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A particle method for non-local advection-selection-mutation
equations

Frank Ernesto Alvarez ∗ † and Jules Guilberteau ‡

Abstract

The well-posedness of a non-local advection-selection-mutation problem deriving from adaptive dy-
namics models is shown for a wide family of initial data. A particle method is then developed, in
order to approximate the solution of such problem by a regularised sum of weighted Dirac masses whose
characteristics solve a suitably defined ODE system. The convergence of the particle method over any
finite interval is shown and an explicit rate of convergence is given. Furthermore, we investigate the
asymptotic-preserving properties of the method in large times, providing sufficient conditions for it to
hold true as well as examples and counter-examples. Finally, we illustrate the method in two cases taken
from the literature.

Keywords : Adaptive dynamics, non-local advection, Particle methods, Asymptotic preservation

1 Introduction

Presentation of the model

The goal of this paper is to develop a numerical method allowing to approximate the solutions of equations
of the form

∂tv(t, x) + ∇x · (a(t, x, Iav(t, x))v(t, x)) = R(t, x, Igv(t, x))v(t, x) +

∫
Rd

m(t, x, y, Idv(t, x))v(t, y)dy,

v ∈ C([0, T ], L1(Rd)),
v(0, ·) = v0(·) ∈W 1,1(Rd),

(1)

where

(Ilu)(t, x) =

∫
Rd

ψl(t, x, y)u(t, y)dy, l = a, g, d

are non-local terms and a, R, m and ψl are smooth functions.
This general formulation aims to bring together a wide family of PDE models typically used in the field

of adaptive dynamics. In this context, x represents a phenotypic trait (usually simply called ‘phenotype’
or ‘trait’) which is a characteristic inherent to individuals, and x 7→ v(t, x) represents the density of the
studied population at time t ≥ 0. One purpose of adaptive dynamics is to understand the combined effect of
selection and mutations (which are usually assumed to be rare and small [19, 23, 37]) on living populations
[5]. The literature concerning phenotype-structured equations is abundant [3, 15, 38, 20, 34, 39, 30]. The
model proposed in this paper (which includes, among others, the equations studied in [33, 6, 4, 24, 22, 18])
takes into account
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• Selection and growth, via the term ‘R(t, x, Igv(t, x))v(t, x)’, where R can be interpreted as the instan-
taneous growth rate, which depends on the trait x and the whole population.

• Mutation, via the term ‘
∫
Rd m(t, x, y, Idv(t, x))v(t, y)dy’, where the function m can be seen as the

probability density for a cell of trait y to mutate into a cell of trait x.

• Advection, via the term ‘∇x · (a(t, x, Iav(t, x))v(t, x))’. This term models how the environment drives
the individuals towards specific regions, as opposed to random mutations. Among others, this term
can be used in order to model a cell differentiation phenomenon.

Mutations can also be modelled through a second order differential operator such as in [9] and [1]. Laplacian-
like terms can be approximated by integral operators, as shown in [16], which means that, after choosing an
appropriate integral approximation, our analysis could be extended to deal with second order equations. The
other two non local-terms (Ia and Ig) allow to take into account the influence of the environment, created
by the whole population, over the behaviour of the individuals [42, 22], or competition between individuals
[38].

The long time behaviour of models considering only one phenomenon among selection, advection and
mutation is well-known: broadly speaking, it has been shown that considering selection alone, or advection
alone, leads to concentration phenomena (towards a finite number of traits) [33, 38, 21], meaning that the
density converges to a sum of Dirac masses, while mutations by themselves have a smoothing effect [25].
Nevertheless, the combined effects of these terms remains unclear, and may lead to different and non-intuitive
behaviours. As an example, considering both selection and advection can lead to convergence either to a
Dirac mass or to a continuous function [24, 12], and considering mutation and selection leads either to
convergence to a non-smooth measure or to a continuous function [4]. Note that this model also includes
the equation studied in [2], which was also approximated with a particle method.

Upon establishing the well-posedness of (1), this paper is concerned with the derivation of a particle
method inspired by [16], the analysis of its convergence and asymptotic-preserving properties. However, we
must emphasise the two main novelties with respect to that work: First, the use of non local terms, which
as we will show, poses technical difficulties and affects the existence of smooth solutions in certain cases.
Secondly, the study of the asymptotic preserving property, which guarantees that, under certain hypotheses,
the long time behaviour of the solution is conserved. As will be seen, these equations are naturally posed in
the space of Radon measures, making particle methods a natural tool to approximate then. Compared to
finite volume or finite element methods, they are more easily implemented. Furthermore, a change in model
leads to very few changes in the corresponding code, a clear advantage over other methods.

Particle method

Particle methods use ODE resolution in order to approximate the solution of PDEs. This makes them
particularly easy to implement, as they only require a classical ODE solver. The main idea is to seek a sum
of weighted Dirac masses, called particle solution, which is denoted

vN (t) =

N∑
i=1

αi(t)δxi(t), (2)

where the weights αi and the points xi are solutions of a suitable ODE system.
In order to recover a smooth function close to the solution of the studied PDE, the particle solution needs

to be regularised: this is usually done by means of a convolution with a so-called ‘cut-off function’ φε which
must satisfy some specific properties. We denote this regular solution

vNε (t, x) =

N∑
i=1

αi(t)φε(x− xi(t)), (3)

where the scaling parameter ε is a function of N .
This method is especially adapted for the linear advection equation ‘∂tv(t, x) +∇· (a(x)v(t, x)) = 0’, but

has been generalised to many other kinds of equations which mostly come from physics [28], such as diffuson
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equations [17, 41, 7, 32, 31], advection-diffusion equations [35, 27], convection-diffusion equations [16], the
Navier-Stokes equation [14, 10] or the Vlasov-Poisson equation [40, 13].

We apply the particle method by following its main three steps, as described in [8]:

(i) Particle approximation of the initial data. This first step consists of approaching the initial
condition of v0 with a sum of weighted Dirac masses, i.e. choosing N ∈ N, x01, ..., x

0
N ∈ Rd, α0

1, ..., α
0
N ∈

R such that

vN0 :=

N∑
i=1

α0
i δx0

i
∼ v0,

in the sense of Radon measures, which means that, for any ϕ ∈ C0
c (Rd),

N∑
i=1

α0
iϕ(x0i ) −→

N→+∞

∫
Rd

ϕ(x)v0(x)dx.

Assuming that v0 has a compact support, a canonical way of choosing these values is to choose a finite
collection of subsets Ω0

i ⊂ supp
(
v0
)

satisfying

Ω0
i ∩ Ω0

j = ∅, if i ̸= j, and
⋃

i∈{1,...,N}

Ω0
i = supp

(
v0
)
,

and to take, for any i ∈ {1, ..., N}

x0i ∈ Ω0
i , w0

i = |Ω0
i |, ν0i = v0(x0i ) αi = νiwi.

(ii) Time-evolution of the particles. By using a weak formulation of the PDE, we determine the
ODE satisfied by the positions (denoted xi), the volumes (denoted wi) and the weights (denoted νi)
associated to each of the N particles, with initial conditions (x0i , w

0
i , ν

0
i ) given at the previous step.

The exact ODE, and the way the particles are correlated with each other depends on the complexity
of the PDE. In the case where the advection term is local (a(t, x, I) = a(t, x)), the positions and the
volumes satisfy

ẋi(t) = a(t, xi(t)), ẇi(t) = ∇x · (a(t, xi(t)))wi(t) (4)

and the formula for the νi depends on the selection and the mutation terms. The method described
in the core of this article also allows to use this method in the case of a non-local advection, which
modifies the ODE satisfied by the positions of the particles. Full formulas are given in Section 3.

Rewriting αi = νiwi, with the volumes wi which satisfy (4) is required for the approximation of the
different integral terms. Indeed, by Liouville’s formula [26], for any f smooth enough,∫

Rd

f(x)dx ∼
N∑
i=1

f(xi(t))wi(t).

Formally, v and vN (as defined by (2)) are both solution of (1) in the weak sense, with vN (0) ∼ v0,
which implies that, assuming that the parameters of the PDE are smooth enough, for any given time
T > 0, vN (T ) ∼ v(T, ·).

