SSTVOS: Sparse Spatiotemporal Transformers for Video Object Segmentation - Archive ouverte HAL
Communication Dans Un Congrès Année : 2021

SSTVOS: Sparse Spatiotemporal Transformers for Video Object Segmentation

Résumé

In this paper we introduce a Transformer-based approach to video object segmentation (VOS). To address compounding error and scalability issues of prior work, we propose a scalable, end-to-end method for VOS called Sparse Spatiotemporal Transformers (SST). SST extracts per-pixel representations for each object in a video using sparse attention over spatiotemporal features. Our attention-based formulation for VOS allows a model to learn to attend over a history of multiple frames and provides suitable inductive bias for performing correspondence-like computations necessary for solving motion segmentation. We demonstrate the effectiveness of attention-based over recurrent networks in the spatiotemporal domain. Our method achieves competitive results on YouTube-VOS and DAVIS 2017 with improved scalability and robustness to occlusions compared with the state of the art. Code is available at https://github.com/dukebw/SSTVOS.

Dates et versions

hal-04090617 , version 1 (05-05-2023)

Identifiants

Citer

Brendan Duke, Abdalla Ahmed, Christian Wolf, Parham Aarabi, Graham W. Taylor. SSTVOS: Sparse Spatiotemporal Transformers for Video Object Segmentation. Computer Vision and Pattern Recognition (CVPR), Jun 2021, Virtual, France. ⟨hal-04090617⟩
23 Consultations
0 Téléchargements

Altmetric

Partager

More