
HAL Id: hal-04085729
https://hal.science/hal-04085729

Submitted on 29 Apr 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

OLF : RGB-D Adaptive Late Fusion for Robust 6D Pose
Estimation

Petitjean Théo, Zongwei Wu, Cédric Demonceaux, Olivier Laligant

To cite this version:
Petitjean Théo, Zongwei Wu, Cédric Demonceaux, Olivier Laligant. OLF : RGB-D Adaptive Late
Fusion for Robust 6D Pose Estimation. International Conference on Quality Control by Artificial
Vision, Jun 2023, Albi, France. �hal-04085729�

https://hal.science/hal-04085729
https://hal.archives-ouvertes.fr


OLF : RGB-D Adaptive Late Fusion for Robust 6D Pose
Estimation
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ABSTRACT

RGB-D 6D pose estimation has recently gained significant research attention due to the complementary infor-
mation provided by depth data. However, in real-world scenarios, especially in industrial applications, the depth
and color images are often more noisy1.2 Existing methods typically employ fusion designs that equally average
RGB and depth features, which may not be optimal. In this paper, we propose a novel fusion design that
adaptively merges RGB-D cues. Our approach involves assigning two learnable weight α1 and α2 to adjust the
RGB and depth contributions with respect to the network depth. This enables us to improve the robustness
against low-quality depth input in a simple yet effective manner. We conducted extensive experiments on the
6D pose estimation benchmark and demonstrated the effectiveness of our method. We evaluated our network
in conjunction with DenseFusion on two datasets (LineMod3 and YCB4) using similar noise scenarios to verify
the usefulness of reinforcing the fusion with the α1 and α2 parameters. Our experiments show that our method
outperforms existing methods, particularly in low-quality depth input scenarios. We plan to make our source
code publicly available for future research.

Keywords: Late fusion, Deep learning, Self Optimized parameter, PSNR and noise study,RGB-D

1. INTRODUCTION

6D pose estimation is crucial for implementing computer vision in real-world and industrial problems, such
as robotic manipulation6 and augmented reality.2 Solutions must be robust to object texture and geometry,
occlusion, and external constraints. However, expensive RGB-D sensors are currently used in the industry to
limit noise, limiting access to cheaper sensors while demand for vision applications grows. Deep learning has led
to more modern research in camera pose estimation, with direct regression through the network5 being a simple
and applicable approach. Some methods use DNNs and the Perspective-n-Point algorithm (PnP),7 but suffer
from problems transitioning from 2D to 3D space and loss of geometric information. Traditional methods8,9

based on feature extraction and mapping to model clouds were effective but limited in performance due to
changing scene brightness and occlusion.

The development of inexpensive and easily usable RGB-D sensors has enabled the creation of datasets carrying
depth information, highlighting the importance of 3D and depth information in pose detection. This modality
has improved processes used on 2D, whether in direct regression5 or based on keypoints.7 Methods using
multiple modalities have highlighted the importance of RGB and Depth information, leading to input data fusion
strategies. However, most fusion methods5,10 simply concatenate the information, potentially propagating noise
throughout the network. To address this, we propose a method using an external parameter to enhance the
network’s resistance to input noise. Our method’s advantages are described by addressing two points:

• How to adapt a well-known fusion network (DenseFusion5) and to make it reliable even under extreme
noise conditions.

• How much noise can impact classical networks and how much state-of-the-art metrics can be degraded by
noise.

The smart grid will be driven according to the following scenario: the training data will be considered perfect and
under controlled laboratory conditions. The test data will be noisy to get closer to potential complex conditions
encountered in industrial environments.



Figure 1. Global overview of our Optimized late fusion Our method is based on the DenseFusion5 Architecture :
after segmentation, Features are extracted from RGB and Depth and are then fused by our adaptive Fusion Module. The
features generated by this fusion are then used by a pose predictor and a refiner. The pose Predictor predicts pose for
each pixel and the predictions are voted to generate the final pose.

2. RELATED WORK

Given an RGBD image, the goal of 6D pose estimation is to predict the matrix that transforms the object
coordinates to the camera coordinates.