(iii) Regularisation. In order to transform the discrete measure vN into a smooth function, we use a
regularisation process based on convolution, which writes as a sum, shown in (3), since the convoluted
measure is a sum of Dirac masses. The function

φε :=
1

ε
φ
( ·
ε

)
,

depending on a parameter ε > 0, is a scaling of the so-called cut-off function φ, which must satisfy some
regularity and symmetry properties (which we specify in Section 4.1). The choice of ε, which intimately
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depends on the choice of N , is intricate: if ε is too large, then the solution is ‘over-regularised’, and the
scheme loses its accuracy. Conversely, if ε is to small, then some of the particles will be neglected, and
the scheme does not converge towards the solution. Choosing the optimal ε as a function of N is thus
not a trivial question, and it is possible in some cases to optimise the convergence rate by improving
this regularisation step [11, 29].

Main results

Well-posedness. We first prove that problem (1) is well-posed, i.e. that for any family of parameters
satisfying some regularity properties, defined in C([0,+∞), L1(Rd)). The proof heavily relies on the use of
the characteristic curves Xu(t, y), solution to the equation{

Ẋu(t, y) = a(t,Xu(t, y), (Iau)(t,Xu(t, y))) =: Au(t,Xu(t, y)), t ∈ [0, T ],

Xu(0, y) = y,

for y ∈ Rd and u ∈ C([0, T ], L1(Rd)). The main difference with respect to the approach taken for similar
problems, as in [16], is the need for continuity results for Xu(t, y), not only with respect to the trait vari-
able y, but with respect to u as well. The required results are stated in Section 2.1 and proved in Appendix A.

The well posedness of the problem for smooth initial data is proved in Section 2.2 using a standard
fixed point argument. Moreover, in Section 2.3, we consider a more general family of initial conditions
and we prove that the regularity of v(t, ·) is linked to that of v0: more precisely, if v0 ∈ W k,∞(Rd)
with compact support, then v ∈ C([0,+∞),W k−1,1(Rd)). This result can be improved if the advection
is local, i.e. a(t, x, I) = a(t, x): In this case, for any initial condition in W k,1(Rd), the solution v is in
C([0,+∞),W k,1(Rd)).

Particle method: definition and well-posedness. In Section 3, we define the particle method cor-
responding to this PDE, by deriving the ODE system satisfied by the particles (xi, wi and νi). For the
non-local case, the equation we obtain is a coupled system with infinitely many equations and unknowns.
We generalise some classical results from the Cauchy-Lipschitz theory in order to deal with this problem,
and prove that the ODE system is well posed.

Convergence of the particle method. Section 4 is structured as follows: in Section 4.1 we prove the
following estimate, detailed in Theorem 6:

∥v − vhε ∥L1(Rd) ⩽ C
(
εr +

(h
ε

)κ
+ hκ

)
∥v0∥Wµ,1(Rd), for all 0 ⩽ t ⩽ T,

with h = 1
N , C > 0, r ∈ N∗ (which depends on the regularity of φ), κ ∈ N∗ (which depends on k and the

local or non-local nature of a) and µ ∈ N∗ (which depends on κ and r). This result ensures the convergence
of the particle method in finite time, upon choosing ε as an suitable function of h which allows to obtain a
convergence in (ε(h)r+

(
h
ε(h)

)κ
+hκ) which yields a convergence rate of h

κr
κ+r after choosing the optima value

of ε(h) ∼ h
κ

κ+r . Nevertheless, in general this scheme is not asymptotic preserving. Therefore, in subsection
4.2, we show examples for which the scheme is asymptotic preserving, and others for which it is not. In
general, the asymptotic behaviour of a solution is preserved when it converges to a sum of Dirac masses, and
is not when it converges to a smooth solution.

Perspectives and open problems

Although a loss of regularity appears to be taking place when advection is non local, we do not know
whether such a loss of regularity does happen in certain cases. The construction of such an example or, on
the contrary, the improvement of our results in order to prove that, in fact, no regularity is lost could be a
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first way to extend our work.
Another open problem is the optimisation of the order of convergence for the numerical solution, improving
upon the order κr

κ+r obtained in the present work. The approach from [11], where the local averages are
viewed as point values of an approximation of the solution, and the regularisation of the solution at time
t > 0 is performed by interpolation rather than convolution, could be a suitable choice.
Lastly, as mentioned before, another direction could be the extension of our results in order to deal with
second order equations, as done in [16], where the Laplacian operator is approximated by an appropriate
sequence of mutation kernels.

2 The problem

For T > 0 and k ∈ N we consider the functions

(t, x, I) 7→ a(t, x, I) ∈W 1,∞ ([0, T ], (W k+1,∞(Rd+1))d
)
, (5)

(t, x, I) 7→ R(t, x, I) ∈ C
(

[0, T ] × Rdx,W
k+1,∞
loc (RI)

)
∩C

(
[0, T ] × RI ,W k+1,∞(Rdx)

)
. (6)

We consider as well (t, x, y, I) 7→ m(t, x, y, I) such that

0 ⩽ m ∈ C
(
[0, T ] × Rdx × Rdy,W k+1,∞(RI)

)
∩C

(
[0, T ] × Rdx × RI , L∞(Rdy)

)
∩C

(
[0, T ] × Rdy × RI ,Ck

c (Rdx)
)
,

which is globally Lipschitz with respect to the non local variables and uniformly compactly supported with
respect to the x variable. That is, we suppose m to satisfy the following hypotheses:

• There exists µ > 0 such that

sup
t,x,y

k∑
i=1

∑
|α|=i

k∑
j=1

|∂αx ∂
j
Im(t, x, y, I) − ∂αx ∂

j
Im(t, x, y, J)| ⩽ µ|I − J |. (7)

• There exists a compact set K such that the function

M(x) := sup
t,y,I

k∑
i=1

∑
|α|=i

k∑
j=1

|∂αx ∂
j
Im(t, x, y, I)|, (8)

satisfies
supp M(x) ⊂ K. (9)

Furthermore, we assume that

∥M∥L∞(Rd) ⩽M <∞. (10)

From a modelling point of view, assuming m to be uniformly compactly supported reflects the fact
that some traits are realistically out of reach for a given population, and that, in general, mutations
are rare and small.

We remark that hypotheses (9) and (10) imply that

∥M∥L1(Rd) ⩽ |K|M =: K <∞. (11)
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For all functions u ∈ C([0, T ], L1(Rd)) we consider the linear mappings Ia, Ig and Id which satisfy, for all
t ∈ [0, T ], x ∈ Rd,

(Iau)(t, x) :=

∫
Rd

ψa(t, x, y)u(t, y)dy, (12)

(Igu)(t, x) :=

∫
Rd

ψg(t, x, y)u(t, y)dy, (13)

(Idu)(t, x) :=

∫
Rd

ψd(t, x, y)u(t, y)dy, (14)

where

ψa ∈W 1,∞ ([0, T ] × Rdx, L∞(Rdy)
)
∩C

(
[0, T ] × Rdy,W k+1,∞(Rdx)

)
, (15)

0 < ψg ⩽ ψg ∈ C
(
[0, T ] × Rdx, L∞(Rdy)

)
∩C

(
[0, T ] × Rdy,W k+1,∞(Rd)

)
, (16)

ψd ∈ C
(
[0, T ] × Rdx, L∞(Rdy)

)
∩C

(
[0, T ] × Rdy,W k+1,∞(Rd)

)
, (17)

for a certain ψg > 0. We remark that Iau, Igu, Idu ∈ C([0, T ], L∞(Rd)). The functions ψa and ψd do not

need to be positive, reflecting this way how different traits have different impacts (which are not always
beneficial) on the environment, and ultimately on the population itself. On the other hand, ψg has to be
bounded away from zero. This hypothesis reflects the fact that, at least for the growth term, all interactions
between individuals are of the same type. These interactions may be interpreted as either strictly competitive
or strictly cooperative. In particular, this means that only “very” non-local dependence with respect to u
are allowed. This excludes partial densities, for instance on part of the traits.
Lastly, we assume that there exist non-negative constants I∗ and r∗ such that, for all t ∈ [0, T ], x ∈ Rd, and
I ⩾ I∗,

R(t, x, I) +K < −r∗, (18)

uniformly on t and x. It is somewhat natural to assume that R is negative for a large population: for
example, if a carrying capacity is assumed to exist, and the population size is approaching such value, then
the growth rate will inevitably drop to levels where no amount of mutations will be able to compensate for
it.
For a given function v0 ∈ L1(Rd), we will study the existence and uniqueness of solution for the problem

∂tv(t, x) + ∇x · (a(t, x, Iav(t, x))v(t, x)) = R(t, x, Igv(t, x))v(t, x) +

∫
Rd

m(t, x, y, Idv(t, x))v(t, y)dy,

v ∈ C([0, T ), L1(Rd)),
v(0, ·) = v0(·).

