Theorem 6.3. We start by prov-
ing that (6.9) is verified, in a quantitative way, for the function go = 1(3,4 r,) With a suitable
choice of Ry and e. Choosing r¢ € (1,7) if m(x) = &” or any ro > 1 is m(z) = exp (n f;o K/a) and
defining mo(z) = 2" we have from (9.12), because of the normalization ||¢1||L:: =1,

-1
[¢1]lz=_, < Co
™o

for some explicit constant Cy > 0. Defining

Ry = Hlf{R > 0; mo(x)/m(x) < 1/200, Vx> R}

we have 5
1=|¢i)lp~_ = sup — = sup —,
m (,00) (xo,R2) m
because
1
sup 2} < sup 91 mo <Cyh— <1
(Ra,00) T (Rg,00) 0 T 2Co

Together with the fact that ¢} € Lf;,, with a quantitative estimate on ||} oo (2, r,), We see that
¢1 has some quantifiable mass on (xg + €, Rg) for € > 0 small enough, which exactly means that
(g0, ¢1) is quantified from below.
Now we prove that the Harris condition (6.7) is verified. Choosing Ry > 2x¢ and combining
Lemma 9.2 and Lemma 9.3, we have for any € > 0 and Ry > x¢ + € the existence of T' > 0 such
that for any R > Ry

Ra
(917) S;¢ > CR]'(I(),R) qux, V(b > 0.

xo+e

Defining go = 1(44¢,R,), We deduce by duality that for all f >0,
STf > CR<f7 (zo,R)>g0-
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Let us now consider A > 0 and f € X4 such that ||f|| < A[f]s,. Since mo(z)/m(z) — 0 as
x — +oo and ||¢1/mo|lec < Co, we have

flon = /:f¢1 [T pmnm

m
< (i 1(wo,m) sup m+||f]|Co sup —
(w0, R) (Ryo0) T

IN

1
<fa 1(w07R)> m(R) =+ §[f]¢1
by choosing R large enough. We deduce that St f > 2m PTe] [f]1 90, which is (6.7).
Finally, we prove the Lyapunov condition (6.8). On the one hand, we get from (9.10) that

d o o * o o*
%S;‘m =S{(L" = AM)m < (kg — A1) Sim + MS{ (150, rym).
On the other hand, arguing as in (6.6), we infer from (9.17) that

¢ =e NS5 > cre T (g0, $1)1 (40, )

Combining both we deduce that
d ~ - -
£5’Z‘m S (IQB — )\1)5:777/ + M(bl

with M = 0(5) GM(;) and Gronwall’s inequality then yields

§fm < elmB=Aty, 4 Mte(“B_)‘l)tgbl.

This guarantees that (6.8) is verified with v, = e"58=*)T ¢ (0,1) and K = MT.
We have proved that the conditions (6.13), (6.8) and (6.9) are verified. The conclusion of the proof
then follows from Theorem 6.3. O

9.2. The mitosis equation with non-mixing growth rate. In this section, we investigate the
case when the mixing condition (9.6) is not verified. In other words, we place ourselves under the
singular condition that

(9.18) Vo > zo, a(2z) = 2a(z).

In this case, we still have the existence of a unique eigen-triplet (A1, f1, ¢1) but the point boundary
spectrum is not reduced to A;. As a consequence, the long time behavior of the semigroup does
not stabilizes along f; but it exhibits periodic oscillations.

Theorem 9.4. Suppose that (9.3), (9.4), (9.5) and (9.18) are satisfied. The first eigentriplet
problem admits a unique solution (A1, fi,¢1) € R x Xy x X/ with the normalization ||¢1| =
(p1, f1) =1, and this triplet additionally satisfies A1 > 0, f1 > 0 and ¢1 > 0.
Besides, Y}(£) = {\ +ika, k € Z} for some quantifiable o > 0, there exists a family (g, Vr)rez
of corresponding primal and dual eigenvectors that verifies (U, ge) = dxke, and for all f € Lél we
have the convergence

||e*)‘1tS£(t)(f—Hf)||Lé)1 -0 as t — +o00,

' 1 n 14
where TIf = Tim ~% > (t, f)g
£=0 k=—"
This new result complements the scarce literature on the long time behavior of Equation (9.1) in the
singular case (9.18) which, to the best of our knowledge, is limited to the references [46, 154, 170].
We will actually prove that the convergence in Theorem 9.4 also holds in other spaces, and this
will be the occasion to compare our method and results to the three above mentioned papers.

The proof of the conclusion (C2) in Section 9.1 does not use the mixing assumption (9.6). It
thus also proves the existence, uniqueness and strict positivity of eigentriplet (A1, f1, ¢1) under the
assumptions of Theorem 9.4, as well as the fact that Equation (9.1) is associated with a semigroup
S in X. For proving the long time convergence result, we start by verifying that this semigroup
extends to other relevant Banach spaces.
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Well-posedness in entropic L? and M' spaces. The dual eigenfunction ¢, satisfies by defini-
tion L*¢1 = A\1¢1 and the rescaled semigroup S, = S;e~ Mt is thus a contraction for the norm of
Lj,. In particular S; is a bounded operator for this norm and, since Lj, is dense in Lj , we can
uniquely extend the semigroup S into a strongly continuous semigroup in L;Lbl' Similarly, due to
the weak-* density of L}m into M¢1>1’ this semigroup extends uniquely into a weakly-* continuous
semigroup in M qlal- We still denote by S these extensions.

The General Relative Entropy principle, see [241, 45], ensures that the weighted L? sub-spaces of
Lén defined by

TP
Xp T Lfll_p¢1
are invariant under the semigroup S and the restriction to these spaces is a contraction. Besides,
Jensen’s inequality yields that it is a decreasing sequence for the inclusion

(xg,00) forpe[l,00) and X := L;o_l(mo,oo)
1

p>q = X,DX,

Since X, C X, is dense, we can infer the strong continuity of S in X, from the strong continuity
in X3 by writing for any f € X

180 = fll%, <18ef = FIEAIBLS = Fllx, < 22 AIEAIGS = Fllx, > 0.

Long-time convergence in M, ;1. We start by giving some useful properties of the dual semigroup
S*in X' = LP°_,. Splitting £* as L* = Af + B with Aj¢p = 2 *[¢], so that B¢ = a¢’ — K¢, the
Duhamel formula

Sy = 8Sg, + Sp, A0 xSz
ensures that ¢(t,x) := S;¢(z) is a fixed point of the operator I' defined by

(9.19) To(t,x) = S, ()6(x) + [Sh, Ao * o 2)] (1)
— §(Xi(a))e™ o KX@Dds 4o / KXo (@), Koy (a)/2)e i KOS g
0

where we recall that X;(z) is the solution to the characteristic equation
X,(z) = a(Xy(z)) with Xo(z) =z

It turns out that I' has a unique fixed point in L{? ([0, 00) X (x¢,00)), and that this fixed point
also lies in any closed subset of L{2.([0,00) X (20, 00)) which is left invariant by I". This property
is proved in [154] or in [31, Section 6.3], by building @ thanks to the Banach-Picard fixed point
theorem. It has very useful consequences, as for instance the fact that if ¢ € C(xg,00), then
@ € C([0,00) x (20,00)). In particular, this implies that C(zo,00) N LS_; is invariant under the
semigroup S*. Since C(zo,00) N L, is a dense subspace of Co 4, (z0, 00), this ensures that Cp ¢,
is invariant under S* and that the duality relation

(Sif, ) = ([, 5S¢ 0)

is valid for any f € M 11 and ¢ € Cp 4,. The proof of the next result crucially relies on another
application of the fact that the fixed point of I' belongs to any closed invariant subset.

Proposition 9.5. Suppose that (9.3), (9.4), (9.5) and (9.18) are satisfied. Then S5(L) = {\ +
ika, k € Z} for some a > 0, there exists a family (gx, Vi )rez of corresponding primal and dual
eigenvectors that verifies (¥, g¢) = Ore, and for all f € Mq151 we have the convergence

(920) Stf — StHf m} 0,
n 4
for the weak-x topology, where IIf = lim 1 Z Z (g, gk (again for the weak-x topology)
7 e S k= , '

Note that we did not specify the space in which we define the point boundary spectrum EJ}S(E) in
Proposition 9.5. It is because this set is the same in all the Banach lattices we consider. Indeed,
any g € M(zl,1 such that Lg = \g for some A € C with Re(\) = \; satisfies |g| € Span(f1), so that
g € X = L} for any weight m as in (9.7).
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Proof of Proposition 9.5. The rescaled semigroup S is a contraction semigroup in M q%l' This en-

sures in particular that for all f € 1\4(11,1 the trajectory (§tf)t20 is bounded in J\J(zl,1 = C(IJ,¢>1' We can
thus use Theorem 5.23-(2) to infer the non-triviality of the boundary spectrum, by proving that the
conclusion cannot hold, see Remark 5.26- (4). We start from the fact that for any ¢ € Cy ¢, (20, 20),
the solution S*¢ to the dual mitosis equation is the unique fixed point of I" defined in (9.19), and
that it belongs to any closed invariant subset of C([0,c0) X (x¢,0)). For y > ¢ we define the set

&y = {x > x0, © = 2"y for some k € Z}

and we consider a function ¢ such that ¢(z) = 0if z € £, and ¢(x) > 0if v & £,. Then, since (9.18)
ensures that X;(2x) = 2X(z) for all t > 0, the set

{p € C([0,00) x (z0,00)), p(t,x) =0if X¢(z) € E, and p(t,x) > 0 if X¢(z) € &}

is invariant under I'. Consequently, the unique fixed point S} ¢ belongs to this set, and we deduce
that S;¢(x) = 0 if and only if X;(z) € &,. In other words, by duality, supp(S:d,) C &, if and only
if X¢(z) € &, and in particular supp(S¢0.) C Ex,(y) for all 2 > xg and all ¢ > 0. This prevents the
convergence of 5;8, toward (3,,$1)f1 and we infer from (the negation of) Theorem 5.23-(2) that
the boundary point spectrum cannot be trivial. By virtue of Theorem 5.7, since we have proved
that (x — B)~'A is compact in Lj, and the point boundary spectrum of £ is the same in L} and
M qlbl, it is of the form {\; } +iaZ for some « > 0, and each eigenvalue is algebraically simple. Using
now Theorem 5.25 in the situation (2), we get the weak-x convergence (9.20). O

This result is proved by means of entropy techniques in [154] for a linear growth rate a(z) = «z,
by taking advantage of the explicit formulation of the eigenvectors g and iy in terms of f; and
¢1 in that case. Here we extend it to any a satisfying a(2z) = 2a(x). Note that arguing similarly
as in [154], the convergence (9.20) may be strengthened into an exponential strong convergence in
Mg, for m(z) =", r > 1, or m(z) = exp (1 f;o K/a), 0 <n < 1, meaning that there is a spectral
gap between Y1 (£) and the rest of the spectrum in these spaces.

Long-time convergence in X,. We prove the following result, the case p = 1 of which corre-
sponds to the convergence result of Theorem 9.4.

Proposition 9.6. Under the same assumptions as in Proposition 9.5, the convergence (9.20) holds
for the strong topology in X,, 1 <p < oo for all f € X,, and the convergence of the Fejér sum in
the definition of the projector Il is also for this topology.

Proof. The case p = 1 is an immediate consequence of Theorem 5.25, case (4). The proof in the
case p > 1 is a direct adaptation of the case p = 1. We aim at verifying that the trajectories
(gt f)e>0 are relatively compact in X,. We have already seen that X, C X,, is dense. Besides, the
domain D(L) of the generator £ — A; of S in X, is also dense in X, so that it suffices to check
the relative compactness of (§tf)t20 for f € Xoo N D(L). For f in Xo N D(L) the bounds

1Sefllx, < Ifllx,s NESefIx, = ISLSlx, < ILFIx, and  [1Seflx. < IIfllx.

yield the relative compactness of (§t f)t>0, the second bound guaranteeing uniform Wll)’cl estimates.
We can thus apply the case (1) of Theorem 5.25 to deduce the convergence (9.20) in X, for the
strong topology. a

Propositon 9.6 extends the result of [46] where it is proved in the case p = 2 for a(z) = z by taking
advantage of the Hilbert structure of X and of the explicit formulation of the eigenvectors g and
Yy in terms of f1 and ¢;. In this Hilbert setting it is proved that the Fourier series > _  (f, ¢x) gk
converges as n goes to infinity, and IIf is then given by the limit.

About the value of a. For ensuring that the boundary spectrum is discrete, we have used a
compactness argument. The period 27/« of the periodic semigroup SII is thus not quantified. It
is expected to be equal to the time needed for a particle to double its size by following the flow
of a, namely

2 2x
(9.21) l:/ _at

a a(t)’
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which is independent of the choice of > zy due to the condition a(2t) = 2a(t). This is known
to be true in the case of a linear growth rate a(z) = x, see [122] or [46], and also for a general
when the size domain is (zg,4x0), see [170], where explicit computations can be carried out. In

the general case we are not able to prove (9.21). Yet the fact that for any x > zy the support of

Std. is a subset of Ex,(,) guarantees that the period cannot be smaller than f > dt)

Proposition 9.7. We have the estimate

b [
a — ), a(t)

Proof. Let x > xg such that ¥1(x) # 0 (actually any x > xg suits). We have

S;0, — 8118, —— 0
t——+o00

and supp Sy, C Ex,(z)> SO SUPP S,118, C Ex,(x) since S, 116, is periodic. Besides,

StH(S _ 132052 Z w wzkt

£=0 k=—¢

and, since 11 () # 0, the period of this periodic function of time is %’T But since supp S;I18, C

Ex,(z) and the period of the set Ex,(y) is f t), we deduce that 2% > fQI ad(—i O
On the other hand we can use Theorem 6.5 for deriving a quantiﬁed lower bound on «, and thus
an upper bound on the period. We work in the space X = L! | recalling that EJIS(E) is this same
in this space and in M .

m?

Proposition 9.8. There exists a constructive constant aq > 0 such that 2(L)NB(A1,01) = {\1}.
In particular, o > ay.

To prove this result, we check that the conditions (6.8), (6.9) and (6.13) are verified, and we invoke
Theorem 6.5. We start with a lemma which, together with Lemma 9.3, will guarantee the validity
of (6.13).

Lemma 9.9. For alle > 0, Ry > zg, and Ry > xg + €, there exist T > 0 and cp > 0 such that

T Ra
/ Sigdt > erlisy py) bdr, V>0
0

xo+e

Proof. Throughout the proof we denote by ¢; any positive constant that depend only on ¢. From
the Duhamel formula (9.15), we get by positivity that for any ¢ > 0

/S* dt>/ B( X (z))e Jo KXa(@)ds gy

We deduce that for all © € (zg, R1) and for Tj large enough so that X, (zg) > Ra, we have

T() XT(z) R2

Sté(x)dt > er, / o)y >cn [ o)y

0 T Ry

and the conclusion follows if Ry < zg + €. If not, we have with the same argument the existence
of T such that for all x € (z¢, R1)

T 2R>
/ S o(x)dt > er / o(y)dy.
0

max(R1,2z0+¢€)

Iterating once Duhamel’s formula and using that X(z/2) = Xi(x)/2 and (9.3) we get that for all
t>0and all y € (229 + €, Ra)

o y) > CtA K(Xt—s(y))¢(Xs(Xt—s(y)/Z))dS > Ct¢(Xt(y/2))
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which yields for all z € (z¢, R1)

T+t T+t T
/0 Ssqb(x)dsZ/t SSQS(ar)ds:/O SS;p(x)ds

2R,
= S 6(y)dy
max(R1,2z0+€)
2Ro Xt(RQ)
> cTct/ o(Xe(y/2))dy = cTct/ R o(2)dz.
max(R1,2z0+€) maX(Xt(Tl)7Xt($0+%))

Choosing t small enough so that max(X,(£1), X, (z0+5)) < max(ELEE zg+¢) we get for Ty = T+t

T1 Ra

Sip(x)ds > e, / . d(2)dz.

0 max( == ,xo+¢)

Iterating the argument we can build an increasing sequence of times T), such that for all n > 0

T, R
/ S;o(x)dt > cr, / d(2)dz
0

max(tn,z0+€)
where (u,) is defined by up = Ry and unq1 = “"TJFE Since this sequence (u,) converges to
e < xg + €, we get the conclusion by taking n large enough. O

We are now in position to prove Proposition 9.8.