Pose with RGB only. The traditional methods were essentially based on point of interest detection tech-
niques.1,11 These techniques already used in computer vision allowed to create correspondence between two
images. Some methods sought to learn to predict 2D keypoint and determine the position using PnP algo-
rithm.12 The arrival of methods using deep learning allowed to outperform the classical methods particularly
sensitive to the quality of the images and to the texture of the objects. These new methods based on CNN have
allowed the emergence of networks that directly predict the pose from RGB images.13 However, despite good
results, 3D prediction remains a problem, especially because of the difficulty of back-projecting 2D points in 3D
space. Some methods such as Xiang et al.14 have tried to tackle this problem by taking advantage of the 3D
models of the searched objects by producing 3D features from them. Mousavian et al.15 have tried to predict
3D parameters using geometric constraints.

Pose with 3D point cloud. Some studies have also tried to solve the problem of pose estimation with
methods based on voxel and point cloud studies. The traditional methods16 were very time consuming. More
recently, methods based on deep learning have allowed to directly predict the pose from networks adapted to 3D
point clouds such as frustrumPointNet,17 PointNetLike,18 VoxelNet19 etc ... These methods although very robust
on urban driving application dataset, remain limited in the problem of 6D pose estimation. The sparsity and
lack of texture in the point clouds limit the pose estimation accuracy. Moreover, objects with high reflectivity
are an almost inescapable problem : active depth sensors are unable to create clouds on these particular surfaces.

Pose with RGB-D. Similar to the classical RGB methods, the classical RGB-D methods are based on
two-step algorithms. The 3D features extracted from the input are therefore used by matching and verification
techniques.20,21 These methods are nevertheless sensitive to the change of brightness in the image.RGB-D meth-
ods can be categorized on three different approaches. Holistic methods based on Deep Neural Network (DNN)
like DenseFusion5 or PoseCNN,22 seek to regress the position directly. To circumvent the problem induced by the
non-linearity these methods use refining loops to estimate the position. Dense correspondence methods,23using
a Hough voting scheme to vote for the final results with either random forest20 and CNN.24 KeyPoint based
methods are also very present in RGB-D, works such as PVnet,25 or PVN3D.7



Fusion. Many methods based on RGB-D images17 choose to extract features from the point cloud and the
RGB image and then merge them to improve the robustness and efficiency of their network. As also shown by
DenseFusion,5 PointFusion,10 MoreFusion,26 late fusion strategies are efficient and allow a better understanding
of input data. However the concatenation strategy seems to propagate the noise inside the network. Some more
modern methods have underlined the impact that a badly optimized fusion could have on a network : new
strategies have been developed like in FFB6D.27 With this in mind, and in order to improve the fusion while
making it as insensitive to noise as possible, we propose in this work a new late fusion method balanced by two
coefficient parameters(α1 and α2).

3. PROPOSED METHOD

With an input of type RGB-D, the 6D pose estimation seeks to predict a transformation matrix [R|t] which
transforms the object model from these coordinates to the camera space coordinate. The accuracy of pose
estimation is highly dependent on the quality of the RGB and Depth data. Thus we would like to take into
account the quality of the texture and geometry extracted from the RGB-D camera in order to improve the
accuracy of the camera pose estimation.

3.1 Overview

We therefore propose, in order to limit the propagation of noise from the input to the whole network, a smart
fusion allowing the network itself to give a weight to each modality. The model works as follows : first we extract
the features for each object location. More concretely, two networks will extract features from each modality
in parallel: on the one hand the RGB on which a CNN is applied and on the other hand a network similar
to PointNet18 on the depth. Then these features are merged in a so-called late fusion strategy. This fusion
based on DenseFusion5 assemble the features previously extracted from each network, and output a pixel-wise
feature. This fusion is balanced by the network itself with the help of an additional parameter α, one parameter
is linked to Rgb (α1) and the other one to the depth (α2). The purpose of this coefficient is to give confidence
to information extracted from one of the two data sources according to their quality and/or relevance. Then
the features are used by a network that predicts the position of the targeted object. Finally a refining network
iteratively improves the results.

3.2 Global architecture

In this section we will see the different steps necessary to predict the final pose, from the initial segmentation,
to the feature extraction.

Semantic Segmentation. In the first pre-processing step, the objects are segmented. The segmentation
network generates N+1 segmentation maps. Each mask then generated is a binary mask whose class corresponds
to the N objects of the dataset.

Feature extraction. Feature extraction is a primordial step in a pose estimation algorithm. We extract the
features from the color and depth, in order to take advantage of the RGB-D data. As proposed in DenseFusion,
we first extract a point cloud from the previously segmented depth map.

Then, with an architecture similar to PointNet, the geometric information is extracted from the generated
point cloud. The features extracted from the depth map would best characterize the geometric information of
the scene. In the same way a CNN encoder-decoder network will try to extract the information from the RGB
image.