(19)

We will show that, under additional hypotheses, either over a or v0, we can guarantee the well-posedness
of this problem. In particular, we provide the results regarding the cases of local advection (∂Ia = 0) and
non-local advection (∂Ia ̸= 0). We will see that this distinction directly affects the set of initial data v0 for
which the existence of solutions is guaranteed.

2.1 Some bounds over the characteristics

Consider a satisfying (5) and ψa satisfying (15) for some k ⩾ 1. For all y ∈ Rd and u ∈ C([0, T ], L1(Rd)) we
define the characteristic curve t 7→ Xu(t, y) as the unique solution the following ODE{

Ẋu(t, y) = a(t,Xu(t, y), (Iau)(t,Xu(t, y))) =: Au(t,Xu(t, y)), t ∈ [0, T ],

Xu(0, y) = y,
(20)
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where (Iau)(t, x) is defined in (12). Since the function ψa belongs to W 1,∞ ([0, T ] × Rdx, L∞(Rdy)
)
, then

(Iau)(t, x) belongs to W 1,∞ ([0, T ] × Rdx
)
⊂ C0,1([0, T ]×Rdx). The regularity of a then implies that Au(t, x)

is a Lipschitz function with respect to the x variable, uniformly with respect to t, guaranteeing this way the
global existence of solution for (20).

For all u ∈ C([0, T ], L1(Rd)), we define the norms

∥u∥1 := ∥u∥L1([0,T ]×Rd) =

T∫
0

∫
Rd

|u(t, x)|dxdt and ∥u∥ := sup
t∈[0,T ]

∥u(t, ·)∥L1(Rd).

We present some results involving the characteristics. The proofs for such results are given in Appendix A.

The first property we describe is the continuity of the family of characteristics with respect to the spatial
variables and the function u.

Lemma 1. Let ψa satisfy (15) and a satisfy (5) for k = 0. Consider y1, y2 ∈ Rd and u1, u2 ∈ C([0, T ], L1(Rd)).
Then there exists a positive constant C(T, ∥u1∥, ∥u2∥), such that the solutions Xu1 and Xu2 of (20) satisfy
for any t ∈ [0, T ],

d∑
j=1

|Xj
u1

(t, y1) −Xj
u2

(t, y2)| ⩽ C(T, ∥u1∥, ∥u2∥) (|y1 − y2| + ∥u1 − u2∥1) .

Secondly, we claim that the spatial derivatives of the characteristics remain bounded by a constant only
depending on T and ∥u∥. We also claim that the spatial derivatives are continuous with respect to the spatial
variables and the function u.

Lemma 2. Let a satisfy (5) and ψa satisfy (15) for some k ⩾ 1. Consider u ∈ C([0, T ], L1(Rd)). Then
there exists a positive constant C(T, ∥u∥), such that the solution Xu(t, y) of (20) satisfies, for all t ∈ [0, T ]
and y ∈ Rd,

k∑
i=1

∑
|α|⩽i

d∑
j=1

|∂αyXj
u(t, y)| ⩽ C(T, ∥u∥). (21)

Furthermore, for any two points y1, y2 ∈ Rd, and any two functions u1, u2 ∈ C([0, T ], L1(Rd)), there exists
a positive constant C2(T, ∥u1∥, ∥u2∥), such that the solutions Xu1

and Xu2
of (20) satisfy for any t ∈ [0, T ]

k∑
i=0

∑
|α|⩽i

d∑
j=1

|∂αyXj
u1

(t, y1) − ∂αyX
j
u2

(t, y2)| ⩽ C(T, ∥u1∥, ∥u2∥)(|y1 − y2| + ∥u1 − u2∥1). (22)

Since for all t ∈ [0, T ], y 7→ Xu(t, y) is a C1-diffeomorphism from Rd onto itself, we may define its inverse
as the function satisfying Xu(t,X−1

u (t, x)) = x for all (t, x) ∈ [0, T ] × Rd. We have the following results for
X−1
u .

Lemma 3. Let a satisfy (5) and ψa satisfy (15) for some k ⩾ 1. Consider u ∈ C([0, T ], L1(Rd)). Then

there exists a positive constant C̃(T, ∥u∥), such that the inverse of the solution Xu(t, y) of (20) satisfies, for
all t ∈ [0, T ], x ∈ Rd

k∑
i=1

∑
|α|⩽i

d∑
j=1

|∂αx
(
X−1
u

)j
(t, x)| ⩽ C̃(T, ∥u∥). (23)

Lemma 4. Let a satisfy (5) and ψa satisfy (15) for some k ⩾ 1. Consider any two functions u1, u2 ∈
C([0, T ], L1(Rd)). Then there exists a positive constant C̃(T, ∥u1∥, ∥u2∥), which satisfies lim

T→0
C̃(T, ∥u1∥, ∥u2∥) =

0 and such that the inverses of the solutions Xu1
and Xu2

of (20) satisfy, for all t ∈ [0, T ] and x ∈ Rd

k−1∑
i=0

∑
|α|⩽i

d∑
j=1

|
(
∂αxX

−1
u1

)j
(t, x) − ∂αx

(
X−1
u2

)j
(t, x)| ⩽ C̃(T, ∥u1∥, ∥u2∥)∥u1 − u2∥1. (24)
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We remark that thanks to the relation ∥u∥1 ⩽ T∥u∥, the relations (22) and (24) also hold true when
replacing ∥u1 − u2∥1 by ∥u1 − u2∥. Lastly, we give a result regarding the regularity of Xu(t, x) with respect
to t.

Lemma 5. Let a satisfy (5) and ψa satisfy (15) for some k ⩾ 1. Consider u ∈ C1([0, T1) × Rd) such that
sup

t∈[0,T1)

(∥u(t, ·)∥L1(Rd) + ∥∂tu(t, ·)∥L1(Rd)) < +∞. Then Xu(t, y) ∈ C1([0, T1],Ck(Rd)). As a consequence,

X−1
u (t, x) ∈ C1([0, T1],Ck(Rd)).

Proof. Thanks to Lemma 2, we know that under these hypotheses, for all T < T1, Xu(t, y) exists and belongs
to C1([0, T ],Ck(Rd)). Consider 0 < t1, t2 < T1, then

k∑
i=0

∑
|α|⩽i

d∑
j=1

|∂αyXj
u(t1, y) − ∂αyX

j
u(t2, y)| =

k∑
i=0

∑
|α|⩽i

d∑
j=1

|
∫ t2

t1

∂αy Ẋ
j
u(s, y)ds|

=

k∑
i=0

∑
|α|⩽i

d∑
j=1

|
∫ t2

t1

∂αy aj(s,Xu(s, y), (Iau)(s,Xu(s, y)))ds|.

Thanks to the regularity of a and ψa, the bounds given in Lemma 2 for the derivatives of Xu(t, y) and the
uniform bound for ∥u∥L1(Rd) we conclude that there exists a positive constant such that

k∑
i=0

∑
|α|⩽i

d∑
j=1

|∂αyXj
u(t1, y) − ∂αyX

j
u(t2, y)| ⩽ C|t1 − t2|.

Similarly, we have

k∑
i=0

∑
|α|⩽i

d∑
j=1

|∂αy Ẋj
u(t1, y) − ∂αy Ẋ

j
u(t2, y)| =

k∑
i=0

∑
|α|⩽i

d∑
j=1

|∂αy (Au)j(t1, y) − ∂αy (Au)j(t2, y)|,

where
(Au)j(t, y) := aj(t,Xu(t, y), (Iau)(t1, Xu(t, y))).

Again, the regularity up to order k + 1 of the involved coefficients allow us to conclude that

k∑
i=0

∑
|α|⩽i

d∑
j=1

|∂αy Ẋj
u(t1, y) − Ẋj

u(t1, y)| ⩽ C|t1 − t2|.

We have shown that Xu(t, ·) is a Cauchy sequence in Ck(Rd) when t goes to TM , therefore, there exists
X∗(x) ∈ Ck(Rd) and Y ∗(x) ∈ Ck(Rd) such that

lim
t→TM

∥Xu(t, ·) −X∗∥Ck(Rd) + ∥Ẋu(t, ·) − Y ∗∥Ck(Rd),

which is the desired result.