Proof of Proposition 9.8. Arguing similarly as in the proof of Theorem 9.1 and using Lemma 9.9
instead of Lemma 9.2, we can prove that the conditions (6.8), (6.9) and (6.13) are verified. Applying
Theorem 6.5 then gives the result. O

9.3. The model with variability. In this last part, we consider the model with variability
given by the equation (9.2). Compared to Equation (9.1), the main consequence of introducing
a variability in terms of the spectrum and the asymptotic behavior is that for Equation (9.2) the
boundary spectrum is trivial and the first eigenfunction is exponentially stable, no matter if a
satisfies (9.6) or (9.18).

Additionally to the assumptions (9.3), (9.4) and (9.5), we ask that

(9.22) K(z) = o(exp (5 / "

Zo

K/a)) as  — 400,

for some d > 0. About the variability kernel o we suppose that
2

(9.23) / p(v,v)dv =1, Yo, € [1,2], € W"([1,2]?) and g > p.
1

for some g, > 0. We still work in the space X = Ll by considering the weight m = m(z) as
function of (z,v) constant in v.

Theorem 9.10. Suppose that (9.3), (9.4), (9.5), (9.22) and (9.23) are satisfied. The first eigen-
triplet problem for Equation (9.2) admits a unique solution (A1, fi,¢1) € R x X1 x X! with the
normalization ||¢1]| = (&1, f1) = 1, and this triplet additionally satisfies A\ > 0, f1 > 0 and
¢1 > 0. Besides, there are some constructive constants C,w > 0 such that

le™Se(t)f — (b1, /) fillx < Cem | f = (b1, ) allx
forany f € X and t > 0.

Yet expected, this result was known only in the case of a discrete set of variabilities [98, 295].
Theorem 9.10 is thus new in the literature.

Because of the assumption (9.23), we easily see that the construction of the semigroup and the
proof of the conditions (H1), (H2) and (H4) given in Section 9.1 for the model without variability
readily extend to the model (9.2). We thus only have to verify (H3) and some Harris type condition.

Condition (H3). Let 6 € (0,1) such that (9.22) is verified, and consider the weight function
m(z) = " with 7 > 1 or m(z) = exp (n [, K/a) with 5 € (0,1 — ). We also use the two
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other weights m1(z) = exp (m fjg K/a) and ma(z) = exp (n2 ffo K/a) for some 1 € (9,1 —6)
and 172 = m + 0. We combine two different splittings: the Lyapunov one £ = A 4+ B where
Af(z,v) = M1y, g)(z)f(z,v), and L = Ag+By where Ag f(x,v) = 4 ff K(2x)p(v,v.) f(z,vs) dvs.
We prove that for any x > kp the operator

C:=(k—By) t Ak —B) A

is well defined and maps continuously L}, into L}, NW!, in the sense that if (f,) is bounded in
L}, then the image is bounded in L}, NW((zo, R) x [1,2]) for all R > 0, so that it is compact.
More precisely, we prove that

AL, — L,
(k—B)':Ll —L,

mao

Ao LY, — Lh, NWh!

v,loc

(k—Bo) ' i LL, nwhl — L nw!

v,loc

where W' = {f e LL ((x0,00) x [1,2]), duf € LL ({0, 00) x [1,2])}.

v,loc loc loc

The results for A and (k — B)~! are proved as in the case without variability. For the third one,
the fact that Ap maps L} in L}, follows from assumption (9.22), and the fact that the range is

mo
in Wvl”lloc is a direct consequence of the assumption that p € W1>°([1,2]?).

Finally we consider x — By and we first verify that it is invertible in L}, , for any k > 0. If
(k — Bp)g = f, then necessarily

1 ‘ - x v
(924 ola0) = s [ M gy 1) ay,
o

where A, (z) = ffo 54K “and consequently

eAn@)=mho@W)/v £y )y (y) dy.

omA@ —Au(@)/v e
gz, vymy(a) = /

va(x) .
Since
Aw(z) —mAo(z) = (1= m)Aw/—n) ()

we have for all v € [1, 2]

/ ( n —I—K(x))g(x,v)ml(x)dx
xo 1_771
001 _ x
:/ A1y (@)™ T st @ / =m0 W) £y )y (y) dyde
To Zo
oo _ o0 1 —n
:/ e%Am/ufm(y)f(y,U)ml(y)/ - :{/(lim)(m)e_lleN/ufm)(r)dmdy
xo Yy
[ i d
= ,v)m .
T [, T m@)dy

We deduce that, for any & > 0, the operator k — By is invertible in L}, with [|(x — B) ™| < 1/.

We have also proved that (k —Bo) ™" maps Ly,, into Lj,, with [|(x —Bo) g, 11 )< ljm :
my? my
The fact that it maps Wvl”lloc into VVli)C1 readily follows from the formula (9.24). We conclude to

the compactness of C and then to the validity of (H3). Indeed, we can write (2.20) as
fn = RB(/\n)Afn + RB()\n)En;
but also as

fn = RBO ()\n)AOfn + RBO ()\n)sn-
Combining both, we get

Jo = Cla+ [Riy () AsRis (M) + Ry (M)

Since C is compact, we conclude to (H3) with the same argument as in the proof of Lemma 2.8.
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From (H1), (H2), (H3) and (H4) we infer the conclusion (C2) about existence and uniqueness
of (A1, f1,¢1), which gives a part of Theorem 9.10. For the quantitative exponential stability, we
start with a lemma.

Lemma 9.11. For all e > 0, Ry > g, and Ry > xg + €, there exist T > 0 and cr > 0 such that

(9.25) S1¢ > crl(zy,rRy)x[1 2]/ / ¢dxdv, V¢ >0.
xo+e

Proof. Let us fix € > 0, Ry > z¢, and Ry > z¢ + . Throughout the proof we denote by ¢; any
positive constant that depend on ¢, and also possibly on the ingredients of the model g, K, p and
on g, Ry, R, but is independent of (z,v) € (zg, R1) % [1,2].

First step. We start by proving that there exists 77 > 0 and x3 > 2 > =z such that x3 >
max(Rz, 2xs) and

2 €T3
(9.26) ST, ¢ > CTll(xO,Rl)x[l,z]/ / ¢ dxdv
1 o
for all ¢ > 0. We start from the Duhamel formula
(9.27)  579(x,v) = (X} (), v)e o KOs
t 2
”/ / K(XY(@)Si_ $(X2 ()/2, v)e I KD o0 0)dv, ds,
1
where X/ (z) is the solution to the characteristic equation
XV (x) =va(XP(z)) with X{(z) ==z

Iterating twice (9.27), using positivity and the fact that K and a are locally bounded and g is
bounded from below, we deduce that

Sio(z,v) =
Ct// // K(X2(2)K (X (X2(2)/2)o( X (X o (X0 (2)/2)/2), vs) dvsnds’dv.ds
on (9, Ry) x [1,2], for all ¢ > 0. Let ¢y be such that X} (z¢) = 22 + 1. Then, for ¢ > 2t,, we

deduce from the fact that K is locally bounded from below on (2x¢, c0) that

t 2 s 2
Sz, v) = Ct/ / / / (X7 (X2 (X0 (2)/2)/2), vax) dvsnds’ dvyds.
2tp J 1 to J1

We thus have, for t > 2ty + 2, by using the Fubini-Tonelli theorem,

2 ot ptotl 2
Syo(z,v) > ct/1 /t_lft </1 (X (X2, (X;’,(x)/Z)/Z),U**)dU*) ds’ dsdv .

Using now a change of variables we get

to+1 X (X2 (X (2)/2)/2)
Sré(x,v) > ct/ / / </ gzﬁ(y,v**)dy) ds'dsdv..
t—1Jtg X (XE (XY (x)/2)/2)

t to—2 (z0/2)/2
/ / (Y, Vi) dydvss.
X2(x] t0+1 (R1)/2)/2)

Xy tD
Due to the strict positivity of a, we can choose ¢t = T} large enough so that
X%17t072(x0/2)/2 > max (R27 2X12(X'}'17t0 (X§0+1(R1)/2)/2))
and we obtain (9.26) by setting x3 = X7 _, _,(x0/2)/2 and xo = X7(X[, _, (X2 ,1(R1)/2)/2),
which concludes the first step of the proof.

Second step. We deduce (9.25) from (9.26) as follows. On the one hand, applying (9.26) to the
function S} ¢ we obtain

2 pxs3
STy 119 = CTll(aco,Rl)x[1,2]/1 / S; ¢ dxdv.
x2
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On the other hand, iterating once the Duhamel formula (9.27) we get by positivity that

S;o(, )>ct[ //KX” Xf_*S(X;’(x)/2),U*)dv*ds}.

We first assume that x5 > 23:0 In that case the term K (XY (z)) is bounded from below uniformly
in s €0,¢], v e€[l,2] and z € [xe, x3], so that we infer from the two above inequalities that

St 6 > en el oy mnx (1) / / [ (2),v) + / / ¢<X§’:S<X§<x>/z>,vndv*ds}dxdv.

By a change of variable we have
3
/ P(X{ (), v)dz > Ct/ oy, v)dy
X7 (x2)
and
t x3 13/2
| e i@ vdnas = e [ Oy, v.)dy.
0 Jao X7 (XF(2)/2)

Since X?(z) — x as t — 0, we deduce that we can find, for any ¢ > 0, a time ¢ > 0 such that

923/2
ST +t¢ > chctl(Ig R1)x[1,2] |:/ / y7 dydv +/ / ya VU« dydv* .
2+¢ x2/2+¢

As x3 > 2x9, we can choose ¢ small enough so that x3/2 > x5 + ¢ and we get

Sty +4® > erctl(zy Ry x[1 2]/ / y, v)dydv.
$2/2+C

Impose additionally that ¢ < xy. Since the sequence (u,,) defined by ug = z2 and up41 = un/2+¢
converges to 2¢ < 2xg, we deduce by an iteration argument the existence of a time 75 such that

2 xrs3
(9.28) S5, 8(2) > eryLiay 1) (@) / / 6(y, v)dydo.
1 2xo+e€

Using a last time the argument with ¢ < /2 yields (9.25), since x5 > Rs.
In the case where xo < 2x¢, (9.26) directly implies (9.28) with T5 = T3, and only one iteration of
the extension argument is enough for concluding. U

We are now in position to finish the proof of Theorem 9.10.

Proof of Theorem 9.10. The proof is exactly the same as for Theorem 9.1, Lemma 9.11 replacing
Lemma 9.2. The only missing information is a quantitative L{S. estimate on the derivatives 0,1
and 9,¢1, in order to use the same argument as in the proof of Proposition 9.8 for verifying (6.9).

The estimate on d,¢1 follows directly from the equation £*¢1 = Aj1¢1, which also reads

2
Doy = Mér+ Kér — 2K (x) / 61(x, 0) (v, v)do
1

b
va(z)
For 0,¢1 we argue by duality, using that

16l = i (¢, f)-

p1=1
We start from
¢1 = (M — Bg) T AL ¢
which yields
1001 Lo (20, R)x[1,2] = ”fﬁup (0p(M — By) LA 61, f)
p1=1

= ”fiup (p1, Ao(A1 — Bo) " 0uf)
p1=1
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where the supremum can be taken over the functions f € C}((zo, R) x (1,2)). Using an integration
by parts in v, we have

2
Ao(Mi = Bo) ™19, f(w,v) = 4 K(Qx) / et W= @) g, £y, v,)dy p(v, v. ) dvs

:‘4// o (oete (A““’) M o (0,0.)) f(y, v.)dydo,

from which we deduce, since ||¢1||Lm((w07R)X[172]) < m(R), that

1001 || Lo (w0, R) % [1,2])

< 4m(R) sup
(y,v«)€E(z0,R) % [1,2]

2 e )=y (20)/0- (g v*)) ‘dvdx,

and this last quantity is finite due to the assumptions made on the functions a, K and g. g

10. THE KINETIC LINEAR BOLTZMANN EQUATION

In this section, we consider the kinetic linear Boltzmann type equation
(10.1) Ohf+v -Vuf =V, 0(x) Vof =X[f]-Kf, in (0,00)x0O
on the function f = f(t,z,v), t >0, (z,v) € O := Q x R, We assume that K = K(z,v) > 0 and
that the collision operator £ is linear and defined by
(10.2) H =ri, (Hg)(z,v) ::/ k g« dvy,
Rd

for a real number r > 0 and some collision kernel k : Q x R x R? — R,. Here and below, we use
the common shorthands

g = g(vs), k:=k(x,v,0s), ki:=k(z, v, 0).

The most classical example for the collisional operator C = J# — K is the mass conservative operator
(10.3) (Cg)(v / |v — V| V{ M g — Mg} dv.,

for some function .#Z € L}r (R?) and some exponent v € R, which includes the relaxation operator

(10.4) (Coe) = ollp, ~a). o= [ v

We make the follwing strong positivity and boundedness assumption on the collision kernel k& and
the function K. There exist v > 0 and K; > 0 such that

(10.5) V(z,v) e QxRY Ko< K(z,0)(v)7 < K.

There exists a weight function m : R? — [1,00) such that

(10.6) Vpel,oo, kmitme LELPLE.

For all R > 0, there exists kg > 0 such that

(10.7) V(z,v,v4) € QX B x Br, k(z,v,v.)> kpg.

It is worth emphasizing that for ¢ and K defined in (10.3), the above assumptions are met when
m = #~? R = [1,00) (s0 that in particular .# > 0 a.e.) and .Z'/?(v)7 € L' N L>. We

finally assume that for some weight function m; : R — [1, 00) such that m;/m — oo at infinity,
we have

(10.8) km;tmy € LS°L2

VU4

what holds true for the relaxation operator when .#m; € L*(R?) and m~! € L2(R%), and that for
some weight function mg : R? — [1, 00) such that mg/m — 0 at infinity, we have

(10.9) kmgim e LLY

VU

what holds true for the relaxation operator when .#m € L*(R%) and my* € L'(R%).
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For the space domain 2, we consider the two following cases:
(1) Q:=T% the torus;
(2) Q:=R? the whole space.

In case (1), and for the sake of simplicity, we will always assume that ® = 0. In case (2), we will need
a confinement mechanism which will be provided by the mean of the confinement force associated to
the confinement potential ®. We do not consider here the case of a bounded domain with zero influx
boundary condition because (1) our approach applies exactly as for the torus case and (2) this case
has already been considered in the pioneering work by Vidav [317], where existence, uniqueness
and exponential stability (with non constructive constants) have been established. It is worth
mentionning that Vidav’s proof is probably incomplete because it uses improperly Theorem 1.2 (in a
space LP of empty interior cone) but can straightforwardly be repaired by rather using Theorem 1.3.
On the other hand, we do not consider either the case of a bounded domain complemented with a
reflection as we will consider in Section 11 for the kinetic Fokker-Planck evolution equation, because
we have not be able to establish some crucial regularity estimates which seems to be necessary in
our approach. We let this issue for a future work.

10.1. The torus. In this section, we are first concerned with the kinetic linear Boltzmann equation
in the torus

(10.10) Of +v-Vof =X[f]—Kf, in (0,00) x T? x RY,

We make the boundedness and strong positivity assumptions listed above together with the addi-
tional assumption

(10.11) Em;tmy, km;}/zm e Ly, Z ||m;1/2(u + ) poe(ray < o0,
u€ezd

for some my such that m/my € L* N L2,

Theorem 10.1. For the kinetic equation (10.10) in the torus and under conditions (10.5)-(10.6)-
(10.7)-(10.8)-(10.9) and (10.11) for some weight functions m, mg, mi, there exists v* > 0 such
that for any v > r*, the conclusions (C3) holds in L?, and the conclusion (E3) holds in L., .

Our result may be compared to [317] which establishes the same result without constructive rate
and to [95] which establishes the same result using a probabilistic approach, both in the case of a
bounded domain with zero influx boundary condition. It also extends to a non mass conservative
situation the many results devoted to the conservative framework, see for instance the recent papers
[255, 182, 75] and the references therein. When v > 0, we may probably establish the same above
result under the sole condition r > 0 (no need for r to be large enough) by using some arguments
developed in the next section.

We present now the proof of Theorem 10.1 by establishing that the conditions presented in the
abstract part are satisfied.