3.3 Adaptive Late Fusion

Once the features are extracted from each modality, we want to find a method limiting the impact of noise on the
quality of the information transmitted in the network afterwards. Based on a late fusion technique, massively
used in the state-of-the-art, we modify the commonly used strategy of information concatenation. This fusion
strategy is massively used in several applications such as PVN3D7 and DenseFusion (DF).5 Although PVN3D
outperforms DenseFusion, we chose to use DenseFusion because its direct regression prediction method in the
network allows a better observation of the influence of the fusion on the final result.



As shown in Figure 1, the objective of the fusion is to create balancing α parameters : the network balances
the weight of information for each modality on its own. This additional parameter in the PixelWiseFusion stage5

allows, in addition, better occlusion robustness (induced by the method of Wang et al.), outlier filtering and
reducing noise resistance (moreover, the concatenation strategy initially used in the DenseFusion method induces
a propagation of the noise potentially present in each input modality). The geometrical and color features are
then merged through a pooling strategy balanced by the α1 and α2 parameters. As proposed in prior work we
keep, afterwards, an average-pooling strategy in order to add in addition to the geometrical and color features a
parameter representing the global appearance of self balancing with α.

It is important to note that the merged features are injected into both the pose prediction network and
the refinement network equally. The entire original network benefits from the noise resistance brought by our
Optimized Late Fusion method.

3.4 Pose estimation and refinement

Once the fusion is done, we use a classical scheme of the state of art for position estimation. This estimation
is done in two steps. First the network predicts for each point a rotation R and a translation t balanced by
confidence C. The specificity of the method, initially proposed by dense fusion, is to minimize the Euclidean
distance calculation for all the points and to choose the most efficient prediction, having the highest confidence.

Lp
i =

1

M

∑
j

∥∥∥(Rxj + t)− (R̂ixj + t̂i))
∥∥∥ (1)

Where xj is the jst randomly selected 3D point wrote as M from the object model. The two values R and

t are the prediction p. R̂ and t̂ are the GT values known thanks to the dataset annotations. This distance
calculation is well adapted for asymmetrical objects. For symmetrical objects, we minimize the distance to get
the closest one with the model of points, removing a part of the problem of the rotation. In order to minimize
the distance we replace

∑
i from equation (1) by

∑
i min
0<k<M

The Loss optimized by the network is the one proposed by DenseFusion:

L =
1

N

∑
i

(Lp
i ci − ωlog(ci)) (2)

Where N is the randomly sampled fused dense-pixel from the P element of the initial segmentation and ω is the
balancing hyper-parameter.

4. EXPERIMENTS

We simulate scenarios of more or less intense noise in order to verify how the fusion parameterized by α1 and α2

allows to minimize the impact of the noise latter on the network. Noise is alternatively (or both) added to RGB
images or (and) to depth images. This will allow us to verify which noise has the most impact on the network
and which modality has the most impact on the final results. For the RGB image we add a additive Gaussian
white noise (GWN) whose strength will be fixed by its standard deviation σnoise. The depth information is
corrupted by a multiplicative GWN in order to avoid creating unwanted information on the 0 returned by the
physical sensor. To quantify the noise level in our experiments, we use the SNR for each information channel
(RGB ou depth). The closer the SNR value will be to 0 (or negative value) is, the stronger the noise is.

Our experiments are based on the DenseFusion algorithm. While this approach is no longer the best approach
of the state of the art, it allows to easily demonstrate the impact on the proposed fusion stage. Nevertheless, our
approach could be integrated in any other method using the two modalities (RGB and D). All the experiments
presented here are obtained with 2 refinement loops.