2.2 Existence of solution for smooth initial data

We first provide the proof of existence and uniqueness of solution for problem (19) when the initial condition
v0 is a smooth enough function. We still assume hypotheses (5) through (18) hold. For a smooth initial
condition v0 we denote by classical solution any function v ∈ C1([0, T ] × Rd) which satisfies problem (19).
The following a priori estimate will allow us to guarantee the global existence of a classical solution given
that such solution exists over a certain interval [0, T1].
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Lemma 6. Let v0 ∈ C1
c (Rd) and T1 > 0 be such that a classical solution v ∈ C1([0, T ] × Rd) exists for

problem (19) for all T < T1, which is positive and has compact support with respect to the x variable. Then,
such solution satisfies the estimate

sup
t∈[0,T1]

∥v(t, ·)∥L1(Rd) ⩽ max{∥v0∥L1(Rd),
I∗

ψg
}. (25)

Proof. Let v be the aforementioned positive solution. Denoting ρ(t) := ∥v(t, ·)∥L1(Rd), we see directly from
equation (19) that

ρ̇(t) =

∫
Rd

(
R(t, y, (Igv)(t, y)) +

∫
Rd

m(t, x, y, (Idv)(t, x))dx

)
v(t, y)dy.

If there exists t such that ρ(t) > I∗

ψg
, then (Igv)(t, y) ⩾ ψgρ(t) > I∗, which allows us to use hypothesis (18)

in order to conclude
ρ̇(t) < −r∗ρ(t) < 0.

This way, we see that either ρ(t) is smaller than I∗

ψg
or ρ(t) is decreasing, which in turn implies the bound

(25).

A fixed point argument together with estimate (25) will allow us to conclude the existence of solution for
problem (19) for smooth initial conditions.

Theorem 1. Consider k ⩾ 1 and T > 0. Under hypotheses (15) through (18), for all non-negative functions
v0 ∈ Ck

c (Rd), there exists a unique non-negative classical solution v ∈ C1([0, T ],Ck
c (Rd)) to problem (19).

Furthermore, such solution satisfies

sup
t∈[0,T ]

∥v(t, ·)∥L1(Rd) ⩽ max{∥v0∥L1(Rd),
I∗

ψg
}, (26)

sup
t∈[0,T ]

∥v(t, ·)∥Wk,1(Rd) ⩽ CT ∥v0∥Wk,1(Rd). (27)

Proof. Consider v0 ∈ Ck
c (Rd). For t ≥ 0 and the function M introduced in (8) we define rt := 2∥a∥L∞t, Brt

the open ball centred at 0 and of radius rt,

Ot := supp (v0) ∪ supp (M) +Brt ,

and for α > 1 we define ρα := max{α∥v0∥L1(Rd),
I∗

ψg
}. We consider

u ∈ DT
α :=

{
u ∈ C([0, T ] × Rd) : u ⩾ 0, supp (u(t, ·)) ⊂ Ot,

∫
Rd

u(t, x)dx ⩽ ρα, ∀t ∈ [0, T ]

}
.

We denote as Φu the mapping defined by v = Φu, where v is the solution of{
∂tv(t, x) + ∇x · (a(t, x, (Iau)(t, x))v(t, x)) −R(t, x, (Igu)(t, x))v(t, x) =

∫
Rd m(t, x, y, (Idu)(t, x))u(t, y)dy

v(0, ·) = v0(·).

Let us denote, for any y ∈ Rd, as Xu(·, y) the unique solution of{
Ẋu(t, y) = a(t,Xu(t, y), (Iau)(t,Xu(t, y))) =: Au(t,Xu(t, y)) t ≥ 0,

X(0, y) = y.

9



As stated before, for any t ∈ [0, T ], x 7→ Xu(t, x) is a C1-diffeomorphism, therefore, for all t ≥ 0 and all
x ∈ Rd there exists a unique y ∈ Rd such that x = Xu(t, y), which we denote y = X−1

u (t, x).
We see that,

d

dt
v(t,Xu(t, y)) =

[
R(t,Xu(t, y), (Igu)(t,Xu(t, y))) − div Au(t,Xu(t, y))

]
v(t,Xu(t, y))

+

∫
Rd

m(t,Xu(t, y), z, (Idu)(t,Xu(t, y)))u(t, z)dz,

and thus, denoting

Gu(t, y) := R(t,Xu(t, y), (Igu)(t,Xu(t, y))) − div Au(t,Xu(t, y)),

we get

Φu(t,Xu(t, y)) =v(t,Xu(t, y))

=v0(y) exp

(∫ t

0

Gu(s, y)ds

)
+

∫ t

0

∫
Rd

m(s,Xu(s, y), z, (Idu)(s,Xu(s, y)))u(s, z)dz exp

(∫ t

s

Gu(τ, y)dτ

)
ds

or, equivalently

Φu(t, x) =v(t, x)

=v0(X−1
u (t, x)) exp

(∫ t

0

Gu(s,X−1
u (t, x))ds

)
+

∫ t

0

∫
Rd

m(s,Xu(s,X−1
u (t, x)), z, (Idu)(s,Xu(s,X−1

u (t, x))))u(s, z)dz exp

(∫ t

s

Gu(τ,X−1
u (t, x))dτ

)
ds.

The solution v is thus non-negative, according to the non-negativity of v0, u and m. Thanks to Lemma 3, v
belongs to C1([0, T ],Cκ(Rd)) ⊂ C([0, T ] × Rd). Furthermore, the fact that for all t ∈ [0, T ], |X(t, y) − y| ⩽
∥a∥L∞t implies that supp (v(t, ·)) ⊂ Ot.
Additionally, directly from its definition, we see that

Gu(s,X−1
u (t, x)) ⩽ γ := ∥R∥L∞

t,x,I
+ ∥a∥W 1,∞

x L∞
t,I

+ ∥a∥W 1,∞
I L∞

t,x
∥ψa∥W 1,∞

x L∞
y
ρα,

and consequently, for all u ∈ DT
α , we have

∥Φu(t, ·))∥L1(Rd) ⩽e
γT

∫
Rd

v0(X−1
u (t, x))dx

+

∫ t

0

∫
Rd

∫
Rd

m(s,Xu(s,X−1
u (t, x)), z, (Idu)(s,Xu(s,X−1

u (t, x))))u(s, z)dzdxds

)

⩽eγT

∫
Rd

v0(X−1
u (t, x))dx+

∫ t

0

∫
Rd

M(s,Xu(s,X−1
u (t, x)))dx

∫
Rd

u(s, z)dzds

 .

Making the changes of variables y = X−1
u (t, x) and y = Xu(s,X−1

u (t, x)) respectively on each of the integrals
on the last expression, recalling that, according to Liouville’s formula

|JXu(t,y)| = e
∫ t
0
div Au(s,Xu(t,y))ds,

|JXu(t,X
−1
u (s,y))| = e

∫ t
0
div Au(τ,Xu(t,X

−1
u (s,y)))dτ−

∫ s
0
div Au(τ,y)dτ ,
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and using the hypotheses over a and m we obtain that for all t ∈ [0, T ],

∥Φu(t, ·)∥L1(Rd) ⩽ e(γ+2ã)T
(
∥v0∥L1(Rd) +KT∥u∥L1(Rd)

)
,

where ã := ∥a∥W 1,∞
x L∞

t,I
+ ∥a∥W 1,∞

I L∞
t,x

∥ψa∥W 1,∞
x L∞

y
ρα. Finally, using the hypothesis over v0 and u we see

that

∥Φu(t, ·)∥L1(Rd) ⩽ e(γ+2ã)T

(
1

α
+KT

)
ρα.

Thanks to the condition α > 1 there exists Tα (only depending on α and on the coefficients of the problem)
such that ∥Φu∥L1(Rd) ⩽ ρα for all t ∈ [0, Tα]. In other words, Φ : DTα

α → DTα
α .

We now claim that the mapping Φu is a contraction on some DT1
α , 0 < T1 ⩽ Tα, with respect to the

usual norm in C([0, T ] × Rd). For two functions u1, u2 ∈ DTα
α and any t ∈ [0, Tα], thanks to Lemma 1 and

Lemma 4, we have

|Φu1 − Φu2| ⩽Ceγt|X−1
u1

(t, x) −X−1
u2

(t, x)|
⩽Ceγt∥u1 − u2∥1
⩽Ceγt|Ot|t∥u1 − u2∥C([0,t]×Rd).

Clearly, for t = T1 small enough, Φu is a contraction, and therefore, thanks to the Banach fixed point theo-
rem, there exists a unique v ∈ DT1

α such that Φv = v. Such v is a solution of (19) over [0, T1]. Furthermore,
directly from the relation v = Φv we see that v ∈ C1([0, T ],Cκ

c (Rd)).