Condition (H1). For an exponent p € [1,00) and a weight function m satisfying (10.6), we set

< Q.

koo = HkmglmHL;OLng*

Considering then a solution f to the evolution equation (10.10), we compute

B B e T

IN

ol ([ o) ™" = [ G0
hoe [ e~ Ko [0y o

where we have used twice the Holder inequality. This differential inequality together with the
Gronwall lemma provides an apriori estimates about the growth of the L? norm. As a consequence,
the same arguments as in section 8.3 imply that S, is a positive semigroup in L?, with growth
bound w(S¢) = rke — Ko. In particular, condition (H1) holds thanks to Lemma 2.2.

IN
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Condition (H2). For fy := ltayp,, where B; denotes the unitary ball in RZ, we compute
Lfo=K[fo] — Kfo> viengl{re%ﬁ[fo] — K} fo.
Using (10.5) and the strong positivity condition (10.7), we get
(10.12) Uienl_f}l{%[fo] — K} > rki — 272Ky =: ko,
which provides a constructive lower bound of the set Z defined in (2.15) thanks to Lemma 2.4-(ii).
We have thus established that £ satisfies (H2).
Condition (H3). We define the operator
Bf:=—v-Vof - K(z,v)f,

and we assume kg := —inf K < —K < kg, what holds whenever r > r*, with * > 0 large enough
thanks to (10.12). In the sequel, we assume p = 2 and we work in X = L2,. We immediately
deduce that B — & is dissipative for any x > rp, and thus Rp(z) is bounded in %(L2,), uniformly
in 2 € A.. For k > kg and g € L2, the function f = Rp(k)g satisfies

v-Vof +(k+K)f=¢g in O,
from what we deduce

(w=rp) [ Pt < [ e )pme = [ pgn,

and finally

1F12. <
Because of assumption (10.8), and defining A := ¢, we immediately deduce that
(10.13) ARg (k) : L2, — L2

my”°

2
—— gl

On the other hand, from the classical averaging lemma [164], we know that
(10.14) A Ri(k) : L2(O) — HY*(0),
where for ¢ = 1 ® p2 € CL(O) ® CL(R?), we have defined the mapping A, : L%(O) — L%*(O) by

Alfe) = er(w0) [ 1w )palon) do.

By classical approximation arguments, there exists a sequence (¢,,) such that ¢,, — k in the space
L>°(T4; L2 (RY x R?)) and such that ¢, is a linear combination of functions of C}(O) ®

mi®@m—1
CHR?). As a consequence of (10.13) and (10.14), we deduce that ARg(x) € # (L?,) and next
(Ri(k)A)? € # (L2)) for any k > kp. We may use Lemma 2.8 (and Remark 2.9-(2)) with N = 2
in X = L2, and deduce that (H3) holds.

Condition (H4). We start with a result of independent interest about strict positivity. Such an
argument is reminiscent from [83, 294] in the study of the Boltzmann equation and has been used
for instance in [263, 75].

Lemma 10.2. For any 9, 0«,t > 0, there exists ¢ > 0 such that

(10.15) (Se(t)fo)(z,v) > c1p, (v) / fo dvadz.,

Tex By,
for all fo >0 and (z,v) € T¢ x R?,
Proof of Lemma 10.2. We observe that the semigroup S has explicit representation
(S5(8)fo)(,v) = fola — vt,v)e™ fo K=o,
We next write the associated iterated Duhamel formula
Sy =S+ SpgH xS+ SgH * SgHK xS+ SgH x SgHK * SgH xS,.

Since all the terms are nonnegative, we may through away the first terms and the last one, and we
get
Sy > Sp*x K S * HSp.
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On the one hand, using the explicit expression of Sg and (10.7), we have
(A185(s) fo) (y, w) > kge *Fe1p, (w)/ Joly — wis, wi)dw, =: g(s, y, w),
B

for any s > 0 and any ¢’ > . > 0, with K, := sup,cra )<, K (2,v). On the other hand, for the
same reasons, we have

(1S x g(t))(z,v) / k(z,v,0)9(s, ¢ — v (t — 8),v4 )€ ~Jo " K(@roe v )dr gy, g
Rd

> kylp,(v // s),v*)e_(t_s)Ke/dv*ds

> kz,eftKg/lBQ(U)/ / fo(x — va(t — 8) — was, wy)dw,dv,ds
o 7 Bo.

tK ’ t/2 d
> k2 € elp,( fo(Yu, wi) 7——5 dw.ds
By, J B(z+wis,(t—s)o’) (t - )

2e—tK/ t/2
>k, s> W ) dYsdwicd
,Q(t/QdBQ / /Bg* Trdfoy w, )dy.dw,ds
2@ tK/ t
>k/—1 = > Wy ) AYsdwiy
=" (¢/2)d BQ(U)2/BQ* Tdfo(y wy )dy..dw

for any ¢ > 0 and ¢’ > max(g, 0.) such that to’ > 2, in such a way that B(z, (t/2)¢') D T¢. We
then have
7tK ’

(S5 * HiSp(D) (1,0) > K2 (:/2)‘1 1, (v )/w [ o

for any t > 2/0'. We finally conclude

¢ ds
Se(t ,v) > r2k?, *tKe// — 1 // » dw,dz,,
clt)folz,v) 2 rkge 2/ (8/2)371 5o o dwadr
from what we deduce (10.15) by choosing ¢’ = 8/t. O

We now consider A > A\; and 0 < f € L2, f # 0, such that
MAv-Vof +Kf—[f] >0 in T¢x R%
We fix g, > 0 such that f # 0 on B,,. From (2.13), we have

fz/ e NG (1) fdt,
0

and we conclude that f > 0 a.e. on any set T¢ x B, thanks to Lemma 10.2. We have established
that the strong maximum holds true, and thus (H4).

Condition (H5). Assume that (A, f) € C x X\{0} satisfies
Lf=Af, LIfI = ReA)|f| = Re(signf) LS.

From (H4) and the first identity satisfied by |f|, we know that |f| > 0 a.e. on T¢ x R?. Using the
second identity, we get

H[|f[] = Re(signf)2[f].
Writing f = €| f|, we deduce

/ E(x,v,v.)|f(z,v.)](1 = cos(a — ay))dv, =0 a.e. on T¢ x R?,
Rd

and thus o = a(x) thanks to (10.7). Next, coming back to the first equation, we have

Mfle = L(fle')
= eL|f] - |fleiv - Voo
e (ReN)| f| — | fle"iv - Vaa.
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The equation simplifies into
v-Vea = SmA,
so that a(z) = « is a constant and the reverse Kato’s inequality holds.

Alternatively to (H5), we readily infer from Lemma 10.2 that the variant condition (H5') is
verified.

At this stage, because of Theorem 2.21, Theorem 4.11 and Theorem 5.16 (or Theorem 5.18), we
deduce the conclusions (C1), (C2) and (C3) about the existence and uniqueness of the eigentriplet
(M1, f1,¢1) which satisfies fi > 0, ¢1 > 0, A\ is algebraically simple and on the triviality of
the boundary punctual spectrum. We now establish the exponential asymptotic stability with
constructive constants.

We start with a gain of unifom boundness estimate.

Lemma 10.3. There exists N > 1 such that (ARg)" : Ll — L. As a consequence, ¢ € L.
Proof of Lemma 10.3. Step 1. We argue silmilarly as in [251, Sec. 3.1]. On the one hand, for
fo € L}, writing

(A1SB(t) fo)(x,v) = / k(x — vit,v,v5) fo(z — vit,vi) € Jo K(w—ve(t=m)0)dr gy,
R4

and using estimate (10.11), we deduce

[m1A1S8(¢) foll L1 Lo

IN

iz sz, [ oo = ot o) mdusdeet
O

< follzy et s,

for any ¢t > 0. Now, we consider fy € LLL> | we write

(A155(t) fo)(x,v) = Z / k(z — ut — vit, v, v.) fo(z — ut — vat, u + v,) €5 do,
uezd T

and using estimate (10.11) again, we compute

AiSsO ) omw) < P Pmloz, 3 [ ml ) e = ut = vt ) e do,
ueze ' T
" - dy
S e (X P ) [ 1ol
u€Zd I
s e (14 ol
t 1
Defining w(t) := e "*A1S5(t), kK > kp, we have first established @ : Ly, — LLLS, unifomly in
time, and thus @ : LLL3S, — LLL3S, unifomly in time because LLLSS, C L7, (we use here the fact
that m/my € L'). On the other hand, we have establised that t*a : LLL3,, ~— L5 uniformly in
time. Using [248, Prop. 2.5] with X := L1L3® and YV := L2, we deduce u*(¢*+1) : L1L%° ~— L2

uniformly in time, and we thus conclude that @*V : L1 — L2 uniformly in time, for N := d + 2.
Using formula (2.13), we deduce that (ARz)N(z) : Ll — LS, uniformly for any z € A.
Step 2. In particular, (ARg)"(z) : L}, — L2, because L2 C L2, (we use here the fact that
m/my € L?). By duality, we deduce that (Rg-A*)"(2) : L2, — L%_,. Coming back to the
eigenvalue equation
A*p1 + B 1 = M9,

we deduce

¢1 =R+ (M)A = (Ri- (M)A 1.
By construction ¢; € Lfn_l and we thus conclude that ¢; € L>°_,. g

From now on, we choose the normalization convention |¢1| = =1 and (f1,¢1) = 1.

Because of (10.9) and proceeding similarly as during the proof of condition (H3), we have

ARg(k): L}, — Ly, V&> kg,
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so that
Rp«(k)A" : Lyis — L1, V&> kg,
0

From the eigenvalue equation £*¢1 = A\1¢1, we have
1 = Rp= (A1) A1,

from what we deduce
[frllzee_, < Corllnllree_,

0
with constructive constant Cp; € (0,00). We may here proceed along an already used argument.
Consider 0 < f € L}, and assume || f||z: < A[f]g,. We then compute

[roo = [ 1Zme [ gmirZo
0, m 03 mo m

m
< (f,1o,)supm + || ]z, Coi sup -0
O, og m

< (f10,)swpm+ g,
O,

by choosing ¢ = o(A) large enough, where we denote O, := T¢ x B,. Together with Lemma 10.2,
we deduce that there exists T'> 0 and g4 > 0, ga # 0, such that

(10.16) Sc(T)f > galflos

what is nothing but the Harris condition (6.7). On the other hand, from the above regularization
estimate we have in the same time

L=ldille=_, < Collgallz: 5 lenller , <Cillgnller
mo m

1

for some constructive constants C; € (0,00). We may thus compute

_ _ mo —
/(blm < / o1m 1+sup—/¢1m01
B, By M

m
1 0 —1
prm +Sup—cl/¢1m ,
B, Bg M

IN

so that for o > 0 large enough, we deduce

(10.17) Gyt < llonll: , <2 /B prm~L.

Together with the definition of g4, we deduce the positivity condition (6.3) holds.

Finally, as during the proof of (H3) above, for 0 < fo € L. and denoting f := S, (t)fo, we
compute

% / fmdvde = / H [ f)mdvdz — / K fmdadv

< Co/fmgdvdx—i—/w/fmdmdv,

with Cp := Hkmmg*lﬂLmoou 1 < oo and mg/m — 0 as v — oo. Observing that
m, m,
[rmo< [ forsuw5 [ pmsup™,
B, B, 1 Jp:" By m

for any k > kp, we may choose ¢ > 0 large enough in such a way that Sup e 7o < (k — kp)/Co
and we deduce that

%/fmdvdx < Cl/f¢1dvdx+n/fmdxdv

with C; = sup B, % From the Gronwall lemma, we obtain

At

e em‘,
Il < ol + o1 [ foor,
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from what we immediately deduce that S, satisfies the Lyapunov condition (6.8) for any ¢ > 0.
It remains to quantify the constant C;. The dual formulation of (10.15) applied to the dual
eigenfunction ¢; with ¢t =1 and g, = p yields

b1 = e MSE(1)py > e—*lchrdeQ/ é1 dv,dz,.
Tx B,

supp, Mo

infBQ m

Together with Equation (10.17), this provides the explicit bound C; < 2CpeM ™!

We have established that the three conditions (6.7), (6.8) and (6.9) hold, so that we conclude the
proof of Theorem 10.1 by just applying Theorem 6.3.

10.2. The whole space case. In this section, we assume that 2 := R? and we consider the kinetic

equation (10.1) with an additional force field confinement F' = —V,® associated to a potential ®.
More precisely from now-on, we assume that
(10.18) ®(z) = |z|’, B>2, K()= ()", v>0,

that (10.6) holds (for p = 2) and that there exist {, ¢ > 0 such that
(10.19) H M) > eV M, M= e P2
Observe that condition (10.19) is satisfied when % is the positive part of the mass conservative
operator (10.3). For further references, we write £ := T + € with
T:=—v-Vuf+V,®-V,, €f=X][f]-Kf
and we define the Hamiltonian
1
H:=d(z) + §|v|2.
In the sequel, we will only consider some weight functions m = w(H) with w(y) = y", r > 0,
or w(y) = e, k € (0,1), so that w(H) ~ w(|v|*)w(®). For p € [1,00), we further assume that
v w(|v]?) € LP (which imposes r > d/(2p’) for a polynomial weight).
Theorem 10.4. For the kinetic equation (10.1) in the whole space with confinement force and
under conditions (10.5)-(10.6)-(10.7)-(10.8)-(10.18)-(10.19) for some weight function m = w(H) as

discuted above, the conclusion (C3) about existence, uniqueness and positivity of the eigentriplet
solution (A1, f1,d1) holds as well as the ergodicity (CE2) for the weak convergence in Lll,

We are not aware of any result on the first eigentriplet problem for such linear Boltzmann like
equation in the whole space. We may however compare our result to [182] where the corresponding
mass conservative framework is considered. We present the proof of Theorem 10.4 in that situation
by adapating the arguments presented in the previous section.

Condition (H1). Let us consider a weight function m = w(H) as intruced before and let us fix
p € [1,00). For a solution to the evolution equation (10.1), we classically compute

4 ﬁm”dvdm = /(Lf)fp_lmpdvdm
dt P

= [T s [eengme - [ prme
l/(%/f)pmp + /fp(% — K)mp,

p
by using an integration by parts and the Young inequality. For the first term, we have

/(,%/f)pmpdvdx cw/w(q)) (/ fdv)pdx
= e [wl®) [ froeP)dudelo (o),
< /fpmpdvdx.

IN

IN
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All together and thanks to the Gronwall lemma, we have established an apriori estimate on the
evolution of the norm || f|| .» and we deduce as in section 8 that £ generates a positive semigroup
on L? . In particular, the condition (H1) is satisfied thanks to Lemma 2.2.

Condition (H2). We define fy := e~ ¢* and we compute
Lfy = Cfo=re®H[e " |- Ke ®u*
(rec — Ko)(v)Te™* >0,

for r > 0 large enough. That implies that Z is lower bounded by k¢ = 0 by using Lemma 2.4-(ii),
and we have thus established that £ satisfies (H2).

Condition (H3). We introduce the collisionless operator

Bf =Tf-Kf

vV

and we define .
Bt = 5T*¢ — K¢.
Our analysis is mainly a consequence of the following moment estimate.

Lemma 10.5. There exist some weight functions w < H and some real numbers «, cq, Co > 0
such that

(10.20) Bfw < Cow — coH T

Proof of Lemma 10.5. We split the proof into two steps.
Step 1. We first assume v < 8 — 2 and we define

1
w:=1+ §[m]1+7/2 ‘v +H,
with [2]° := 2|z|°~!. We observe that
1 1 1 1
14+v/2 2+ 2
|[2]' 772 - 0] < §|$| T+ §|U| S5H+t 5
so that w ~ (H). We now compute
2
T w < i|x|v/2|v|2 _ §|x|ﬁ+v/2
4 2
and thus
1 1
Bfw < CulaP[of® - §|5f|’8+7/2 - §|U|2+V'
Using that
1
Cila["/2 < CF + Lol
if |z < |v| and
1
Chlv)? < (401)6/(,6’72) + Z|ac|67
if |v| < |z|, we obtain
1 1
Biw < (CF + (4C1)P/ =)y — Z|x|6+7/2 =l

from what we conclude with « :=~/(28).
Step 2. We now assume [ < v + 2 and we define

1
w::1+§[x]5/2-v+7{,

so that again w ~ (H). We easilly compute
Btw < Cola|/2 o2 — %|x|%'871 - %|v|v+2.
Using Young’s inequality similarly as in the step 1, we get that
Biw < CH — cla| 3771 — cfo2t,
which in turn implies (10.20) with « := min(y/2,1/2 - 1/0). O
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We classically deduce the following resolvent estimate.

