A particle method for non-local advection-selection-mutation equations - Archive ouverte HAL
Article Dans Une Revue Mathematical Models and Methods in Applied Sciences Année : 2024

A particle method for non-local advection-selection-mutation equations

Résumé

The well-posedness of a non-local advection-selection-mutation problem deriving from adaptive dynamics models is shown for a wide family of initial data. A particle method is then developed, in order to approximate the solution of such problem by a regularised sum of weighted Dirac masses whose characteristics solve a suitably defined ODE system. The convergence of the particle method over any finite interval is shown and an explicit rate of convergence is given. Furthermore, we investigate the asymptotic-preserving properties of the method in large times, providing sufficient conditions for it to hold true as well as examples and counterexamples. Finally, we illustrate the method in two cases taken from the literature.
Fichier principal
Vignette du fichier
Particle_methods-4.pdf (2.7 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-04079919 , version 1 (24-04-2023)

Identifiants

Citer

Frank Ernesto Alvarez, Jules Guilberteau. A particle method for non-local advection-selection-mutation equations. Mathematical Models and Methods in Applied Sciences, 2024, pp.1-62. ⟨10.1142/S0218202524500106⟩. ⟨hal-04079919⟩
99 Consultations
52 Téléchargements

Altmetric

Partager

More