Let us now assume that there exists TM , a finite maximal time such that a solution exists in BTα for
all T < TM , and let v be such solution. Directly from Lemma 6, the solution v satisfies estimate (25) over
[0, TM ). Furthermore, thanks to the relation v = Φv, we are able to show that

sup
[0,TM )

(∥v(t, ·)∥L1(Rd) + ∥v̇(t, ·)∥L1(Rd)) < +∞.

From Lemma 5 we get then that X−1
v (t, x) ∈ C1([0, TM ],Ck(Rd)), and by composition of functions, so is

v = Φv. We can then iterate the previous ideas using v(TM ) ∈ Ck(Rd) as a starting point in order to obtain
the existence of solution over a certain interval [TM , TM + δ), contradicting this way the maximal character
of TM . Hence, there exists a classical solution of (19) for all t > 0.

The uniqueness on C([0, T ],Cκ
c (Rd)) comes from the fact that every other solution on D∞

α will coincide
with v at least over a small interval (0, t0) and then, by continuity, the same would hold for all t.

To obtain the W k,1(Rd) estimates, we differentiate the relation v = Φv and notice that for all multi-index
β such that |β| ⩽ k

∂βxv = exp

(∫ t

0

Gv(s,X
−1
v (t, x))ds

) ∑
|γ|⩽|β|

∂γxv
0(X−1

v (t, x))F γ1 (t, x)

+

∫ t

0

∫
Rd

F2(s, x, y)v(s, y)dy exp

(∫ t

s

Gv(τ, x)dτ

)
ds

where the functions F γ1 and F2 are combinations of sums and multiplications of the derivatives up to order
|β| of X−1

v , R, m, Ig and Id. Taking absolute values, integrating over Rd and using the boundedness of all
the involved coefficients we arrive at

∥v(t, ·)∥Wk,1(Rd) ⩽ C1
T ∥v0∥Wk,1(Rd) + C2

T

∫ t

0

∥v(s, ·)∥Wk,1(Rd)ds

and thanks to Grönwall’s lemma we get (27).
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2.3 Existence of solution for more general initial data

Depending on whether ∂Ia = 0 or ∂Ia ̸= 0, we will have a different class of initial data for which we are able
to guarantee existence of solution for problem (19). Furthermore, the regularity of such solution might also
be affected.
We first prove that, when ∂Ia ̸= 0, a solution exists (in a sense that will be defined below) for any initial
condition v0 ∈ W k,∞(Rd), with compact support. However, we do not prove that the regularity of the
solution is preserved over time, even if we did not manage to highlight the existence of cases where a loss of
regularity is observed. Secondly, we will show that, when ∂Ia = 0, not only the set of initial conditions for
which we can claim existence of solution is more general (v0 ∈W k,1(Rd)), but the regularity of such solution
is preserved for all t > 0.
We introduce the definition of weak solution for problem (19). We say that v is a weak solution of problem
(19) associated to v0 ∈ Lp(Rd) if

v ∈ L∞([0, T ], Lp(Rd)),

and it satisfies the equation in the following weak sense∫ T

0

∫
Rd

vL∗
vφdxdt =

∫
Rd

v0φdx,

for any φ ∈ C1
c ([0, T ) × Rd), where we define the operator L∗

v by

L∗
vφ(t, x) = −∂tφ(t, x)−a(t, x, (Iav)(t, x))·∇φ(t, x)−R(t, x, (Igv)(t, x))φ(t, x)−

∫
Rd

m(t, y, x, (Idv)(t, y))φ(t, y)dy,

for all t ∈ [0, T ], y ∈ Rd. We remark that a classical solution is always a weak solution.

Theorem 2. Under hypotheses (5) through (18), for all k ⩾ 1 and any non-negative functions v0 ∈
W k,∞(Rd) with compact support, there exists a unique non-negative weak solution v ∈ C([0, T ],Ck−1

c (Rd))
to problem (19). Furthermore, such solution satisfies

sup
t∈[0,T ]

∥v(t, ·)∥L1(Rd) ⩽ max{∥v0∥L1(Rd),
I∗

ψg
}, (28)

sup
t∈[0,T ]

∥v(t, ·)∥Wk−1,1(Rd) ⩽ CT ∥v0∥Wk−1,1(Rd), (29)

and, for k ⩾ 2, v ∈ C1([0, T ],Ck−1
c (Rd)).

Proof. Directly from Morrey’s inequality, we get the relation v0 ∈ W k,∞(Rd) ⊂ Ck−1,1(Rd). If k ⩾ 2, we
are able to apply Theorem 1 in order to get the desired result.
Consider now k = 1. The compact support of v0 and the W 1,∞(Rd) regularity imply that v0 ∈ W k,1(Rd).
This means that, there exists a sequence of compactly supported functions v0ε ∈ C1

c (Rd) such that

supp (v0)ε ⊂ supp (v0),

∥v0ε∥W 1,∞(Rd) ⩽ ∥v0∥W 1,∞(Rd),

lim
ε→0

∥v0 − v0ε∥W 1,1(Rd) = 0.

We denote as vε the solution of problem (19) associated to v0ε , and we claim that vε is a Cauchy sequence in
C([0, T ], L1(Rd)).
We recall that for all ε,

sup
t∈[0,T ]

∥vε∥L1(Rd) ⩽ ρε := max{∥v0ε∥L1(Rd),
I∗

ψg
}.
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Furthermore, the equality vε = Φvε holds true, where Φ was defined on the proof of Theorem 1. Consequently,
for ε1, ε2 > 0 we have the relation

∆Vε1ε2 :=vε1 − vε2
=Φvε1 − Φvε2

=

(
v0ε1(X−1

vε1
(t, x)) − v0ε2(X−1

vε2
(t, x))

)
exp

(∫ t

0

G1(τ, t, x)dτ

)
− v0ε2(X−1

vε2
(t, x))

(
∆E(0, t, x)

)
+

∫ t

0

∫
Rd

(
M1(s, t, x, z) −M2(s, t, x, z)

)
vε1(s, z)dz exp

(∫ t

s

G1(τ, t, x)dτ

)
ds

+

∫ t

0

∫
Rd

M2(s, t, x, z)

(
∆Vε1ε2(s, z)

)
dz exp

(∫ t

s

G1(τ, t, x)dτ

)
ds

+

∫ t

0

∫
Rd

M2(s, t, x, z)vεj (s, z)dz

(
∆E(s, t, x)

)
ds,

where

Gi(τ, t, x) = Gvεi (τ,X−1
vεi

(t, x)),

∆E(s, t, x) := exp

(∫ t

s

G1(τ, t, x)dτ

)
− exp

(∫ t

s

G2(τ, t, x)dτ

)
,

Mi(s, t, x, z) := m(s,Xvεi
(s,X−1

vεi
(t, x)), z, (Idvεi)(s,Xvεi

(s,X−1
vεi

(t, x)))).

We write
v0ε1(X−1

vε1
(t, x)) − v0ε2(X−1

vε2
(t, x)) = v0ε1(X−1

vε1
(t, x)) − v0ε2(X−1

vε1
(t, x))

+v0ε2(X−1
vε1

(t, x)) − v0ε2(X−1
vε2

(t, x)).
(30)

Thanks to the change of variables y = X−1
vε1

(t, x) and the relations

|JXvε1
(t,y)| =e

∫ t
0
div Avε1

(s,Xvε1
(t,y))ds,

G(s,X−1
vε1

(t, x)) ⩽γ := ∥R∥L∞
t,x,I

+ ∥a∥W 1,∞
x L∞

t,I
+ ∥a∥W 1,∞

I L∞
t,x

∥ψa∥W 1,∞
x L∞

y
ρ,

div Avε1
(s,Xvε1

(t, y)) ⩽ã := ∥a∥W 1,∞
x L∞

t,I
+ ∥a∥W 1,∞

I L∞
t,x

∥ψa∥W 1,∞
x L∞

y
ρ,

we conclude that ∫
Rd

(
v0ε1(X−1

vε1
(t, x)) − v0ε2(X−1

vε1
(t, x))

)
exp

(∫ t

0

G1(τ, t, x)dτ

)
dx

=

∫
Rd

(
v0ε1(y) − v0ε2(y)

)
exp

(∫ t

0

Gvεi (τ, y)dτ

)
|J−1
Xvε1

(t,y)|dy

⩽e(γ+α̃)T ∥v0ε1 − v0ε2∥L1(R). (31)

On the other hand, the compactness of the support of v0ε2 , together with the relation

|Xvε(t, y) − y| ⩽ ∥a∥L∞t,

implies that
v0ε2(X−1

vε1
(t, x)) − v0ε2(X−1

vε2
(t, x)) = 0, for all x ̸∈ Ot := supp v0 +Brt ,
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where Brt is the ball of radius ∥a∥L∞t. Hence, we obtain∫
Rd