Lemma 10.6. For any weight function mg := w(H), there exists a weight function my := wi(H)
such that my/mo — 0o as H — oo and for any k > kg > — K there holds

(10.21) Rp : L*(mg) — L*(my).

Proof of Lemma 10.6. We split the proof into two steps.
Step 1. We fix kp € (— Ko, ko) and mg := wo(H) with wg a function as defined above. We observe
that
B*mg = —Kmg < —my,
so that

[te=B)s(ma) = [ 205~ Byma <0,

which means that x — B is a dissipative operator in L,2n0. We deduce that Rp(k) : LGg — L,2n0 for
any K > —1.
Step 2. We take
m:=w(H)w, w(H):=wo(H)/H,

where w is defined as in Step 1 of Lemma 10.5 when v < 8 — 2 and as in Step 2 of Lemma 10.5
when v > 8 — 2. In any cases m < mg. On the other hand, Lemma 10.5 and 7*w(H) = 0 imply
together that

Bim < Coym — Caw(H)HT>,  a>0.

This apriori estimate implies Rg(Cyo) : L2, — L2, , with my = m¢H®. For g € L2, and

myo
k> kp = —Kj, the function f:= Rg(k)g € L}, C L*(m) also satisfies
(Ca—B)f =g+ (Ca—K)f
We deduce |[f]|z2ms)  lgllzm) + 1712y S FlL2n), which is nothing but (1021). O

We argue as during the proof of (H3) in Section 10.1. By a localization argument and the averaging
lemma, we have ARp(k) : L2, — L?(Bgr x Bg) with compact injection for any R > 0. Togeher
with Lemma 10.6, we deduce that Rp(x) € K(L2, ) for any x > kg, and we conclude exactly as in
Section 10.1.

Condition (H4) and (H5’). We recall that it has been proved in [75, Lemma 4.5] that the
semigroup S; associated to the operator £ satisfies the Harris condition: for any 7" > 0 and o > 0,
there exists a > 0 such that

(10.22) Srf>alp, fdxdv, Y f>0,

Bﬁg
for some constant ¥ € (0,1) and where B, := {(z,v) € R?% |z| < r, |v| < r}. Although the
statement of [75, Lemma 4.5] is not written in that way, one may easily track the constants
appearing in Lemmas 3.5, 3.6, 3.7 and 4.1 in [75] and one obtain (10.22) with ¢ := 1/2. Now,
(10.22) immediately implies (H5’) which in turn implies (H4) thanks to Lemma 4.6-(2)-(3).

Because L is the generator of a semigroup it also satisfies the weak maximum principle and Kato’s
inequalities (H1’). We are then in position to apply Theorem 2.21, Theorem 4.11, Theorem 5.18
and Theorem 5.23-(3) and thus complete the proof of Theorem 10.4.

11. THE KINETIC FOKKER-PLANCK EQUATION

In this part, we consider the kinetic Fokker-Planck evolution equation associated to the operator
(11.1) Lfi=—v - Vof+A,f+0b-V,f+cf,

on functions f : O — R, where O := Q x R?, Q € R? is a domain, b: O — R? is a given vector
field and ¢ : O — R is a given function. In contrast with the previous part, collisions are typically
modelized by a Fokker-Planck operator A, f + div,(vf) (when b = v and ¢ = d) which takes
into account a thermal bath of (Gaussian) whitenoise instead of the integral collisional operator
J|f] — K f in the linear Boltzmann equation (10.1).
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We will mainly consider the case when €2 is a bounded domain and the equation is complemented
with a boundary condition. More precisely, we assume the classical balance between the values of
the trace v f of f on the outgoing and incoming velocities subsets of the boundary

(11.2) (v-F)(x,v) = Ro(y, f(2,.))(v) on E_,

where in this context we define % := {v € R%; £ v, > 0} the sets of outgoing (X% ) and incoming
(37) velocities at point = € 9€, next the sets

Y =A{(z,v) €E;tr, v >0} = {(z,v); x € 9N, v e XL},
and finally the outgoing and incoming trace functions v+ f := 1y, vf. Here and in the sequel, v,
denotes the unit normal outward vector field defined on the boundary set 9€2. We similarly define
the grazing velocity set
Yo ={(z,v) € ;v - v =0}.
The reflection operator %, is local in position, but can be local or nonlocal in the velocity variable,
so that it writes

(Zrg)(v) := / (2,0, 04) g (Vs ) Vs - Vg duy,

=7
for a reflection kernel 7 : 9Q x RY x R? — R. Some classical general assumptions on r are
(11.3) r>0, Z1=1, Bl =M,

for some positive function .# = .#(v), see for instance [87, 89, 90]. The second (normalisation)
condition corresponds to the fact that all the particles reaching the outgoing boundary are put
back on the incoming boundary (no mass is lost) while the third (reciprocity) condition means
(when . is a Gaussian function) that the wall is in a local equilibrium state and is not influenced
by the incoming particles. The normalization condition implies the local mass conservation

(11.4) /,@$g|u-v|dvz/ gv - vdv,
- s

while the three assumptions (11.3) on r together also imply

/(%mg)Q%‘llu-v|dv < / (B2 | M) (Rl )t~ | - ) d
Pl nT

/ G (B - vedo,,
X3

where we have used the Cauchy-Schwarz inequality (and the fact that r > 0) in the first line and
the reciprocity condition in the second line. As a consequence, we have

(11.5) / (%rg)Q%_l|V'U|d’U < / G*l ™ v vdv,

g =
where we have used the normalization condition in that last step. In the sequel, we will rather
consider the possibly position dependent Maxwell boundary condition operator

(11.6) Hrg = a(2)Dpg + B(2) 29,

where the accommodation coefficients «, 8 : 9 — [0, 1] satisfy a(x) + B(x) =: ((z) <1, T'y is the
specular reflection operator

(11.7) Ta(g(x, ) (v) = g(x, Vyv), Vev=uv—2v(x)(v(z)-v),
and D, is the diffusive operator
(11.8) D.(g(z,-))(v) = cyt(v)g(z), glx)= /2 g(z,w) v(z) - wdw.
il
Here the constant ¢ 4 := (27)/2 is such that c_4.# = 1 and . stands for the standard Maxwellian
(11.9) M (v) = (21) Y% exp(—|v|?/2),
or, more generally, .# = .#(|v]) > 0 is such that
(11.10) D=1, Dol =M, ()M c LR,
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with ¢ > 1 (that last condition is necessary in order that the second relation above makes sense).
The boundary condition (11.6) corresponds to the pure specular reflection boundary condition
when 8 = 1 and it corresponds to the pure diffusive boundary condition when o« = 1. When ( =1,
the Maxwell boundary condition operator (11.6) satisfies (11.3). On the contrary, when ¢ # 1, the
L? estimate (11.5) holds but not anymore the mass conservation (11.4). However, the following L*
estimate

(11.11) / |<@xg||1/-v|dv§(*/ lg| v - vdv
5o Bz

holds, with 0 < sup{ < ¢* < 1. Finally, the case ( = 0 corresonds to the zero inflow problem.

Let us finally mention that similarly as in Part 8, the regularity needed on the domain {2 may be
formulated in the following way: we assume that €2 is locally on one side of 92 and there exists
a function § = g € W2>(R?) such that for all x in an interior neighborhood of 9 one has
§(z) = dist(z,09) and the vector field v defined on R¢ by = — v(z) = v, := —V,6(z) coincides
with the previously defined unit outward normal vector field on 9Q and satisfies ||v||L~ = 1. We
also assume that the Lebesgue measure on 02 is well defined and it is denoted by do,.

11.1. The trace problem.

We consider in this section the trace problem for a solution g = g(z,v) to the stationary Vlasov-
Fokker-Planck equation

(11.12) Mg:=v-Vg—0b-Vyg—Ayg=G in O,

for a given a vector field b = b(x,v), a source term G = G(z,v) and for a solution g = ¢(t, z,v) to
the evolution Vlasov-Fokker-Planck equation

(11.13) Og+v-Veg—0-Vyg—Ayg=G in (0,T) x O,

for a given a vector field b = b(¢t, z,v), a source term G = G(t,x,v). The second problem has been
considered first in [84] and next in [244, Section 4], where a strong (renormalized) trace function
is proved to exist. In the sequel, we recall these results and slightly extending them by considering
a possible L2H ! source term. We introduce some notations. We denote

d¢ ;= |v(x) -v|dvdo, and d¢? := (v(z) - 0)%dvdo,

the measures on the boundary set ¥. We denote by By the class of renormalized functions § €
V[/lifo (R) such that 3” has a compact support, by Bz the class of functions 3 € Wli’coo (R) such

that 8" € L*°(R) and by Dy(O) the space of test functions ¢ € D(O) such that ¢ = 0 on 3y. We
finally define the dual operator

M*p = —v - Vyp + div,(bp) — Ayep.

Theorem 11.1. We consider g,b € L%OC@H}OC?W G e L%OC@HI;}’U and we assume that g is a solu-
tion to the stationary Vlasov-Fokker-Planck equation (11.12). Then there exists vg € L2 (%, d€?)

loc
such that the following Green renormalized formula

(11.14) / /O (Blg) M*p — 8"(9) IV g2) dvdz + (G, B (g)¢) =
=//Eﬁ(vg)<ﬂ v(z) - v dvdo,

holds for any renormalized function B € By and any test functions ¢ € D(O), as well as for any
renormalized function B € By and any test functions o € Do(O). It is worth emphasizing that
B'(g)p € L2H! so that the duality product (G, ' (g)p) is well defined.

If furthermore yxg € L2 (3;d€) then yig € L2 (X;d€) and (11.14) holds for any renormalized

function 8 € By and any test functions ¢ € D(O).

Proof of Theorem 11.1. We only allude the proof which uses very similar arguments as those
presented in Section 10 and that can also be partially found in [124, 244]. In the one hand,
considering the mollifier (p.)e>o defined in (8.19) with z := (z,y), we get that g. is smooth and
satisfies

ge 7 9 in leoc,zHl{)c,va MgE = GE — G in ngoc,rH_l

loc,v?
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which is nothing but a variant of [127, Lemma II.1]. The function g. being smooth, for any 8 € C?
such that 8 € C}, we may differentiate 5(g.) and we get

MB(ge) + B"(92)|Vwge|* = B'(9:)Ge in O,
with. We may thus pass to the limit as ¢ — 0 and we obtain (11.14). O

We also write without proof (since this one is similar to the proof of Proposition 8.10) a stability
result that we will use several times in the sequel.

Proposition 11.2. Let us consider three sequences (gi), (bx) ofLIQOC@Hllocm and (Gy) OfLIQOC,zngi,v
such that

v-Vagr — b - Vogr — Apgr = G in D'(O)
for any k > 1 and three functions g,b € L? Hllocm and G € L2 _H~' such that g, — g strongly

loc,z loc,z*"loc,v

in L12007Q:H1 b — b weakly in L2 _(O) and Gy — G strongly in L2 _H, ' . Then g satisfies

loc,v? loc loc,z""loc,v*

(11.12) and, up to the extaction of a subsequence, Ygr — vg a.e. on X\Xo.
(2) If gi, — g weakly in L, .(O) then g satisfies (11.14) and, up to the extaction of a subsequence,
Yok =g on X\Xg (we recall that the renormalized convergence has been defined in (8.48)).

11.2. Well-posedness problem with inflow term at the boundary. We consider the kinetic
Fokker-Planck operator £ defined in (11.1) and we start revisiting the well posedness problem

(11.15) A=L)f=F in O, rv_f=gon X_,
for given data §: O - Rand g: X_ — R.

For a given weight function m : R? — [1,00), we define the measure d¢,, := m?|v(z) - v| dvda,
on the boundary . We next define L?H}, = L2H} (O) the space associated to the Hilbert norm
defined by

£ 2, = £z, + IV fl1Zs

and we assume that m satisfies the Poincaré type inequality
Vm
(11.16) HfW”L%L N HfHLQH?l”a VfelL’H,,.

Such a Poincaré inequality is classically known to be true when m := .# =7, .4 is the Maxwellian
(11.9) and ¥ > 0. We also define

L*H,' = {§ = g +div,G; ¢,G; € L2,(0)},

so that when m = 1 the space L?H,,,! is nothing but the space of continuous and linear mappings

on L2H!. For § € L?*H,;! and f € L?H},, we may thus write

(&, fm?) < I8l g2 gyt I f 1l 22y, -
We finally define in this context
Wy :={feL?H\; ©-V,f € L*H'},
and
Ways == {g € Wa; vg € L*(Z;dEn)},
with W 5y # Wa in general.

Theorem 11.3. Let us fiz a vector field b € H _(O), a function ¢ € L>(O), a weight function
m: R% — [1,00) and let us assume that b/{v) € L>(0), that (11.16) holds and that

Am?
2m?

For any § € L?H,,}, g € L*>(X_;d¢,,) and X > \*, there exists a unique solution f € Wa s to the
Dirichlet problem (11.15). We have furthermore f >0 if § > 0 and g > 0.

L. Y
2 m

(11.17) Afi=ess supw < 00, w:=c+
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A similar result is proved in [117, Appendix A] in the case Q2 = R%. Also observe that (11.17) holds
with m := .#~/? when .4 is the standard Maxwellian (11.9) and b(v) = Jv, with ¢ > 1/2.

Proof of Theorem 11.3. We split the proof into five steps.

Step 1. A priori estimates. Multiplying the first equation in (11.15) by fm?, performing several
integrations by part in the velocity variable and using the Green formula, we have

Lo=mrmt <5 [apimte-os [ 9,0Pm = G m).

Fixing A > \*, using the Young inequality

1
IS o=t | fll2ms, < (m
and the boundary condition on the incoming set ¥_ in (11.15), we deduce

. 14— A*
11.18) =X [ Pt [ g+ [V 0Pmt € SES 8+ [ g
+

1 A= 1
5 I8 s + 522, + 5190 2

e Because of the first equation in (11.15) and the above estimate, we find

| =

(11.19) 0 Vaf =—~@F - A +Auf+b-V,f +cf) € L?H,",

—~

v)
so that f € Ws.

e Multiplying the first equation in (11.15) by f, ¢ := v(z) - om? where here and below we use the
notations ¥ := v/(v), ¥ :=v/(v)?, (v)? ;== 1+|v|?, and using the Green formula and one integration
by part in the velocity variable, we get

3 [orPw opm? = 5 [ Po-Daomt = [ (9,¢P0

+ [ 9=V + [ Pole=3)+ G o)

Observing that
| SON <8N Loz 1 Fv (@) - Ollomy, S IS 2 11 L2,

and

1FVetllze S NI Z2m
recalling that b/(v) € L*°(0O) and using the Cauchy-Schwarz inequality, we deduce
(11.20) 17 flZesiaez,) < CA+IFINZ2m, + ClISI 2 Il L2y,
for some constant C' = C(b, ¢, m,v), with d¢2, := (v - 9)*m?2dvdo,.

e For latter reference, we establish an estimate about the behaviour of the solution near the
boundary. We now introduce the following Lions-Perthame [230] type weight function

(11.21) ¥ = 26(x)?u(z) - b,
and we observe that ¥ = 0 on X, (v)¢ € L>®(0), V¢ € L*°(0O) and
v-Vaptp = W(@ cv(x))? +26(2)Y%0 - Dyv(x)d.

Multiplying the first equation in (11.15) by fi, we have

%/Ov-vrf%—/of%-vvf<v>w+/ovv<fw)-vvf+/O<A—c>f2w=<F,fw>.

