OLF : RGB-D Adaptive Late Fusion for Robust 6D Pose Estimation - Archive ouverte HAL
Communication Dans Un Congrès Année : 2023

OLF : RGB-D Adaptive Late Fusion for Robust 6D Pose Estimation

Résumé

RGB-D 6D pose estimation has recently gained significant research attention due to the complementary information provided by depth data. However, in real-world scenarios, especially in industrial applications, the depth and color images are often more noisy. Existing methods typically employ fusion designs that equally average RGB and depth features, which may not be optimal. In this paper, we propose a novel fusion design that adaptively merges RGB-D cues. Our approach involves assigning two learnable weight α 1 and α 2 to adjust the RGB and depth contributions with respect to the network depth. This enables us to improve the robustness against low-quality depth input in a simple yet effective manner. We conducted extensive experiments on the 6D pose estimation benchmark and demonstrated the effectiveness of our method. We evaluated our network in conjunction with DenseFusion on two datasets (LineMod 3 and YCB 4) using similar noise scenarios to verify the usefulness of reinforcing the fusion with the α1 and α2 parameters. Our experiments show that our method outperforms existing methods, particularly in low-quality depth input scenarios. We plan to make our source code publicly available for future research.
Fichier principal
Vignette du fichier
QcaV_FullPaper_2023_vF.pdf (1.98 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-04085729 , version 1 (29-04-2023)

Identifiants

  • HAL Id : hal-04085729 , version 1

Citer

Petitjean Théo, Zongwei Wu, Cédric Demonceaux, Olivier Laligant. OLF : RGB-D Adaptive Late Fusion for Robust 6D Pose Estimation. International Conference on Quality Control by Artificial Vision, Jun 2023, Albi, France. ⟨hal-04085729⟩
92 Consultations
115 Téléchargements

Partager

More