(
v0ε2(X−1

vε1
(t, x)) − v0ε2(X−1

vε2
(t, x))

)
exp

(∫ t

0

G1(τ, t, x)dτ

)
dx

⩽|Ot|∥v0ε2∥W 1,∞(Rd)e
γT |X−1

vε1
(t, x) −X−1

vε2
(t, x)|

⩽C̃T ∥vε1 − vε2∥1, (32)

where we have used (24) on the second line1.
From the definition of Gu(t, x), we observe that

|∆E(s, t, x)| ⩽eγT
∫ t

s

|G1(τ, t, x) −G2(τ, t, x)|dτ

⩽C̃T ∥vε1 − vε2∥1, (33)

where C̃T depends on ρ, T , the derivatives of R, a and ψa, and on the constant appearing in (24).
Using the change of variables y = Xvε2

(s,X−1
vε2

(t, x)) and recalling that

|JXvε2
(t,X−1

vε2
(s,x))| = e

∫ t
0
div Au(τ,Xvε2

(t,X−1
vε2

(s,x)))dτ−
∫ s
0
div Avε2

(τ,x)dτ
,

we see that ∫
Rd

M2(s, t, x, z)dx =

∫
Rd

m(s, y, z, (Idvε2)(s, y))|JXvε2
(t,X−1

vε2
(s,y))|

−1dy

⩽ e2ãT
∫
Rd

sup
s,z,I

mεi(s, y, z, I)dy ⩽ e2ãT |K|M.

Therefore, we have the bounds ∫
Rd

v0(X−1
vε2

(t, x))|∆E(0, t, x)|dx ⩽ eα̃T ∥v0∥L1(Rd)C̃T ∥vε1 − vε2∥1, (34)

t∫
0

∫
Rd

∫
Rd

M2(s, t, x, z)

(
∆Vε1ε2(s, z)

)
dz exp

 t∫
s

G1(τ, t, x)dτ

 dxds ⩽ e(γ+2ã)T |K|M∥vε1 − vε2∥1, (35)

t∫
0

∫
Rd

∫
Rd

M2(t, x, z)vεj (s, z)dz

(
|∆E(s, t, x)|

)
dxds ⩽ e2ãT |K|MρTC̃T ∥vε1 − vε2∥1. (36)

The function m(t, x, z, I) having a compact support on the x variable, leads to

M1(s, t, x, z) −M2(s, t, x, z) = 0, for all x ̸∈ K +B2rt .

On the other hand, the function m being differentiable and Lipschitz, implies that, for all x ∈ K +B2rt

|M1(s, t, x, z) −M2(s, t, x, z)| ⩽∥m∥W 1,∞
x

|Xvε1
(s,X−1

vε1
(t, x)) −Xvε2

(s,X−1
vε2

(t, x))|

+ µ|(Idvε1)(s,Xvε1
(s,X−1

vε1
(t, x))) − (Idvε2)(s,Xvε2

(s,X−1
vε2

(t, x)))|

⩽(∥m∥W 1,∞
x

+ ∥ψd∥W 1,∞
x

ρ)|Xvε1
(s,X−1

vε1
(t, x)) −Xvε2

(s,X−1
vε2

(t, x))|
+ ∥ψd∥L∞∥vε1 − vε2∥L1(Rd).

1This term is responsible for the possible loss of regularity for t > 0: In order to prove that vε is a Cauchy sequence in
C([0, T ],W 1,1(Rd)), we would need a W 2,∞(Rd) estimate over v0ε , which we do not have.
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Using first Lemma 1 and then Lemma 4, we conclude that there exists a constant C̃T such that

|M1(s, t, x, z) −M2(s, t, x, z)| ⩽C̃T
(
|X−1

vε1
(t, x) −X−1

vε2
(t, x)| + ∥vε1 − vε2∥1 + ∥vε1 − vε2∥L1(Rd)

)
⩽C̃T

(
∥vε1 − vε2∥1 + ∥vε1 − vε2∥L1(Rd)

)
.

Therefore, we have the bound

t∫
0

∫
Rd

∫
Rd

(
M1(s, t, x, z) −M2(s, t, x, z)

)
vε1(s, z)dz exp

(∫ t

s

G1(τ, t, x)dτ

)
dxds

⩽|K +B2rT |ρC̃T eγT ∥vε1 − vε2∥1. (37)

Putting together the bounds (31) through (37), we get

∥vε1 − vε2∥L1(Rd) ⩽ C̃T

(
∥v0ε1 − v0ε2∥L1(R) +

∫ T

0

∥vε1 − vε2∥L1(Rd)ds

)
.

Thanks to Grönwall’s lemma, we have then the relation

sup
t∈[0,T ]

∥vε1 − vε2∥L1(Rd) ⩽ C̃T ∥v0ε1 − v0ε2∥L1(Rd)

for some C̃T independent of ε1 and ε2, which proves that, up to the extraction of a sub-sequence, vε is a
Cauchy sequence in C([0, T ], L1(Rd)). Therefore, there exists v ∈ C([0, T ], L1(Rd)) such that

lim
ε→0

sup
t∈[0,T ]

∥vε − v∥L1(Rd) = 0.

Furthermore, such function satisfies the bounds (25) and (27).
We claim now that the sequence L∗

vεφ converges to L∗
vφ in L∞([0, T ]×Rd) for all φ ∈ C1

c ([0, T )×Rd). This
is a direct consequence of the relation

|L∗vεφ− L∗vεφ| ⩽ (Lr∥ψg∥L∞ + µ∥ψd∥L∞)∥φ∥L∞(Rd)∥vε − v∥L1(Rd).

In order to conclude, we recall that all classical solutions are weak solutions, and therefore, for all ε > 0∫ T

0

∫
Rd

vεL
∗
vεφdxdt =

∫
Rd

v0εφdx,

and taking the limit when ε goes to 0 we see that v is a weak solution of problem (19).

Considering initial data with compact support might be enough in order to model most of the biological
scenarios found in nature. However, the hypothesis v0 ∈ W k,∞(Rd) might be too restrictive for some real
life scenarios. Furthermore, the study of the problem when more general initial conditions are present, is of
theoretical interest. We show below that, when ∂Ia = 0, a solution exists for any initial data v0 ∈W k,1(Rd),
k ⩾ 1.

Theorem 3. Under hypothesis (15) through (18), if ∂Ia = 0, for all non-negative functions v0 ∈W k,1(Rd),
there exists a unique non-negative weak solution v ∈ C([0, T ],W k,1(Rd)) of problem (19). Furthermore, such
a solution satisfies

sup
t∈[0,T ]

∥v∥L1(Rd) ⩽ max{∥v0∥L1(Rd),
I∗

ψg
}, (38)

sup
t∈[0,T ]

∥v∥Wk,∞(Rd) ⩽ CT ∥v0∥Wk,1(Rd). (39)
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Proof. As in the proof for k = 1 when ∂Ia ̸= 0, we can approximate any function v0 ∈ W k,1 by a smooth,
compactly supported sequence of functions v0ε . The same arguments as in the previous proof will show that
vε, the sequence of solutions associated to v0ε , is a Cauchy sequence in C([0, T ], L1(Rd)). Furthermore, given
that the second term in (30), which is responsible for the possible loss of regularity in the previous case, is
equal 0 when ∂Ia = 0, we show that vε is a Cauchy sequence in C([0, T ],W k,1(Rd)) as well. We prove as in
Theorem 2 that the limit of vε is the required weak solution.

Given that the regularity of the solution varies depending on whether ∂Ia = 0 or ∂Ia ̸= 0, and that such
regularity will be of importance in the upcoming sections, we define the parameter

κ :=

k − 1, if ∂Ia ̸= 0,

k, if ∂Ia = 0,

which encompasses the information over said regularity.

We remark that if we had ∂Im = 0, we might obtain existence for a larger class of mutation functions
m. For conciseness, we will however not consider such cases in the present work.

3 Particle Method

The particle method basically consists in searching for an approximate solution of problem (19) which is a
sum of weighted Dirac masses.
Throughout the following section we suppose

ψa ∈ C
(
[0, T ] × Rdx,W 1,∞(Rd)

)
∩C

(
[0, T ] × Ry,C2(Rdx) ∩W 2,∞(Rdx)

)
, (40)

0 < ψg ⩽ ψg ∈ C
(
[0, T ] × Rdx,W 1,∞(Rdy)

)
∩C

(
[0, T ] × Rdy,C1(Rdx) ∩W 1,∞(Rdx)

)
(41)

ψd ∈ C
(
[0, T ] × Rdx,W 1,∞(Rdy)

)
∩C

(
[0, T ] × Rdy,C1(Rdx) ∩W 1,∞(Rdx).