Using Cauchy-Schwarz and Young inequalities, we deduce

H.oy 2
(11.22) /L f?%m < OO+ N3 + 1F W),

for some constant C' = C(b, ¢, n).

e We finally state a somehow classical regularity estimate when F € L2 (O). Taking advantage
of the fact that F € L2, and f € L?H]}, and localizing the problem by introducing the function
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g:=fxe € LiH&(Rd X Rd)v Xe € 052(0)’ lo. <x <10, := {(CC,U) € 0; i(z) > ¢, |U| < 1/8}7
we have
v-Vaeg — Ayg + (v)2g = G in D'(R? x RY),
with
G:=(F= A —cf—b-Vuf)xe = 2Vuf Vixe + ()2 fxe € L*(R? x RY).
From the quantitative Hormander’s hypoellipticity estimate of Hérau & Pravda-Starov [189, Propo-
sition 2.1], we then have
1D gl + 1D2gll > S 1G] 22 + llgll e

Coming back to the function f and using the previous estimates, we deduce
(11.23) 1D fll 20,y + I1D2fllL2c0.) < CUIL 20y + 1f ]l L2(0));
for a constant C' = C'(\, &) > 0.

Step 2. Existence. We assume g = 0. A possible way for proving the existence is to use Lions’
variant of the Lax-Milgram theorem [225, Chap III, §1] as in [32, 117] and as we proceed now.
Defining the bilinear form £ : L2H} (0) x CL{(OUX_) = R, by

E(fg) = /O (A= L) fom?
= / Af=b-Vof —cflem?® + Vi f - Vi (pm?) — f(v- Vap)m?
(@]

for any f € L2H},(O) and ¢ € C}(O), we observe that this one is coercive, namely
1
o) = [O-mmtt [ [VupPm+ g [ (oePde,
o o Ol

Kl el

for any ¢ € CL(OUX_), with k := min(A — A*,1) > 0. From the above metionned Lions’ theorem,
for any § € L2H,,!, there exists f € L2H}, such that

(11.24) E(f, ) = (§,om?), VepeCHOUX.).

In particular, f satisfies the first equation in (11.15) in the distributional sense D’(O), and thus
from (11.19), we deduce that f € W,. Thanks to the trace Theorem 11.1 and the estimate (11.20),
the function f admits a trace vf € L*(2;d€2,). Using the Green formula (11.14) with 8 = id € By,
we have

(11.25) // A + Fp) dvdx = // vf e v(z) - vdudo,,

for any ¢ € Dy(O). Particularizing to ¢ € D(OUY._) and comparing with (11.24), we deduce that
v-f=0.

Step 3. Existence. The general case g € L*(X_;d¢,,). When g € C2(X_), there exists a function
h e C2(OUX_) such that b5, = g and we consider the source term G := §+ (L — \)h € L?H, !
as well as the problem

Y

AN=L)yg=GinO, y_g=0onx_.
From Step 2, there exists a solution g € Ws 5y to this problem and we set f := g+ b. In such a
way that f € W5 5 and satisfies

Lro-e9e = [ g0-29e+ [ no-c
/th+/)\ L)bhp — /h‘gcpuv
and thus

(11.26) /f)\ L) /&gp / gpv-uv,

for any p € C2(O U X_). Together with (11.25), we get that y_f = g on ¥_. In order to deal
with the general case g € L%(X_; d¢,,), we introduce a sequence (g") of C2(X_) such that g" — g
in L2(X_,d¢,,) and we next consider the associated sequence of solutions (f™) of Wa s just built
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above. Using the estimates exhibited in Step 1, we get that (f™) is a Cauchy sequence in Wa, so
that it converges to a limit f € Wy 5. We may pass to the limit in (11.26) written for the sequence
(f™) and deduce that the same equation holds at the limit for f.

Step 4. Uniqueness. Consider two weak solutions f; € W5 to the equation (11.15) in the sense that
E(fi,p) = (§,om?), Ve e C(OUD).
In particular, the difference f := fo — f1 € W5 satisfies
E(f,9) =0, Vpeli(OUB),

and from the above discussion v_f = 0 € L?(X_;d¢,,). Thanks to the trace Theorem 11.1, we
deduce that vf € L% (3;d&,,) and we may choose 3(s) = s? in the Green formula (11.14): we get

loc

/OfQ{v-szo—divv(bw)+Avs0+2f(c—k)s0}—2|va|2s0:/ (vf)?v - ve,

Xy

for any test function ¢ € C2?(0). Choosing ¢ = m2x,, with x,(v) := x(v/0), x € C?(R),
1p, < x <1p,, we deduce

1 vm
/ PPN —@)x, + 30 VXe = — Vo - Ax,} <0.
o m

Because f € L2H} , we may pass to the limit ¢ — oo thanks to the dominated convergence theorem
and we obtain

/ Pm*(\—w) <0,
(@]

and thus f = 0.

Step 5. Positivity. We assume now that § > 0 and g > 0. We proceed similarly as in the previous
step by considering 3(s) = s2, ¢ = m?x . Letting M — oo, we deduce

| £mro-=) <o
o
and thus f_ = 0. g

Summing up, gathering the above estimates (11.18), (11.19), (11.20), (11.22), (11.23), we see that
there exists a constant C' > 0 such that any function f € D(L) satisfies

. V-V
(11.27) ||f||L2H},1 + |9 wa”ﬁH;f + ||fm”L2
+vfllzeaez) + v+ fllzzcsiae,) < CUf e + 1££]c2)
and for any € > 0 there exists a constant C; such that any function f € D(L) satisfies

1D fllzzo.) + 105 fllzo.) < Cellfllee + £ 22)-

11.3. Well-posedness problem with reflection condition at the boundary. We consider
now the well posedness problem associated to the stationary equation

(11.28) AN=L)f=F in O, v f=Ry+f on X_,

for a given datum § : O — R, where the kinetic Fokker-Planck operator £ is still defined by (11.1)
and the reflexion operator & is described in (11.6), (11.7), (11.8).

Theorem 11.4. Let us fiz a vector field b € HL _(O), a function ¢ € L>(O) which satisfy the
assumptions of Theorem 11.8 with a given weight function m : R — [1,00) for the pure specular
reflection case a = 0 and with the weight function m = .# =2 when o # 0, where .# is the
Gaussian function (11.9) or a more general equilibrium satsifying (11.10). In that last case, we
furthermore assume one of the two following conditions

(i) 1=+ a?/2 > 6, >0, and we observe that L?(%;d¢,,) € LY(X; d€),
(ii) (v)2 4 € L', and we observe that L?(%;d¢2,) € LY(3; d€),
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where we recall that we have defined d¢,, := m?|v(x) - v|dvdo, and d&2, := m?(v(x) - 9)?dvdo,.
For any § € L>H .t and \ > \*, there exists at least one solution f € Wo to the Dirichlet problem

m

(11.28). Assuming furthermore that

(11.29) A™ :=esssup (¢ — divh) < oo,

and X > \**, the solution f is unique and f >0 if § > 0.

It is worth emphasizing that the assumptions of Theorem 11.4 hold when b = v and m := .# /2.
We also emphasize on the fact that the additional assumptions (i) or (ii) are made in order to
prove the uniqueness of the solution during the proof.

Proof of Theorem 11.4. We split the proof into four steps.

Step 1. A priori estimates. We multiply the first equation in (11.28) by fm?2. As in Step 1 of the
proof of Theorem 11.3, we get

/O (=) fPm? + / (v f)mv v+ /O IV, fPm? = (5, fm?).

Using for instance [51, Lemma 3.1], we have
(11.30) /(’yf)zmzv 0> / (1= Q4 )* + (D ) dem =: Eca(v4 f) = 0,
b oy

with D+g := g — Dg. Using that the contribution of the boundary is nonnegative in the first
estimate, we first deduce

A=) flIZe, + VAL, < I8l eprz 1|2,
for A > \*, so that
min(A = A D fll 2y, < 18]l p2po-
From the three above estimates together, for A > A\*, we obtain
1 1
11.31 A — 22/vv22—5a <——— 1512, s
sy [ wmt s [ VP () € e I8l

There is no difficulty for also getting the pieces of information (11.19), (11.20), (11.22) and (11.23),
so that in particular f € Ws. It is worth emphasizing here that when (v)2.# € L', we have
L2(d€2)) C LY(Z; d€) by using the Cauchy-Schwarz and (11.20), so that in particular the boundary
condition is well defined.

Let us show now how the last conclusion also holds under condition (i) in the statement of the
Theorem. We then assume ¥ = 1 in (11.10) and we show how to establish an additionnal a priori
estimate. We indeed know from (11.20) that

[ @) omPdude, < [ ()06 midods, < O8Iy

and similarly as in [16] or [244, proof of Lemma 2.2] that
1= / lv(x) - v| A dv=C (v(x) - 0)2 M dv, Yz €,
5 se
for some constant C' € (0, 00), so that

1132 [ @D f) g, =C [ (@D )P 0Pmt < COMS Iy

Summing up (11.31) and (11.32), and using that

(v4+£)? < 2(DM 1 f)? 4 2(Dys f)?,
we deduce that

(11.33) = at A0 < Ol R

Defining

feEWa g :={g€ Wz v_g=%719}.
we see that Wa 5 = Wax if 1 — ¢ + «?/2 > 6, > 0, but it is worth emphasizing that we may have
Wa .z # Wa s in the general case.
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Step 2. Existence when § > 0. With the help of Theorem 11.3, we define fy = 0 and, recursively
for any n > 1, we define f, € W5 5, as the solution of

(11.34) AN=0O)fn=F in O, ~_fn=RV+fn-1 on X_.
It is worth emphasizing here that v, f,,_1 € L?(X4;d&,,) implies Z(vy fa_1) € L?(X_;d&n) be-
cause of (11.5). We also notice that f,, > 0 because § > 0. By linearity

A=L)(fot1—fn) =0 in O, v—(fat1— fu) = Zy4+(fn — fa—1) on X_,

and we thus show recursevily that f,+1 — f,, > 0. In other words, (f,) is an increasing sequence
and thus also is (v f,). From (11.30), we have

[onra, = [ S~ [ g,

Y

/ (e fo) 2 — / (B fa)2dm > Ec.o(vs ),
Sy s

so that the estimate (11.31) holds true for f,, (instead of f) uniformly in n > 1. From the
monotonous convergence theorem, there exists f € L2H}, satisfying (11.31), (11.33), (11.20) and
such that f,  f a.e. Thanks to Proposition 11.2, we have vf,  vf a.e. on X, from what we
deduce that Zv fn, — Zv. f in L?(3_;dE2)) thanks to the monotonous convergence theorem. As
a consequence, we may pass to the limit in the weak formulation of (11.34), and we get that f is a
solution of (11.28). We may also pass to the liminf in the estimate (11.31) written for f,,, and we
thus deduce that the same estimate holds for f.

Step 3. Existence when § € L2H,jll. When § € L,2n7 we may introduce the splitting § = §+ — §—,
just use the previous step for F+ and conclude by linearity of the equation. When § ¢ L2, we
proceed similarly as in [244] and in the following way. We first assume ¢ < ¢* € [0,1) and we
consider the mapping ¥ : Wo s — Wa s, g — f = ¥(g), where f is the solution to the stationary
problem

AN—=L)f=F in O
(11.35) =0
Y-f =%v+g on X_.
The space Wy s is endowed with the norm || - ||w, ,, defined by

lglliv, = = IgllZ2, + 1IVoglliz, + IvealZz e,

From (11.18) and the estimate | Zgll12(x_.de,.) < C*ll9llL2(s, a¢,,) What we obtain by repeating
the proof of (11.5), we deduce

1
CT)\HfH%?H}” + ||7+f||%2(2+;d§m) < CAHSHizH;Ll + ||=%’7+9||L2(2,;d5m)

IN

CAHSHizH;Ll + Cllvaglle s sden)

for some cosntant C > 0. By linearity of (11.35), we deduce that for two functions g1, g2 € Wa 5,
and denoting f; := ¥(g;), we have

1 *
a”fz = filLems, + v fo = v FillEegsaen) < Cllvgz = 1491 1205, e

so that ¥ is a contraction in Wy x. By the Banach fixed point theorem, we deduce that there
exists a solution f € Wa x to the equation (11.28) in that case. Finally, in order to deal with the
case (* = 1, we consider a sequence (¢) of [0,1) such that ¢ 1 and the associated sequence
(fn) of solutions in Wh 5, associated to the equation (11.28) with the modified reflection kernel
Hng = CtHg. From (11.31) and (11.20), that sequence satisfies

I fallZ2pr, + H’an”?m(z;dggn) + &1a(1+ fn) < C’\H3”2L2H,;1'

When a # 0, the above estimate or (11.33) also implies that (v f,) belongs to a weakly compact
set of L1(X;d¢). As a consequence, there exist f € Wy and 4+ two functions defined on ¥ such
that, up to the extraction of a subsequence,

fo—=f LPHp, ~yifo =72 LP(34;dER),

Vefn =4 LN(Sy3dE),  Byyfo — Ry LY(3_;dE),
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where we have used (11.11) for the last convergence. Using Proposition 11.2, we may thus pass
to the limit in the equation (11.28) satisfied by f,, with modified reflection kernel %,, and we get
that f is a solution of (11.28). In the pure specular reflection case a@ = 0, only the first line of
convergences holds, but that it is enough in order to pass to the limit in the equations (we refer to
[242, 244] for similar arguments).

Step 4. Other properties. We further assume A > A**. We proceed similarly as in [233]. Consider
two weak solutions f; € Ws to the equation (11.28). In particular, the difference f := fo— f1 € Wy
satisfies

AN=L)f=0in O, ~v_f=%y+f on X_.
Using the Green renormalized formula (11.14), we have

o—/ BN -+ 8" (F)IVFPe + () (divalbe) — v Vap — Avg) + /B’yfv ve.

for any 8 € C%(R), 8’ € C}(R) and any test function ¢ € C?(O). We choose ¢ = ¢(v) >0, 83 >0
and 8" > 0, so that

0> / B'(F)(A — ) fo + BU)(diva(bo) — Aug) + /E BOv v - v,

By an approximation argument, we may now take 5(s) = |s|, and we get

0>/ |FI{X = o) + (divy (bp) — Ay }+/|7f|v V.

We observe that in any cases we have f € L2 (O) C LY(O) and vf € L'(X;d¢). By an approxi-
mation argument, we may now take ¢ = 1 and using the L! estimate (11.11) on Z (with (* = 1),

we get
/ (T fllv -] — / e il o
> oy

/|f|{)\—6+divvb}2(x\—/\**)/ | f].
(@] (@]

We deduce that f = 0. The proof of the positivity property follows the same arguments but
choosing 5(s) = s_. O

For latter reference, we state the counterpart of the preceding result for the kinetic Fokker-Planck
evolution equation.

o
Y

v

Theorem 11.5. Let us make the same assumptions as in Theorem 11.4. For any fo € L?,, there
exists a unique solution f € C([0,T); L2)NL?(0,T; HL) for any T > 0 to the kinetic Fokker-Planck
evolution equation

(11.36) v f =Ry f on (0,00) x L_,

with L defined in (11.1) and # defined in (11.6).

{atf:,cf in (0,00) x O

The proof of Theorem 11.5 is skipped since it is a mere adaptation of the proof of Theorem 8.23
and Theorem 11.4. We refer to [331, Cor. 2 7, Lem. 2.8 and Cor. 2.8] where similar well-posedness
results are established (see also [244] for the existence part).

11.4. The first eigenvalue problem in a domain with reflection at the boundary.
We consider now the first eigenvalue problem for the kinetic Fokker-Planck operator (11.1) in a
domain with reflection at the boundary, namely

{)\f—i—v-wa—AUf—b-va—cf:O in O
V-f=%y+f on E_,
and the associated dual problem. In this section, we assume that b and ¢ satisfy the assumptions

of Theorem 11.3 with the weight function m := .# ~1/2 when a # 0 and for a given weight function
m : R? — [1,00) when o = 0 and Z is given by (11.6). We additionnally assume that

(11.38) liminf w(x,v) = —o0,

[(z,v)|—00

(11.37)
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where we recall that @ is defined in (11.17). When .# is the Gaussian function, we find

2
1
vl 2+d — §divb—b-v,

so that (11.38) holds when b is typically a bounded perturbation of the vector field by(v) = Jgv,
¥ > 1/2, and more precisely
div,b € L®(0) and  inf liminf(b- v{v)~2) > 9y > 1/2.

€N |v|]—o0

w=cC+

The above condition is quite technical but can be seen as a compatibility condition between the
thermalization due to the boundary and to the Fokker-Planck collisional operator. We are then
able to work in the functional space X := L2 (O).

Theorem 11.6. Under the above conditions, the first eigentriplet problem associated to (11.1) has
a unique solution (A1, f1,¢01) € R x X x X" with f1 > 0 and ¢ > 0.