RGB+hN & D+hN RGB & D+hN RGB+hN & D RGB+N & D+N NoNoise

Network Type Df+R OLF+R Df+R OLF+R Df+R OLF+R Df+R OLF+R DF OLF
ape 00,9 00,7 01,0 00,6 90,1 93,6 63,4 78,6 92,3 94,0
bench vi. 11,4 22,9 11,3 21,7 91,4 92,3 90,6 91,0 93,2 92,5
camera 02,6 02,9 02,3 03,2 94,7 94,0 88,9 91,6 94,4 94,4
can 04,6 13,6 04,2 12,8 92,4 96,2 90,7 94,9 93,1 96,6
cat 01,3 03,8 01,2 04,9 95,8 96,6 91,2 94,7 96,5 97,0
driller 01,3 08,4 01,9 08,1 85,0 92,4 83,0 91,1 87,0 92,2
duck 00,9 01,0 00,5 00,4 91,4 95,9 76,3 85,4 92,3 96,2
eggbox 35,3 48,3 36,4 45,9 99,8 99,6 99,8 99,8 99,8 99,9
glue 41,4 26,9 40,1 28,5 99,8 99,5 99,6 99,4 100,0 99,8
hole p. 01,2 03,3 01,9 03,9 88,9 88,3 78,8 82,3 92,1 88,2
iron 18,5 19,2 18,1 18,6 97,5 96,9 96,9 96,1 97,0 97,0
lamp 01,6 08,4 01,7 09,5 95,6 96,2 94,3 95,5 95,3 96,0
phone 12,0 11,7 11,4 13,3 92,5 95,7 90,8 94,3 92,8 95,8
AVERAGE 10,3 13,3 10,2 13,2 93,4 95,2 88,0 92,0 94,3 95,3

Table 1. Results of LineMOD under different noise scenario, with OLF(our)+(Refinement) and DF+(Refinement), hN
mean high noise and N noise.

4.1 DataSet

LineMod dataset. The LineMOD dataset proposed by Hinterstoisser et al.3 is the main benchmark used
to compare 6D pose estimation methods. It consists of a series of videos and indoor images including 13 objects
with a low texture and different lighting level.

YCB dataset. The YCB-Video dataset Xiang et al.22 characterizes 21 objects from the YCB Calli et al.4

database and being of different texture, size, and shape. The dataset contains a total of 92 videos with depth and
RGB modality, in staging inside. These videos also include the annotations necessary for the 6D pose estimation
work. We follow the previous work22 regarding to the test and training set splitting.

4.2 Evaluation Metrics

The results of our network are evaluated by two metrics proposed in previous works.22 We therefore use the
ADD metrics for non-symmetric objects and ADD-S for symmetric objects. ADD is defined as follow :

ADD =
1

m

∑
i∈o

∥∥∥(Ri + t)− (R̂i + t̂))
∥∥∥ (3)

where i denotes a vertex in object o, and R, t the predicted pose and R̂, t̂ the ground truth. And for symmetric
object we calculate ADD-S such as:

ADD-S =
1

m

∑
i∈o

min
j∈o

∥∥∥(Ri + t)− (R̂j + t̂))
∥∥∥ (4)

According to the work of,22 we evaluate the results of YCB DataSet by reporting the area under the ADD-S
curve (AUC) and set the maximum threshold to be 0.1m. We also report the percentage of ADD smaller than
2cm.

4.3 LineMOD

LineMOD evaluation. The results are given in several parts. First, as shown in Table 1, we compare our
network to classical DenseFusion approach re-trained from scratch for fair comparison. DFOri is the orginal
DenseFusion method, DFrt means that the fusion strategies has been handle by using a simple addition in the
fusion bloc and OLF is our method where this fusion bloc takes into account the α parameters. Our method
outperforms both DenseFusion strategies.

Robustness toward LineMOD+Noise. This is the core of our contribution. Introducing α1 and α2

parameter produces a method less sensitive to noises which could be present during the inference phase. This
test is extremely important because in practice the input data are often noisy, especially depth modality in
industrial environments. Thus, we consider the network is trained on exact data (LineMod) and the noise is
added in the inference images. The results of the different noise scenarios can be seen in Table 1. The objective



Figure 2. DenseFusion and OLF comparison related to noise evolution in RGB and depth

is both to identify the most problematic noise for the network and to verify that the Optimized Late Fusion is
better than the classical fusion method. The noise strength is known through the SNR value estimated for each
inputted σ.

• RGB+hN & D+hN: This case is the most noisy of all, here we apply a strong white noise on both
modalities at the same time, that give us a SNRd of 9 for Depth and -15 for SNRRGB . We notice that
in these conditions, the network is very poorly performing, on each type of objects. Nevertheless, we can
observe that the OLF network performs better than the initial network by 3%

• RGB & D+hN: Here we only add a white noise on the depth modality with a equivalent SNRd of 8. We
can notice a strong degradation of the network performance. Nevertheless, OLF remains more resistant
than DF in this noise condition.