)
(42)

Notice that, unlike the set of hypotheses (15)-(17), we have imposed W 1,∞(Rd) regularity for the y variable,
which is needed in order to approximate the integral terms by sums over a countable set.
Consider as well

0 ⩽ m ∈ C
(
[0, T ] × Rdx × Rdy,W 1,∞(RI)

)
∩C

(
[0, T ] × Rdx × RI ,W 1,∞(Rdy)

)
∩C

(
[0, T ] × Rdy × RI ,C1

c (Rdx)
)

(43)
satisfying hypotheses (7) through (18).
For h > 0, consider a countable set of indices Jh ∈ Zd, points x0i ∈ Rd and weights w0

i for i ∈ Jh. The
weights w0

i can be regarded as the respective masses of a collection of subsets Ω0
i ⊂ Rd satisfying

Ω0
i ∩ Ω0

j = ∅, if i ̸= j, and
⋃
i∈Jh

Ω0
i = Rd. (44)

For example, we may choose the Ω0
i as the set of all non intersecting cubes of side length equal h having the

points hi as centers , i ∈ Zd. This way, w0
i = hd, with each of the x0i being a point in Ω0

j . In general we
assume that there exist positive constants c and C such that

ch ⩽ |x0i − x0j | ⩽ Ch, ∀i ̸= j, (45)

chd ⩽ w0
i ⩽ Chd, ∀i ∈ Jh. (46)

Following [16], the particle method then consists in looking for a measure νh of the form

νh(t) =
∑
i∈Jh

νi(t)wi(t)δxi(t),
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where (ν := {vi(t)}i∈Jh
, w := {wi(t)}i∈Jh

, x := {xi(t)}i∈Jh
), is the solution of the following system

ẋi(t) = Aν,w(t, xi),

ẇi(t) = div Aν,w(t, xi(t))wi(t),

ν̇i(t) =
(
− div Aν,w(t, xi(t)) +R(t, xi(t), Ig(t, xi(t), ν, w))

)
νi(t)

+
∑
j∈Jh

wj(t)νj(t)m(t, xi(t), xj(t), Id(t, xi(t), ν, w)),

xi(0) = x0i , wi(0) = w0
i , νi(0) = v0(x0i ),

(47)

where
Aν,w(t, x) = a(t, x, Ia(t, x, ν, w)),

and

Il(t, x, ν, w) :=
∑
j∈Jh

νj(t)wj(t)ψl(t, x, xj(t)),

with l ∈ {a, g, d}.
In what follows we assume that h and x0k are chosen in such a way that

∥v0∥1,h :=
∑
i∈Jh

v0(x0i )w
0
i <∞. (48)

We define the subset of indices

Jm
h := {i ∈ Jh : x0i ∈ supp m+B∥a∥L∞T },

where B∥a∥L∞T is the ball of radius ∥a∥L∞T . The compact support of m implies that |Jm
h | <∞.

For a positive value of h and a set of indexes Jh we define the functional spaces

l1(Jh) :=
{
u = {ui}i∈Jh

:
∑
i∈Jh

|ui| < +∞
}
,

l∞(Jh) :=
{
w = {wi}i∈Jh

: sup
i∈Jh

|wi| < +∞
}
.

We equip these spaces with the norms

∥u∥l1 :=
∑
i∈Jh

|ui| and ∥w∥l∞ := sup
i∈Jh

|wi|

respectively. It is clear that for all u ∈ l1(Jh) and v ∈ l∞(Jh), then uv ∈ l1(Jh). For T > 0 we define as
well the spaces

XT
h := C([0, T ],l1(Jh)) and Y Th := C([0, T ],l∞(Jh)),

equipped with the norms

∥u∥1,h := sup
t∈[0,T ]

∥u(t)∥l1 and ∥w∥∞,h := sup
t∈[0,T ]

∥w(t)∥l∞ .

Problem (47) is a strongly coupled system of ODEs, with an infinite number of unknowns and equations.
In some cases the system becomes uncoupled (for example if ∂Ia = 0) or with a finite number of equations
and unknowns (for example if v0, a and m have compact support), however, for the sake of generality, we
present below the proof of existence of solution in the general case, and later discuss briefly these particular
scenarios.
We start by giving two results that will be of great use for the proof of existence for problem (47). First, we
deal with the existence of solution for a simpler system of infinite equations with infinitely many unknowns:
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Lemma 7. Consider a ∈ C([0, T ], (W 1,∞(Rd+1)))d, u ∈ XT
h , w ∈ Y Th and ψa satisfying hypothesis (40).

Then there exists a unique family of functions x := {xi}i∈Jh
, xi ∈ C1([0, T ]) for all i ∈ Jh which is solution

of the system of equations
ẋi(t) = Au,w(t, xi), t ∈ [0, T ], xi(0) = x0i . (49)

When ∂Ia = 0, system (49) becomes uncoupled, each individual equation has a solution, thanks to the
classic Cauchy-Lipschitz theory. The proof of the general case is given in Appendix B.
The second auxiliary result comes from approximation theory, and it will also be of great use in Section 4:

Lemma 8.

∀φ ∈W k,1(Rd),
∣∣∣∣ ∫

Rd

φ(x)dx−
∑
i∈Jh

wi(t)φ(xi(t))

∣∣∣∣ ⩽ Chk∥φ∥k,1,

where C is a constant which depends on a, ψa, ∥vw∥1,h and T .

This result is a direct corollary of Lemma 8 in [36]. More details regarding its proof are given in Appendix
C.
From now on, we suppose h to be small enough so that for any t ∈ [0, T ],∑

i∈Jh

wi(t)m(t, xi(t), y, Id(t, xi(t), ν, w)) < K +
r∗

2
, (50)

where the values of K and r∗ are given in (11) and (18) respectively. Such a choice is always possible thanks
to Lemma 8.

Theorem 4. Under hypothesis (5) through (18) and (40) through (46), for all T > 0 and all non-negative
initial data v0 ∈ l1(Jh,Ω

0) there exists a unique solution xi ∈ C1([0, T ]), for all i ∈ Jh, w := {wi(·)}i∈Jh
∈

C([0, T ],l∞(Jh)) and 0 ⩽ ν := {νi(·)}i∈Jh
∈ C([0, T ],l1(Jh)) of problem (47). Furthermore, there exist

positive constants cT and CT such that the solution satisfies, for all t ∈ [0, T ]

cTh ⩽ |xi(t) − xj(t)| ⩽ CTh, ∀i, j ∈ Jh, i ̸= j, (51)

cTh
d ⩽ wi(t) ⩽ CTh

d, ∀i ∈ Jh, (52)

∥νw∥1,h ⩽ max{∥v0hd∥l1 ,
I∗

ψg
}. (53)

Proof. Consider v0 ∈ l1(Jh,Ω
0), satisfying v0 ⩾ 0. Consider as well α > 1, and define

ρα := max{αhd∥v0∥l1 ,
I∗

ψg
},

ã := ∥a∥W 1,∞
x L∞

I,t
+ ∥a∥W 1,∞

I L∞
t,x

∥ψa∥W 1,∞
x

Cα.

For T > 0 we define the set

DT
α := {(u,w) ∈ XT

h × Y Th : ∥uw∥1,h ⩽ ρα,∀t ∈ [0, T ], u(t) ⩾ 0, w(t) ⩾ 0, hde−ãt ⩽ wk(t) ⩽ hdeãt}.

For any (u,w) ∈ DT
α we introduce the problem, for t ∈ [0, T ],

ẋi(t) = Au,w(t, xi),

ω̇i(t) = div Au,w(t, xi(t))ωi(t),

ν̇i(t) =
(
− div Au,w(t, xi(t)) +R(t, xi(t), Ig(t, xi(t), u, w))

)
νi(t)

+
∑
j∈Jh

ωj(t)uj(t)m(t, xi(t), xj(t), Id(t, xi(t), u, w)),

xi(0) = x0i , ωi(0) = w0
i , νi(0) = v0(x0i ).

(54)
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We denote (ν, ω) = Φ(u,w).
For each pair (u,w), the existence and uniqueness of xi is immediate from Lemma 7. Furthermore, for

all values of i, we have the following explicit expression for ωi

ωi(t) = w0
i e

∫ t
0
div Au,w(s,xi(s))ds,

which satisfies, for any t ∈ [0, T ]
hde−ãt ⩽ ωi(t) ⩽ hdeãt.