The proof of Theorem 11.6 follows from Theorem 2.21, Theorem 4.11 and Theorem 5.16 as a
consequence of conditions (H1)—-(H5). We prove now that each of these conditions is satisfied.
Theorem 11.6 generalizes [223, Theorem 2.12] where the same problem is tackled for the zero inflow
condition (« = 8 = 0) with b = v — F(x) and ¢ = 1 by using the classical Krein-Rutman theorem
[214] in the space X = C,(O). We also refer to [175, Theorem 6.8] for a variant and somehow
generalisation of [223].

Condition (H1). From Theorem 11.4, the operator £ satisfies (H1) with
K1 = max(A*, A7),

with A\* defined by (11.17) and A\** defined by (11.29). For later reference, let us state more
precisely, the available estimates for f. On the one hand, repeating the proof of Step 1 in the
proof of Theorem 11.4, we establish that for any A > x; and § € L2, the solution f € W5 to the
Dirichlet problem (11.28) satisfies

(11.39) /(/\ @)y f2m? +/ Vo fPm? + €<a(7+f)_ . A*Hsllm.

On the other hand, adapting the proof of (11.22), we straightforwardly obtain
5 (0 V(x))g 2 2
for some constant C' = C(b, ¢,v, A). For €;,&,, 0 > 0, let us now define

(11.41) U :={(z,v) € O; d(x,00) > e, |v]| < o},

/ f2m2 S/f2m21\v|29+/f2m21.41+/f2m21Ba
Z/IC
with

Ay ={v € By, (¥ v(x))? <%}, B:={(z,v); |v| <o, (0-n)?>¢e2 d(z,00) <e,).

and compute

IN

For the second term, we have
[ s, / A £, da
ey ||f||L2H1 )

where we have used the Holder inequality with r» € (1,2*/2) in the first line and the Sobolev
inequality in the second line. For the third term, we have

A

1/2

2 9
/fmlBSm " 1/2
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Gathering these last estimates with (11.39) and (11.40), we have established that the solution f to
equation (11.28) furthermore satisfies
1/2

(11.42) f?m? < C’(L2 + 047, + m2(0) 6962 ) /SQmQ,
ue (0) g2

for a constant C = C(b, ¢,Q, \) and for any &,,¢,,0 > 0.

The strong maximum principle. Let us now consider a function 0 < f € W5\{0} which satisfies
the Dirichlet problem (11.28) associated to A > k; and a source term 0 < § € L2, NL*. In order to
simplify the discussion, we assume that the normalization || f||z2 = 1 holds. For proving the strong
maximum principle, we briefly explain how we may adapt the arguments we have presented for the
diffusive equation in Part 7 by taking in particular advantage of the above established estimates,
the regularity results established in [163, 174] and some spreading positivity results we learnt in
[319, Corollary A.20]. We proceed in three steps.

Step 1. On the one hand, from (11.42), we may choose conveniently o~ !, ¢,,, > 0 small enough
in such a way that

1
|t < S,
Z/{C
where U is defined by (11.41). Because of the normalization condition, we have
(11.43) | P =112
u

and consequently f(zo,v0)? > 62 := || f]|2. (2] 1|2, )~ for at least one point (o, vo) € U.

Step 2. On the other hand, let us recall some integrability and regularity results established in
[163] for a solution ¢ to the kinetic Fokker-Planck evolution equation

Og+v-Veg=A2,9g+B-Vyg+s in V,
or a sub-solution
O g+v-Veog<Ayg+B-Vyg+s in V,
for some bounded set V C (0,7) x O, s € L?(V) and B € L>®(V). For that purpose, given some
(t*,x*,v*), we define
Qr = {(t,z,v); t € (t* —r* t*], |l —a* — (t —t* ¥ < r®, Jv—v*| <7}
We claim then that there exist 2 < p < ¢ < 0o, & € (0,1) and for any 0 < r; < ro there exists C
such that
(11.44) lgllr@.,) < CUgllzz@.y) + Isllz2@.,))

for any nonnegative subsolution g on @, from [163, Theorem 6],

(11.45) lgllz=(@.,) < Clgll2@.y) + IsllLa@,,))

for any nonnegative subsolution g on @, from [163, Theorem 12] and

(11.46) 9llca(@rn,) < CUlgllzz@.y) + Islze@.,))

for any solution g on @y, from [163, Theorem 3]. As a consequence of (11.44) and a classical
covering argument, for any bounded set U C U C O, there exist Cp = Co(Uf) and Cy = C1(U, N)
such that

I f ey < Co (I fll2co) + IS+ cf = Afllz20) < Cilllfllz2co) + 151 z2(0))-
Observing that for o = p/2 > 1, we have

V-Vl = Ay fe—b-Vofe+ of NN —ef —F) = —4(%”|V<f9/2>|2 <0,

so that f¢ is a weak sub-solution to the kinetic Fokker-Planck equation, we may repeat the argument
and obtain in that way that f € LP*(U) for any k > 1, with py, := 0¥2. Now, choosing k such that
pr > q and using (11.45) (as well as again a classical covering argument), we get

I fll ey S Nfllzo) + I8+ cf = Mllzaoy S Ifll2o) + 15 Leo)-
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Using finally (11.46), we deduce that there exists a constant C' = C(U, A) such that
I fllce@y S N fllz2o) + I8l (0)-

Together with the conclusion of the first step, we deduce that there exists a constructive constante
ro > 0 such that f > 001 5((z0,00),r0)-

Step 3. From [319, Corollary A.20], we deduce that for any bounded set & C U C O, there exists
a constructive constant § = §(do, ro,U) > 0 such that

f(z,v) >0 forany (z,v)€U,
where it is worth emphasizing that the hypothesis b, ¢ € C(O) made in [319, Corollary A.20] is not

really necessary and can be replaced by b,¢ € L (U). Because U may be choosen arbitrary, we
have established that f > 0 on O and the strong maximum principle.

Condition (H2). For a given function 0 < hy € C2(O) normalized by [|hol|,2 = 1, we define
fo € D(L) as the solution to

(k1 =L)fo=ho in O, v_fo=%v+fo on X_.

Taking advantage of the fact that hy has compact support, we compute
1= [ wgu = [ (= £)jaom® = [ ol — £ (hom?) < il
o o o
with Oy := [[m~ (k1 — L*)(hom?)||z2. On the other hand, from (11.27), we have

0.V
(11.47) [ foll L2z, + HfoéleL2 < Co,

for a constant Cy only depending on [|ho| 2 , 51 and the constant C' which appears in (11.27).
Arguing as in (11.43), we deduce that

(11.48) / fém? > (201)71, suppho C U,
u

with U = U, defined in (11.41) and ¢ > 0 small enough (chosen constructively from Cy and Ch).
From the above constructive strong maximum principle, we deduce that fo > €1y > 1/Cohg for
some g,Cy > 0. We conclude as in the Second constructive argument for (H2) in Section 7.1.
Coming back indeed to the equation, we have

Lfo = k1fo—ho > k1fo — [lhollL=1u > (k1 — [[ho|| L= Co) fo,
so that (H2) holds with k¢ := k1 — ||ho||L=~Co from Lemma 2.4-(ii).
Condition (H3). Let us fix k¥ < kg arbitrary. We define Bf := Lf —nxg(v)f for any f € W3 4,

with xg € D(R?) such that 15, < xr < 1p,, and for some given n, R > 0 to be specified below.
We observe that, at least formally,

1
[rrw-0r = [ @-x-nwrmt - [ apmivo- [ (9P,
o by o
Thanks to (11.38), there exists a constant R > 0 such that

sup w < K.
vERI\ B

Choosing n := supwy — k, we deduce that w — k — nxr < 0. On the other hand, because of
(11.30), the contribution of the boundary term in the above identity is non positive. We thus
deduce that (B — k) is dissipative in L2,. We now establish that the associated operator B has
compact resolvent. For § € L2, we consider f € L2, the solution to

(11.49) —Bf=% in O, y_f=%vy+f on X_,

which existence follows from Theorem 11.4. From the above discussion (with k = —1) and the
same arguments as in Step 1 of the proof of Theorem 11.3, we have

(11.50) /f2<w>_m2+2/|vvf|2m2 S/%QmQ.

Together with the regularity estimate (11.23) and the compact imbedding H?/3(U) C L*U), we
conclude that B has compact resolvent. The operator A on L2, defined by Af := nxr(v)f being
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bounbded, we may apply Lemma 2.8-(2) and we deduce that (H3) holds for both the primal and
the dual problems.

Condition (H4) is nothing but the yet established strong maximum principle.

A variant of condition (H5). Consider (f,\) a pair of eigenfunction and eigenvalue such that
A € Xpi(L). Arguing similarly as in the proof of condition (H5) in Section 7.1, we know that

Lf=idf, 9eR, L|f|=0

and introducing the real and complex part decomposition f = g + ih, we have

1
/O Wwvh — hV,g* =0,

and finally gV,h — hV,g = 0 a.e. on O. Because of the regularity estimate presented during
the above proof of the strong maximum principle, the functions f has Holder regularity, and
thus g and h are continuous on O. Because |f| Z 0, we may claim that there exists a point
(x0,v0) € O such that h(zg,vg) > 0 for instance. Denoting by w the connected component of
{(z,v) € O; h(xz,v) > 0} containing (z¢, vg), we have V(g/h) = 0 on w, and thus g = a(z)h on
w for some continuous function a : 2 — R. Coming back to the eigenvalue equation that we may
write in the following system form

Lg=—0h, Lh=71g,
we compute
—vh = E(och) =alh—hv-Vya = avg —hv-Vza on w,
so that
—9=0a?9—v-Vya on w.
We deduce that « is a constant on w and finally ¥ = 0. We have thus established that A = A;.

At this stage, we may use Theorem 2.21, Theorem 4.11 and Theorem 5.16, in order to get the
conclusions (C1), (C2) and (C3) about the existence and uniqueness of the eigentriplet (A, f1, ¢1)
which satisfies f; > 0, ¢1 > 0, A; is algebraically simple and on the triviality of the boundary
punctual spectrum.

We briefly explain how we may deduce the stability of f; by adapting some arguments developped
in [241] and already mentioned. On the one hand, we know from [241, Lemma 1.1] that any solution
f to the rescaled evolution equation (11.36) with £ replaced by £ = £ — \; satisfies

Ou(H(X) frepn) + dive (vH (X) f1¢1) — dive($1 Ve (H(X) f1/¢1)) = —H"(X) frp1 [V X,
for any convex function H : R — R and with X := f/f;. After integration, we get

d

(11.51) G [ HO R0+ [ 0B Ro =~ [ H'(OA0V.XP,
dt Jo ) o

When H(s) := |s|, the boundary term is

/Ivflwﬁw'v = / |7+f|<%’*7—¢1v-v—/ | By fly— 1|y - vl
) o >

Y

[ betl@soiv-ol = [ @thooly-vl =0,
> >
from what we deduce the non expansive property

(11.52) / | e, |d1 S/ | fiol®1, Vi1 >1to>0.
o o
On the other hand, from the Cauchy-Schwarz inequality, we have

(B [)? < (Bve f1)R (V4 2 /74 1),
so that

/z, gﬁ) iy v|</ RO L2 [y fr-uly vl
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and finally
/E(’Yf)Q(“/fl)_l’Wl v-v<0.

When H(s) = s2, the equation (11.51) and the last inequality imply

(11.53) T | nonnr ez [ polvinr <o,

We next recall a classical compactness result.

Lemma 11.7. Let (g,) be a sequence of functions such that

(gn) is bounded in L>=(0,T; L2, ,..) N L*(0,T; L2 Hul,loc)

zv,loc x,loc
and
Otgn + v - Vg — Aygn = G, bounded in leoc,

then (gn) belongs to a strong compact set of L3 .
Proof of Lemma 11.7. We just sketch it. Because
Otgn +v - Vg = Aygn + G, bounded in waHv’l,
the usual averaging lemma in [164, 125] implies that
(gn * p) belongs to a strong compact set of L7,

for any p € D(R?). On the other hand, introducing a mollifiers sequence (p.) and writing then
gn = (9n — Gn * pe) + Gn * Pe,

we see that the first term is small uniformly in n as € — 0 and the second term is relativelly
compact thanks to the first step, from what we immediately conclude. O

Now, for 0 < fy € Lén’ we introduce the sequence fo 1 := (fo A k)1y, € L2(fy ¢1) N L2, with
U, = {(z,v) € O;(x) > 1/k, |v] < k}, and the associated solution fr € L°°(0,T;L?) N
L?(0,00; L2H}). Because of (11.53), for any increasing sequence (t,) which converges to co and
for any function ¢, € D(O0), 1y, < ¢m < 1, the rescaled and truncated function g,(t) :=
fe(t + o) fr e M) meet the hypothesis of Lemma 11.7, from what we classically deduce
that the sequence of f,(t) := fi(t 4 t,)f; e~ (Ftn) is relatively strongly compact in L? . Re-
peating the proof of Theorem 4.20 and Theorem 5.23 (see also [241, Thm. 3.2]), we deduce that
Fu(t) = (fox, 1) f1 as t — co. Together with the above non expansive property (11.53), we deduce
that ft — <f0, ¢1>f1 in Léﬁ as t — o0.

We summarize our convergence result in the following theorem.
Theorem 11.8. For any fo € L?, the holds f; — (fo, ¢1)f1 in Lél as t — oo.

Theorem 11.8 generalizes [223, Theorem 2.18] and [175, Theorem 6.8] for the zero inflow condition
and [5, Theorems 1.6 & 1.7] for the torus case. It is worth emphasizing that in these papers
the longtime convergence is established with exponantial rate (with constructive estimate in [5]).
In [223] the proof is based on a representation formula for the associated semigroup S which is
proved to have a kernel p; € (L' N L N C°°)(O) for any t > 0 (see [223, Thm. 2.4 & 2.6] as well
as [297, 192, 222]). One then classically deduces that S; € #(X) for any ¢ > 0 and X = LP,
p € [1,00], or X = Cy (see [223, Thm. 2.18]), and next one may apply Theorem 5.28.

We follow now a similar approach as in [223, 175]. We start with a series of technical results. Here,
we make the additional assumption

(11.54) wh(x,v) ;== sup wy(x,v) < Kg < 00,
1<p<oo
with
2 —p) Am 2 |[Vm,|? 1 div(bm?
wp::( p) p_|__/| 2p| te— = (pp)
pomy P m? p mp

and my, == Y ananttd
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Lemma 11.9. For any fixed k < kg there exists o, > 0, 0, > 0 and ko € R such that defining
Af = SQU (’U)CQ(E (x)f thh gp'u € D(Rd)’ 1"U|§pv S gp'u S 1"U|§2Pu’ Cp:c € D(Q)7 15(I)2pr/2 S CQz S
15(2)>0,, and next B:= L — A, there hold

(11.55) 1Sl @2y < €, VE>0,
(11.56) ISs®llzws,) < €™, Vt=0, Vpe (200

Proof of Lemma 11.9. We first recall from Step 1 of the proof of Theorem 11.3 and (11.30) that

- [1vapmt =5 [t o [ e

—/|Vf|2m2—|—/wim2
and, with v defined in (11.21),

~5 [ PV = [ 1 Vustowr [Vt Vs = [ et

< —/f2wdvdx+c/(f2+|w|2).

(Efv f)L?n

IN

(_‘Cfa f)Li

Defining then m := m — 1, with 8 > 0 small enough, and summing up the two previous estimates,
we get

@t < -6 [ PEEEE 5 [1vsnt + [ famt .
Similarly as in (11.41), we define
U :={(z,v) € O; 6(z) > 0z, V| < 0v},
and we observe that
U*Cc AuUBUC,
with
A:={v € B,,, |[0-v(@)|<e}, B:={v€ DBy, [0-n|=>cy d(z) <o},
for some e, > 0, and C':= By . We next repeat the proof of (11.42), and we get
1/2

2,2 < - 2/r 2 2996 /2 1 /2 2
Z/{Cfm < (o /|V fIF+m(o ! 1/2 +w_(pv) [roo_m”.

Observing that

/fQ(wm2 +1)< ﬁ/fzmQ + C,{/ f2m?* + C, f?m?
u Ue
with Cy; :=sup(w + 2 — k)4 < 00, and A > C, 1y for n := Cj, altogether, we conclude with
(Bfs frz, < &l flL2 -

We then classically deduce that (11.55) holds.