• RGB+hN & D: This particular case is interesting because despite a strong noise applied on RGB with
SNRRGB = 1.7, the network keeps a very convincing performance or even almost unchanged. This result
can be explained in part by the fact that the network gives more weight to the depth. To degrade the
results in a similar way with noise only in RGB images, it would be necessary to apply an extremely strong
noise to these images (see figure 2).

• RGB+N & D+N: Here a white noise of slightly reduced strength is applied on the two modalities
(SNRd = 25, SNRRGB = 7) . This scenario is probably the closest to reality and the most interesting in
our case. The Optimized Late Fusion performs much better than the original network. The resistance to
noise brought by this new fusion method is felt on almost all objects, and globally the average success is
improved by 4% on all test images.

Evolution of average on LineMod. Figure 2 shows the behavior of the average success of the DenseFusion
network and the OLF network with growing noises. The noise is added with a growing value, allowing us to
see the evolution of the percentage of success of the network as a function of the noise. The noise is, for this
experiment, added either on RGB or on D, but never simultaneously.

The two curves (OLF +DN and DF +DN) present the evolution of the average results obtained when the
depth images are noisy. Our method dealing with noisy depth (OLF +DN) is more efficient than the original
method whatever the intensity of the noise added. We can see that the methods is very relevant for Depth and



DFori OLF(ours)
nonoise AUC < 2cm AUC < 2cm

93.1 96.8 93.8 97.2
SNRD = 39 AUC < 2cm AUC < 2cm
SNRrgb = 6 57.4 60.2 63.4 67.1
SNRD = 33 AUC < 2cm AUC < 2cm
SNRrgb = 3 37.6 40.1 44.6 51.1

Table 2. Quantitative evaluation of 6D pose (AUC and ADD(2cm)) on the YCB data + Noise.

less for RGB, it’s simply due to the methods itself, much more sensible to depth variation than to RGB variation.
Inded when RGB is completly destroyed we can still perfom 6d pose estimation in 40 % of the cases.

OLF +RGBN and DF +RGBN show in an identical way, the evolution of the average precision according
to the intensity of the noise applied on the RGB images. For higly noisy RGB images (SNR - 20) the curve
stabilises around 38%, which means that once the RGB is fully unusable, depth achieves to recover 38% of the
poses. The OLF fusion allows to increase the resistance to noise in all the tested scenarios. We can conclude
from these series of tests on the LineMod, that our fusion method has well strengthened the original methods
against the noise.

4.4 YCB dataset

In order to more illustrate the robustness of our method, we tested its performances on the YCB datest with
high levels of noise. We choose two different white noise values. The SNR are different from LineMod because
the image ranges are not the same. noise is added in YCB images jointly on both D and RGB.

Table 2 presents some results. The OLF method is slightly better than the DenseFusion in both ADD-s 2cm
and AUC metrics. In presence of white noise, the OLF method strongly outperforms the original method. For
SNR = 39 for example, a gap of 7% between the two methods is observed. These experiments confirm the
robustness of our approach compared to DenseFusion.

4.5 Experiments under different noise Scenarios

We conducted experiments to evaluate the effectiveness of our fusion method in reducing the impact of noise on
the network. We added noise to either RGB images, depth images, or both, and measured the impact of each
type of noise on the final results. Gaussian white noise (GWN) was added to the RGB images, and multiplicative
GWN was added to the depth information to avoid unwanted information on the 0 returned by the physical
sensor. We used the signal-to-noise ratio (SNR) to quantify the noise level in our experiments, with a lower SNR
indicating stronger noise.

The two curves (OLF +DN and DF +DN) present the evolution of the average results obtained when the
depth images are noisy. Our method dealing with noisy depth (OLF +DN) is more efficient than the original
method whatever the intensity of the noise added.

OLF +RGBN and DF +RGBN show, in an identical way, the evolution of the average precision according
to the intensity of the noise applied on the RGB images.

5. CONCLUSION

In this paper, we have proposed an optimized fusion method based on DenseFusion. Even if DenseFusion is
working well, we have shown that this method is very sensitive to noise which makes our method more efficient
for real application where data (especially depth data) are often noisy. We have shown here that a simple
modification of the fusion module which takes into account the accuracy of the modalities improves the results
and the robustness. These revisited DenseFusion-like methods are then more efficient and usable in real scenario.
Many neural network methods of the state of the art as (PVN3D,7 FFB6D,27 ...) use a fusion module which
concatenate RGB and Depth information and are good candidates for this new fusion methods. As our Optimized
Late Fusion module is generic, it can be also added in these neural network methods to improve their robustness
toward noise.
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