Similarly as for the first estimate and in the proof of [246, Lem. 3.8], for any smooth, rapidly
decaying and positive function f, we have

Jeensg = [C o ooy 190, s+ [ gz,

From Darozes-Guiraud (or Jensen) inequality, we know that the first (boundary) term is nonpositive
(see [113] or [244, Rem. 6.4]) and we then classically conclude to (11.56). O
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Lemma 11.10. There ezists a finite family 2 =pg < p1 < --- < pr < 00 and « € (0,1) such that
such that both C = B, L, for any T > 71 >0 and V CC O,

T
(11.57) / HASC(t)fOHLf;gpj dt < ngfl||fo|\L;1;j;jlil, j=1...,k,
(11.58) sup |[lASg(t) follL= < Cprll follLree,

te(r,T]
(11.59) sup |1S5(t) follcavy < Ol follLoe-

te(r,T]

Proof of Lemma 11.10. For 0 < fo € L?,, let us denote f := Sify which thus satisfies the PDE
Of—Bf=s:=cf in D'(0,T)x 0O).

Let us fix two open sets U; such that [7,T] x supp{ x supp( C Up CC Uy CC (0,7) x O. From
[163, Thm 6] and a covering lemma, there exists a constant Cy > 0 and p; > 2 such that

£l zer o) < Co(lf 2wy + Isllz2qwy))-

The estimate (11.57) for j = 1 then follows from Theorem 11.5 (and the classical underlying energy
estimate). On the other hand, [163, Thm 12] similarly implies that there exists a constant Cj, > 0
and p € (p1,00) such that

1fllzwo) < Cr(llf 2wy + IsllLewwy))s

and interpolating with the previous estimate, we get

£l e o) < Ci—1(If 2wy + Isllpri-rny)s Vi, 2< 5 <k—1.

The growth bound (11.56) and the two last estimates imply (11.58) and (11.57) for any 2 < j <

J
k — 1. Finally, [163, Thm 3] similarly implies that there exists a constant Cx+1 > 0 and a € (0,1)
such that

[ flleews) < Crar (I fllz2@y) + Islle@y))s
from what we deduce (11.59) in the same way.

Theorem 11.11. Under the conditions of Theorem 11.6 and the additional assumption (11.54),
the conclusion (CE3) holds in L2, with exponential but non constructive rate.

Proof of Theorem 11.11. We introduce the splitting
Ag = MTEQ) ng = Xe9s B:=L-— Aa

with x. € C2(0), 1y, < Xe < 1y, and U := {|v| < 1/e, §(x) > e}. We next write the iterated
Duhamel formulas (with N := k + 2)

Se=V4+W=xSg,

with the usual notations (3.41) for V and W associated to the integer N := k + 2 and k > 1 has
been introduced in Lemma 11.10. Next for T' > 0 large, 7 € (0,7") small and two functions (of
operators) a and b, we define the modified convolution operator

(ax:b)(t) := / - a(t — s)b(s)ds if te€[r,T — 7]
(a*;b)(t):=0 if ¢t e [r,T — 1],

(with these notations %o = %) and by induction a* ! := a, a** := a***=D x_q for k > 2. With
these notations, we define the new splitting
Sp=V+K{+KS+K,
with
K:= T, W, %S¢, ch =W S —Wr*, S¢, KQC = (1_TI/)WT *r St

where W, := (SgA)* and v > 0. For later references, we also define recursively Z := S,
Zp:=SpAx; 291 for £ > 1, so that K = YT .=yn. The sequel of the proof is split into two steps.
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Step 1. On the one hand, we compute

T—1 t—7
=Vl < ISelieioumy [ 1] ASslt =~ $0ASk 1 (s)dssoll gy
T T
< CT/ / L ASE (1) AZk—1(s) foll 1 dtds
T 'TT
< oren / | ASk1(s) foll 2, ds,
and thus
(11.60) IEN(T) foll Lz, < Crllfollrz,,

where we have used (11.56) in the first line, the Fubini theorem in the second line, (11.57) with
j =1 in the third line and several times (11.55) in the last line.

For k < kg, we may choose £ > 0 small enough such that (11.55) holds. From the very definition
of A and Sp, we may thus fix kg € (k, ko) arbitrary and next T" > 0 large enough such that
IV(T)|| w12, < 3e"#T. We may next use (11.55) and fix 7 > 0 small enough such that

| KS(T) | #r2,) < 7Cr < 2e™BT.
Last, because of (11.60), we may fix v > 0 small enough, in such a way that
155(T) follzz, < nW)IEN(T) follzry, < g€ [ foll 2, -

The three last estimates together, we have established

(11.61) IV + K§ + ED)(T)llszz,) < =T

Step 2. Performing the same kind of computations as for proving (11.60) and in particular using
(11.57), we get

T
=, o d
| 1426 ol s

IN

T T—71
/ / ||.ASB(t).AEj,1(S)f0||L5{+1 dtds
0 T Pj+1

IN

T
con / IAZ;1()foll 2y s,
0 j

for j =1,...,k, and with pg41 := co. Tterating and using (11.57) with j = 0, we get

T
/ ||A5k(8)fo||L$,§dS S ||f0||L$n'
0

Similarly, we may write

t
sup [ASki follsse < sup / | ASss(t — ) AZx(5) fol| s ds
[7,T] te[r,T]Jr
T
< sup [ASE(S)] ) / | AZ4 () foll s s,
tel[r,T] T

thanks to (11.58), and

T—1
K folloaoy < / [1S(T — 5)AZg+1(5) follco @, ds

C&T sup | AZk41 folles
[7,T]

IN

thanks to (11.59). The three last estimates together and the compact support property suppy, CC
O imply

1K folleenrz, S lfollzz,, Vfoe L2,

from what we deduce that K € ¢ (L2)). We may apply Theorem 5.28 in order to conclude. [
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12. A MUTATION-SELECTION MODEL

In this section, we consider the mutation-selection evolution equation associated to the mutation-
selection operator

(12.1) Lf=Jxf—-W()f

defined on functions f : R¢ — R, where .J is a the mutation kernel, * stands for the convolution
operator and W is a confining potential.

12.1. Almost regular mutation kernel. We assume that the mutation kernel J is a positive
finite measure of R which is lower bounded on a neighborhood of the origin, or in other words

(12.2) 0<JeM\(RY, J>Jlp,

for some constants J,, > 0. We also assume that the selection potential W : R¢ — R is continuous
and satisfies

(12.3) W(z) > W(0) =0, Va #0, W(x) = +00 as |z| = .

We finally assume the following compatibility condition between mutation and selection: there
exist > 0 and a bounded Borel set A C R? such that

. J(dz)
12.4 = essinf —>1
(12.4) “ 652}4% /I_Aﬁ W(x — 2) -
(12.5) J=Ji+J2, Ji€ Ccl(Rd), Kw = || 2|1 ;:/ dJy < ko = (a—1)p,
Rd

where we use the notation Ag = AN {W > g}. In the sequel, we work in the Banach lattice
X := LY(RY).

Theorem 12.1. Under the above assumptions, we can arrive to the following conclusions,

(1) The first eigentriplet problem (1.1)-(1.2) admits a unique solution (A1, f1,¢1) € R x X1 x
X', with the normalization ||¢1|| = (o1, f1) = 1, and this triplet additionally satisfies
A > ko, 0K f1 € L%W> R4 N L% (R?) and 0 < ¢; € L%W> RN L%y (RY).

(2) Moreover, L generates a semigroup Sy on X = L*(R?) and for any fo € X, there holds

(12.6) le™ S (t) fo — (b1, fo) fill L < Ce™ || fo — (¢, fo) fill e,

for any t > 0 and for some constructive constants C,a > 0.
Let us comment on the above result.

Remark 12.2.

(1) Assumption (12.4) is satisfies when W is small enough in a neighborhood of the origin. It is
for instance satisfied if W=t ¢ LY(By). That is in particular the case in dimension d =1 when W
is Lipschitz, because of the condition W (0) = 0.

(2) Assume J(x) = e~ %p(e~1a) with p € CLRY) NPRY) and p > pilp,, p« >0, so that J = Jy
and Jo =0, and W = W(|z|). We may observe that for >0 and £ > 0 small enough

: J(x —y) o P d
ﬁgﬂ}l(lj)<26 /B<W(y)<2,8 W) dy =:a > 2Bmeas{]R+ NB1} > 1,
so that (12.4) holds with A := {W(x) < 2(}.

(3) Assumption (12.4) is similar to [224, Condition (2.3)], see also [6, Assumption 2.6] and the
comparison with [6, Assumption 2.4], as well as [71, Condition (3.7)-(3.8)] and [73, p. 250, Note
added in proof.]. On the other hand, the conditions on J are relazed here since J may have singular
part in (12.5).

(4) Optimal conditions linking J and W for the existence of a spectral gap are still unknown. In
the recent paper [6], using variational methods in a L? framework, the authors obtain a quantified
spectral gap and the associated exponential stability when the mutation kernel J is additionally
assumed to be symmetric. Up to our knowledge, Theorem 12.1 is the very first result providing a
quantified spectral gap for a non-symmetric mutation kernel J.
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(5) Condition (12.4) can be compared to the condition

_ J(x—y)
G = ess sup / ——=dy < 1,
zeRY  JRd W(y)
under which no first eigenfunction may exist in X . First, we claim that \y > 0. Indeed, considering
e >0 and f. =1p_, we have

so that the condition (H2) holds for ko = —infp, W for any € > 0. Since W is continuous and
W(0) =0, we deduce that A1 > 0 by passing to the limit € — 0. Assume now by contradiction that
there exists f1 € Xy \ {0} such that

(12.7) Mfi(z) = Lfi(x /Jx— )f1(y) dy — W () fi(z)

and define, for any € > 0, the function p.(x) = m € L=(R?). Testing (12.7) against p. we
get for any € € (0,1)

0< M) smfl,saa://;’f—v;”)ﬁ(y)dxdy—/ i i) da
@
<a/f1 5+W( )fl()

and passing to the limit ¢ — 0 we obtain the contradiction 0 < A {f1,¢1) < (@—1) [ f1 < 0.
However, there always exists a principal eigenvector f1 in M*(R?), which might have an atom at
the origin when @ < 1, see for instance [73].

The proof of Theorem 12.1 follows from Theorem 2.21, Theorem 4.11 and Theorem 5.16 as a
consequence of conditions (H1)—(H5) that we establish now. Setting D(L) := L%W> (RY), we

observe that £ is an unbounded closed operator with dense domain D(L).
Condition (H1) and (H1'). We define the semigroup
Sw(t)f(z) ="V D' f(z), VfeLP, pell od,

which is clearly a positive semigroup of contractions. We next define Sy as a bounded perturbation
of Sw. It is also positive and it satisfies the growth estimate ||Sz(t)[|zr) < el/Ih?, where we
recall that || J|; stands for the L! norm or the total variation norm of J. We deduce that (H1)
holds true with x; :=1 = ||J||; thanks to Lemma 2.2-(i).
Multiplying Lf by sign f, for f € D(L), we immediately get Kato’s inequality

(sign f)Lf = (sign f)J « f = WIf| < T« [f] = WIf] = LIf].

Condition (H2). Let us define fj := %1145, where Ag is introduced in condition (12.4). We

compute
1 1
T (Lagp) a2 (7 (L) = 1)1,

(ebSIDf [J* (1ABV1V)} — 1)1Aﬁ

TEAR

Lfo

Y

= (a—1)1a, > (a— 1)%1,% = ko Jo,
where in the second equality we have used the very definition of @ in assumption (12.4). We
conclude that (H2) holds thanks to Lemma 2.4-(ii).
Condition (H3). We introduce the splitting
(12.8) L=A+B, Af:=Jixf, Bf:=Joxf—W(a)f.

Arguing as in the proof of condition (H1), we see that B is the generator a positive semigroup
in LP(R%), 1 < p < oo, with growth bound w(Sg) < k. and thus (o — B) is invertible for any
a > Ko > Ky, with

_ 1

(12.9) (e = B) M zwe < "

— Ky
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Next, observing that
(W+a)h=(a—B)h+ Jaxh,
for any h € D(L) and o > kg, we deduce that
(12.10) (W+a)a—B) tg=g+ Jox ((a—B)"tg),
for any g € X and a > ko. Together with (12.9), we deduce

— _ (0%
(12.11) (e = B)glles, < llgllze + T2 % ((a = B) "' g)[z» < o

gl e,
R

for any g € LP and o > kg. Defining W(a) := (o — B)~tA, we finally deduce from (12.10) the
identity
1

1 .
W()f = s Af + o ((a = B) AP,

for any f € X and a > k9. We may then compute

1 1 _
IW(@)fllire < —llAfllze + —llJ2[l[l(er = B) LAS e,
and together with (12.9) for p = oo, we deduce

(12.12) IW(a) fllzee < [[J1]lso

for any f € X and a > k¢. Starting from the same identity, we prove in a similar way

(0%
(12.13) V(@) fllzg < l11lloo ——

for any f € X and a > kg. As a conclusion and gathering (12.9), (12.11), (12.12) and (12.13), we
have established that

(12.14) W() : L' = Liyy N Ly,

with uniform bound for any a > kg. Observing that L%W> ﬁLz’o wy C L' is weakly compact and using

Lemma 2.13 with p = 1, we deduce that (H3) holds. We can actually strengthen the compactness
by noticing that A : L' — L{;, N W1 is bounded because of assumption (12.5). This ensures that
A L' — L' is compact, from what we deduce that W(a) : L' — L! is strongly compact for all
a > Kkog. We may thus apply Lemma 2.8-(2) to infer that condition (H3) holds for both the primal
and the dual problems.

Condition (H4). Assume that A > A; and f € D(L) = Ly, satisfy
(12.15) flo=1 20, (A-£)f >0

Denoting W := infpe W, we compute

/BR > [ v g, 212

for R > 0 large enough by taking advantage of the fact that W (z) tend to infinity when |z| — oo.
In particular, there exists xg € Bp such that

[0 253G 0

where we recall that r is defined in (12. 2) We deduce that

TNz [ ) 2 )
r 0

Using the equation (12.15), we obtain
(J * f) (=) J+0
> >
J@) 2 355 x = WiR A L Beraeh) @)
for W[R] = supg, W. With that last information and (12.2) again, we have now
Jo  Ji6 1
20 WIR]+ A~ Br(@i)

Jxf>
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and, iterating the argument, we deduce
Jm

*

f = 2(m*1)d(W[R] + )\)mfl 51er/2($£) > :7]-BR7

with 7 = J(R) > 0 for m = m(R) large enough. Choosing R an integer, we have proved that
(12.16) f>ho:=3R)1p, + Y Yn+1)1p, 5, >0.
n>R
That means that the (H4) holds, with constructive lower bound.
Condition (H5). Let us consider f € L%W>\{0} and A € C such that (5.16) holds, in particular

(12.17) L|f| = (ReN)|f] and L|f| = Re(signf)Lf.

The first equality means that Re) is an eigenvalue associated to a positive eigenfunction, and
Lemma 4.15 then enforces e = A;. Lemma 4.16 subsequently ensures that | f| € (Span f1)+\ {0},
and in particular |f| > 0. Throwing away the term W/|f| in each side of the second identity
in (12.17), we have

Ea xf)=Jx*
3?€|f| (J* f) = T *|fl.
Integrating this equation, we get
f(z) _
[T = e lF )] = )] dy =
From the positivity condition (12.2) on J, we deduce
f(@) _ f(x) _ d
P = (i f @) = Re[ 1wl = o f@)] =0, Yoy eRY eyl <1,

and thus f(x)/|f(z)| = @ for any x € R? for a constant u € C. That ends the proof of the reverse
Kato’s inequality (H5).

Proof of theorem 12.1 part (1). We may use Theorem 2.21 in order to establish the existence of
a solution (A1, f1,¢1) € (0,4+00) x L' x L™ to the first eigentriplet problem (1.1)-(1.2). From
Theorem 4.11 and Theorem 5.16, this solution is unique, f1 > 0, ¢1 > 0, A; is algebraically simple
for both £ and £* and it is the unique eigenvalue in 34 (L).

Due to (12.14), we actually have f; € L%W> N L%‘j‘,). Observing that £* is of the same type as L,

£*¢:j*¢_w¢7 j(x) = J(_x)v

and considering the dual problem as a primal problem in L', Theorem 2.21 also provides the
existence of A} > 0 and 0 < ¢] € L%W> N Ly, such that

L7¢T = Ao
Because of Remark 4.14, we have in fact A] = A1 and the simplicity of A; then yields that

Span¢; = Span¢;. This ensures that ¢; € L}W> N L‘<’§V> and also that ¢; enjoys the explicit
lower bound (12.16). Besides, we can prove

K

lp1llzes

(W)

< (|1l

)\1 1
y lp1llze < [ J1llLr | p1] o~
1 — R« Ro — Rx

by arguing similarly as for (12.13). |

In order to prove Theorem 12.1 part (2) with constructive constants we use a Doeblin-Harris type
argument

Lemma 12.3 (Lyapunov Condition). Under the above assumptions, there are v, € (0,1), T >0
and K > 0 such that

15 fllee < ALl flls + K fllor-
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Proof. Writing f; = S(t)f, we have

d
RN VIR NUSPHIA
<Wl [ 1= [ 7+ a0lf
o [l =AM
< [y 1= =il = B2 [ o

Jl1 = A
< —/ |.fel + ||||171/ | felbr,
R4\ Bgr QR R4

for some a g the bound by below of ¢; in Bg. Since

/Rd | felpr < /Rd S|folo1r = /Rd | fol 1.,

IS@FI < e IfIl+ ai(l —e N fllor
R

by Gronwall’s lemma. d

we get

Lemma 12.4 (Harris’s condition). Under the assumption above, there exists 1o € X! |, go € X4
and T > 0 such that

(12.18) Srf > go(fibo), VfeXy.
Proof. Step 1. proof of (12.18). From Duhamel’s formula (3.9) we have

Sp =S+ + (SpA) NV & Sz 4+ (SpA) N« 5,
We note that

t t
(SpA * Sp) f(z) = /0 Sp(t — 5)ASp(s) fds = /0 [A(fe %))V g,

For any R > r, © € Bp, it is satisfied that

AN = [ TSy 2 e [y
with W[R] defined as in the proof of (12.16). Then we get T
(SpA* Sg)f(x) > 1p, (x)Jte” VIR /B ( )f(y)dy-
Subsequently, we obtain that T

t
SpAx (SpAxSp)f(z) >1p, . (z) /0 Jse”WERE 4 <13R(x) /B f(y)dy) ds,

7($)
with

4 <1BR<x> I f(y)dy> = [ eots) [ seaaza ] gy

We claim that for all a > r,

/ / f(z)dzdy2|Br/4|/ F(2)dz.
r(x) J Ba(y) Bayry2(x)

Indeed, we deduce
[ seaa=[ [ ing@fead= [ 56 [ ewdd
B, (z) J Ba(y) B, (z) JR4 R4 B, (z)

and, since for all z € By, /2(),

z—x 3r
Br | ——— B, B.(z),
4<|z—a:|4 +x)C (z) N Ba(2)
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we have
/B W 2 B (2),

and consequently,

/ / f(z)dzdy2|Br/4|/ F(2)dz.
r(x) J Ba(y) Bayry2(x)

‘We have obtained that

SpAx (S5 A* S5)f(¥) 2 Lp, () J21° /27 VI / Fy)dy.
Br+7~/2(1)
Iterating the same argument we arrive to
tn
(54)"™) 5 Saf(0) = L, (2)I2 e VoY [ F()dy.
n: Byt (n—1yr/2(2)
In consequence, for R = (n + 1)r, we get
tTL
(S8 A) ™ 5 S f(x) > 1p, () J) — e~ VDI / f(y)dy.
n!
B(n—1)r/2(0)

Coming back to the Duhamel formula (3.9), we deduce

- J*t 5 — n r
Sef() 2 1. () Y Lo [ pgpay,
n=2 : (n—1)r/2

from where (12.18) follows with

- J*T " — n r
do = 3 D wizmsn

T
nl 1B(n71)7‘/2

n=2

and go :=1p,. O

Proof of Theorem 12.1 part (2). Let us consider A > 0 and f € Xy such that ||f|| < A[f]s,. For
any integer n > 1, we have

Ao = [ fort [ gor<antrim + a1
an<f7 1b0> + ﬁnA[f]¢1a

with a,, = ||¢1]|r~/infp, ¥ and B, = ||¢1||L<<>ow>/inf32 W. Choosing n4 such that §,,A < 1/2,
we deduce the constructive estimate

IN

[f]¢1 < 20, <fv "r/)O>7

and thus that (6.7) holds with g4 := (2a,,, ) 'go. Because of the constructive lower bound (12.16)
on ¢1, we have

(¢1,9r) > (20m,) " (ho, go) =: 74,

which provides (6.9) in a quantified way. The two above estimates and the Lyapunov condition
established in Lemma 12.3 ensure that we may apply the Harris-Doblin Theorem 6.3 and thus
conclude to (12.6) with constructive rate. O
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12.2. A singular mutation kernel. Here we consider a mutation kernel supported by a set of
zero Lebesgue measure, which thus does not satisfy (12.2). The kernel J € M} (R?) is defined for
any test function ¢ € Co(R?) by

d
<']7 QO> = 671 Z/ QO(O) B 07 Ly 0) Y O)Ji(ailmi)dmiv
i=1 /R

where (J;)1<i<q is a family of L' positive kernels on R and ¢ > 0 is a variance parameter. The
operator L then reads

d
) =¢! xr— ze;)d; “12)dz — x)f(x),
L) = ;/Rf( Vi(eL2)dz — W (x) f(x)

where e; is the i-th unit vector of the canonical basis of R?. This model was recently considered and
studied by [316] through a probabilistic approach. It shares similarities with a model of telomere
shortening which is under study in [135]. We show that the method developed in the first sections
of the present paper allows us to handle this model, under similar yet slightly different assumptions
on the J; and W than in [316]. In particular we consider more general fitness functions W than
quadratic ones. More precisely, we assume that W is a continuous function that satisfies (12.3)
and

d
(12.19) log W (z) = O(|z|?) as |z|? == fo — 00.
i=1

The kernels J; are supposed to be centered Gaussian distributions

M; -2
3

202

o 2T ’
for given masses (M;)1<i<a € (0,+00)? and variances (0;)1<i<qa € (0,+00)?. Similarly as in
Section 12.1, we work in the Banach lattice X = L'(R?%) and we may prove the following result.

Theorem 12.5. Under the above assumptions, there exists g > 0 small enough (quantifiable)
such that if 0 < € < g¢, then we have the following conclusions,

(1) The first eigentriplet problem (1.1)-(1.2) admits a unique solution (A1, f1,¢1) € R x X1 x
X'\ with the normalization ||¢1|| = (o1, f1) = 1, and this triplet additionally satisfies
A1 >0, f1>0 and ¢1 > 0.

(2) Moreover, L generates a semigroup Sy on X = LY(R?) and for any fo € X, there holds

(12.20) le™ S (t) fo — (b1, fo) fillr < Ce™ || fo — (o1, fo) filler,

for any t > 0 and for some constructive constants C,a > 0.

Remark 12.6. The assumption of small variance € in Theorem 12.5 replaces (12.4)-(12.5) as
a condition which guarantees the strict positivity of ko in the condition (H2), and so the strict
positivity of A\1. This property is fundamental for ensuring the existence of fi in L' and for the
existence of a spectral gap. On the contrary, for large values of €, there cannot exist f1 € L', as it
is proved in Remark 12.2-(5). The reason is a concentration phenomenon which creates an atom
at the origin for the principal eigenvector when the dispersion due to the mutations is too big. This
is already noticed in [316, Remark 5.3.1], and we refer to [60, 73, 99] for more details about the
singularity of fi1 and the concentration phenomenon.

For proving Theorem 12.5, we first show that the conditions (H1), (H2) and (H3) are verified
for the dual problem in L> = X’ = (L')’. Then we check that the Harris conditions are satisfied,
thus ensuring the existence, uniqueness and exponential stability for the primal problem.

It is worth noticing that since the J; are symmetric, we have £* = £ and the only difference
between the primal and dual problems is the Banach lattice in which it is posed.

Condition (H1) and (H1’). With the same proof as in Section 12.1, £ generates a positive
semigroup S in L' with w(S) < ||J||1 and satisfies Kato’s inequality. We deduce that (H1) and
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(H1') are verified for both £ in X and £* in X' with

d
R1 = HJHl = ZMZ
i=1

Condition (H2). In view of condition (H3), we aim at verifying (H2) with x( close enough to
k1. More precisely, we define p € (0, 1] the ratio between the geometric and arithmetic means of
the masses M;, namely

4_ M, 1/d
p e (11171(17)
EZi:lMi

C. de 1 M dl d d
' 2 k¢ 2
and we prove that there exists e such that if € € (0,ep), then (H2) is verified with
Ko = Ok with 0 := (1 — ¢34 e (0,1).
Let us fix n > 0 small enough so that

we set

€ (0,1/2],

for all i € {1,---,d}. We then define

and we compute

* x d GE‘/ 212\
Lf()( ZM 5/77 Gadm( 1) W(x) _ ZM n_c+ z( ) —W(x)

fO( Gs/n(xl) - B i—1 ’ Gs/n(xi)
n?(noi)?® i
Z \/T (1 + (n0y)? 282) wiz)

2 2

1+46 n*(no;)? a3
> —;M i €XP (m262) —W(ﬂj)

Due to Assumptions (12.3) and (12.19) on W and using Jensen’s inequality, we have
d
1-6 clzrg . 10 .
<7 i , le/d<_§ O
Wix) < 5 (féliléldMl)de <= 2 M;e
for some C' > 0 large enough. Choosing €9 > 0 small enough so that

n (77(71)
20 = T (noy)C

for all i € {1,---,d}, we obtain that
d
Lfo(x) Ca?
>0 M;e™% > 0k = K
B0y L= o
for any € € (0,£¢]. By virtue of Lemma 2.4-(ii), this proves the announced result.
Condition (H3) in X' = L. We use the splitting £ = A+ B with B¢ = —W ¢, and we aim at

proving that (2.29) holds with N = d in order to apply Lemma 2.19. More precisely, we want to
find o € L' and v € (0,1) such that for any o > kg, there holds

(12.21) | (Ri(@) 4] <ol + [ ole)eta)da
for all ¢ € LS. We have
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and, defining

Aro(z) = de™? /Rd dlx —y)J®(y/e) dy with  J®(y) := H Ji(y:),

we have
Al = A, + A,
with both A, and A, positive operators. Positivity ensures that

d d
Ay = Al =d[[Mi  and || Almx) = AL = [AY = |A ) < [TIf —d ] M.
i=1 i=1
We deduce that for any « > ko,

[(Re(@) A o < g [Astlle + rg ™[ Ris(@) Arpl| v

ool My, g A6
- kd ko + Wllpe"
For any R > 0 we have
Arp(x) dgdlBR(x)/ ®
p— - d
o 7 ey BRQS(x y)J%(y/e) dy
de=1p, () o de”"1pg () ®
oy 0w e+ SRS [ ot -0 dy
de=d & M, d aI1e, M;
< : d +—/ J®(y)d - 171
< Uovm [ omae g [ ol ]2

< ri- /<z> Den(w) dy + 226~
where

dH;'if Mi/Uz dk
QOR: mleR and ’I]R— / J® d +—OHM“

with Wgr = inf B, W. We may therefore infer that

kd— dT%, M; +
|(Raerayel], < L=t Mty i o)
0

R/Eo

Since W (z) = +oc and J®(x) — 0 as |z| — oo, we can find R large enough so that

g
<5 1M = st
i=1
and we obtain (12.21) with, recalling that xkd = (1 — ¢)x{,

d d d
w1 — 511 Mi 1-¢ 1 1
7 kd 1-¢2 1+¢ " yoen

Invoking Lemma 2.19, we deduce that (H3) holds true for £* = £ in X’ = L.

From conditions (H1)-(H2)-(H3), we infer the existence of a solution to the dual problem.

Lemma 12.7. If ¢ < go, where €y is defined in the paragraph about Condition (H2) above, then
there exist A\1 > ko and ¢ € X', ||¢1||L~ = 1, such that L*$1 = M\1p1. Moreover, ¢1 € L3y and
(P1,0) 21—~

Proof. The existence of (A1, ¢1) follows from applying Theorem 2.21. The equation L¢1 = A1 ¢
readily gives that
P1llrge < I[IJ*d1llLe + Aillénllpe < ([Tl + Ar,

and the estimate (¢1,) > 1 — 7 comes from Lemma 2.19 O

We now aim at verifying (6.7), (6.8) and (6.9) in order to apply Theorem 6.3.
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Lemma 12.8 (Lyapunov Condition). Under the above assumptions, there are vy € (0,1), T >0
and K > 0 such that

1Srfllr < el fllie + Kl fllg.-
Proof. The proof is exactly the same as for Lemma 12.3 in Section 12.1. |

Lemma 12.9 (Harris’s condition). Under the above assumptions, there exists o € X/ |, go € X4
and T > 0 such that

(12.22) Srf=(f,vo)go, VfeXy.
Proof. We prove the dual version of (12.22), namely
(12.23) Std > (6, 90)0, Vo€ XL,

where we have used that S} = S;«(T) = S (T) = Sr, since L* = £ due to the symmetry of J.
The iterated Duhamel formula (3.9) and the positivity of A and Sp ensure that

Sr > (SBA)(*d) x Sp.
We start by estimating
t
(S A *Sp)(t)p = / Sg(t — s)ASg(s)pds
0

for ¢ > 0. Since

ASg(s)o(z / bz — zer)e=WE=2e) I, (2 /e) dz

xr1+1
>e ! / Pz — zey)e *WE==e) I (2 /e) dz

1—1

1 x1+1
> 6_16_SWHM+1]J1(%) / oz — ze1) dz,
11—1

where we recall the notation W[R] = supg, W, we get
t 1y ot
(SpA * Sp)(t)b(z) > ge—tWW‘HlJl(%) / oz — ze1) d.
11—1

Using now the part Jy of J we obtain

A(SpA* Sp)(s)¢(x)
S 1|+ 1 —s r—zoe ot
> =i (&) / e~ sWllz—22e2]+1] / d(x — z1€1 — 29€1) dz1 Jo(22/€) dzo
€ € R xr1— 1
S |331| +1 |$2| +1 —sW{|z|+2 vatl wtt
Z ;Jl( - ) ( - ) [l +2] " qb(x — zZ1€e1 — 2’281) lede
and then

((S5A)"?) # Sp) (1) (x)

t2 1 1 x2+1 $1+1
> 2_26—tw[\z\+2]J1 ( |z1] + ) |332| + / / é(z — 211 — z9e1) dz1dzs.
€ 3 o

Iterating and using the successive J;’s parts of J we finally get

Se(t)d(x) > ((S5A) Y x Sp) ()(x)

d
> B —d Wil +d] jo (|x|_+1)/ ?(y) dy,
(~1,1]

— d! €
which yields (12.23), and so (12.22), with
T rwielsd o (21
@[Jo(x)—ﬁs e J (—5 )

and go = 1[,171]d. O
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Corollary 12.10. Consider € < eg. Then there exists fi € Xy such that Lfi = A\ fi1 with
(f1,91) = 1. Moreover, the exponential convergence (12.20) holds for some constructive constants
C,a>0.

Proof. Similarly as in the proof of Theorem 12.1 part (2), we can infer from Lemma 12.9 that (6.7)
holds with gp = Crgo where Cr > 0 is an explicit constant. The Lyapunov condition (6.8) is
established in Lemma 12.8; and the positivity condition (6.9) readily follows from the estimate
(¢1,9) > 1 — v established in Lemma 12.7. We can thus apply Theorem 6.3 which, together with
its attached Remark 6.4, gives the conclusion. O

Proof of Theorem 12.5. It only remains to prove the uniqueness and strict positivity properties.
Combining (12.22) and (12.22) with ¢ = go, we get that

Serf = Sr(Sr5) 2 (fb0)Sran = ([ 68)tf v = 2445, v}

for all f € X . Since ¢ > 0, this ensures that (4.8) is verified, and then (H4) because of point (4)
in Lemma 4.6. This gives the result of uniqueness and strict positivity by using Theorem 4.11. O
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