On the other hand, for all (u,w) ∈ DT
α and all values of i, the right-hand side of the differential equation in

(54) is well defined, as we have for all t ∈ [0, T ]∑
j∈Jh

wj(t)uj(t)m(t, xi(t), xj(t), Id(t, xi(t), u, w)) ⩽M
∑
j∈Jh

wj(t)uj(t) ⩽Mρα.

Therefore, the expression for νi is given by

νi(t) = v0(x0i )e
∫ t
0
Gi(s)ds +

t∫
0

∑
j∈Jh

wj(s)uj(s)m(s, xi(s), xj(s), Id(s, xi(s), u, w))e
∫ t
s
Gi(τ)dτds, (55)

where
Gi(t) := −div Au,w(s, xi(s)) +R(s, xi(s), Ig(s, xi(s), u(s), w(s))),

satisfies
sup
t∈[0,T ]

|Gi(t)| ⩽ γ := ∥R∥L∞
t,x,I

+ ∥a∥W 1,∞
x L∞

t,I
+ ∥a∥W 1,∞

I L∞
t,x

∥ψa∥W 1,∞
x L∞

y
ρα.

The positiveness of ν is immediate from the positiveness of v0 and m.
Furthermore, given that |xi(t) − x0i | ⩽ ∥a∥L∞T , for all k ∈ Jh and t ∈ [0, T ], we have

m(t, xi(s), y, I) = 0,

for all i ̸∈ Jm
h , t ∈ [0, T ], y ∈ Rd and I ∈ R. As a result, multiplying (55) by ωi(t) for each i and adding for

all values of i, we obtain

∑
i∈Jh

νi(t)ωi(t) ⩽ e(γ+α̃)T

∑
i∈Jh

v0(x0i )h
d + hd

t∫
0

∑
i∈Jh

∑
j∈Jh

wj(s)uj(s)m(s, xi(s), xj(s), Id(s, xi(s), u, w))ds


= e(γ+α̃)T

∑
i∈Jh

v0(x0i )h
d + hd

t∫
0

∑
i∈Jm

h

∑
j∈Jh

wj(s)uj(s)m(s, xi(s), xj(s), Id(s, xi(s), u, w))ds


⩽ e(γ+α̃)T

∑
i∈Jh

v0(x0i )h
d + hd|Jm

h |M
t∫

0

∑
j∈Jh

wj(s)uj(s)ds


⩽ e(γ+α̃)T (

1

α
+ TKh)ρα,

where Kh := hd|Jm
h |M2. Thanks to the condition α > 1 there exists Tα (only depending on α and on the

coefficients of the problem) such that Φ : DT
α → DT

α , for all T ⩽ Tα.
We now prove that there exists T ∈ (0, Tα) such that Φ is a contraction over DT

α .
Step 1: Bounds over x = {xi}i∈Jh

Let (u1, w1) and (u2, w2) be two pairs in DT
α , and let x1, x2 be the respective solutions of

˙
xji = Auj ,wj (t, xji ).

2Notice that hd|Jm
h | ≈ |supp m+B∥a∥L∞T |
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By following the same ideas as in the proof of Lemma 1 (see Appendix A), we obtain that for all t ∈ [0, T ],

∥x1(t) − x2(t)∥∞,h ⩽ C(T, h)
(
∥w1 − w2∥∞,h + ∥u1 − u2∥1,h

)
,

where the constant C(T, h) satisfies lim
T→0

C(T, h) = 0.

Step 2: Bounds over ω = {ωi}i∈Jh

From the expression for ω, we get, for all t ∈ [0, T ]

|ω1
i (t) − ω2

i (t)| ⩽hdTeãT
(
∥a∥W 2,∞

x,I
(1 + |∂xIa(t, x2i , u

2, w2)|)∥x1 − x2∥∞,h

+ ∥a∥W 2,∞
x,I

(1 + |∂xIa(t, x2i , u
2, w2)|)|Ia(t, x1i , u

1, w1) − Ia(t, x2i , u
2, w2)|

+∥a∥W 1,∞
I

|∂xIa(t, x1i , u
1, w1) − ∂xIa(t, x2i , u

2, w2)|
)
.

On the other hand we have

|∂xIa(t, x2i , u
2, w2)| ⩽∥ψa∥W 1,∞

x
ρα,

|Ia(t, x1i , u
1, w1) − Ia(t, x2i , u

2, w2)| ⩽ρα∥ψa∥W 1,∞
x,y

∥x1 − x2∥∞,h,

+ ∥ψa∥L∞
x,y
eãT (hd∥u1 − u2∥1,∞ +

ρα
hd

∥w1 − w2∥∞,h),

and

|∂xIa(t, x1i , u
1, w1) − ∂xIa(t, x2i , u

2, w2)| ⩽ρα∥ψa∥W 2,∞
x,y

∥x1 − x2∥∞,h

+ ∥ψa∥W 1,∞
x

eãT (hd∥u1 − u2∥1,∞ +
ρα
hd

∥w1 − w2∥∞,h).

In conclusion, there exists a constant C(T, h), satisfying lim
T→0

C(T, h) = 0 such that

∥ω1 − ω2∥∞,h ⩽ C(T, h)
(
∥w1 − w2∥∞,h + ∥u1 − u2∥1,h

)
.

Step 3: Bounds over ν = {νi}i∈Jh

Using the expression for ν, the regularity of m and bounds similar to those used for ω, we see that there
exists a constant C(T, h) satisfying lim

T→0
C(T, h) = 0 such that

∥ν1 − ν2∥1,h ⩽ C(T, h)
(
∥w1 − w2∥∞,h + ∥u1 − u2∥1,h

)
.

Consequently, there exists a constant C(T, h) satisfying lim
T→0

C(T, h) = 0, such that

∥ω1 − ω2∥∞,h + ∥ν1 − ν2∥1,h ⩽ C(T, h)
(
∥w1 − w2∥∞,h + ∥u1 − u2∥1,h

)
,

which implies that, for 0 < T1 ⩽ Tα small enough, Φ is a contraction over DT1
α , and therefore it has a unique

fixed point. Such fixed point is a solution of problem (47) over [0, T1).
We now claim that the solution exists for T arbitrary, and furthermore, it satisfies the relation (53). Let Tf
be the maximal time of existence of solution. Suppose that there exists t0 ∈ (0, Tf ] such that ∥νw∥1,h > ρα.
This implies that there exist δ ⩾ 0 and t∗ > 0 such that for a certain finite subset of Jh, that we denote as
Kh, the following statements are true:∑

i∈Kh

νi(t)wi(t) ⩽ ρα, ∀ t ∈ [t∗ − δ, t∗],

∑
i∈Kh

νi(t)wi(t) > ρα, ∀ t ∈ (t∗, t∗ + δ].
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This implies the existence of t1 ∈ [t∗, t∗ + δ] such that the following properties are satisfied simultaneously

∑
i∈Kh

νi(t1)wi(t1) ⩾ ρα and

(∑
i∈Kh

νiwi

)′

(t1) ⩾ 0. (56)

Multiplying the equation satisfied by νi(t) by wi(t) we get the relation

ν̇i(t)wi(t) =
(
− div Aν,w(t, xi(t)) +R(t, xi(t), Ig(t, xi(t), ν, w))

)
νi(t)wi(t)

+ wi(t)
∑
j∈Jh

wj(t)νj(t)m(t, xi(t), xj(t), Ig(t, xi(t), ν, w)),

while, directly from the equation for wi(t) we deduce

νi(t)ẇi(t) = div Aν,w(t, xi(t))νi(t)wi(t).

Therefore, adding both relations for i ∈ Kh and using (50), we get(∑
i∈Kh

νiwi

)′

(t) =

(∑
i∈Kh

R(t, xi(t), Ig(t, xi(t), ν, w))νi(t)wi(t)

)
+
∑
j∈J

wj(t)νj(t)
∑

i∈Kh∩Jm
h

m(t, xi(t), xj(t), Id(t, xi(t), ν, w))wi(t)

⩽

(∑
i∈Kh

R(t, xi(t), Ig(t, xi(t)))νi(t)wi(t)

)
+ (K +

r∗

2
)
∑
j∈Kh

wj(t)νj(t).

Given that ∥ν(t1)w(t1)∥l1 ⩾ ρα ⩾ I∗

ψ
g

, then Ig(t1, xi(t1), ν(t1), w(t1)) ⩾ I∗, and consequently

R(t1, xi(t1), Ig(t1, xi(t1), ν(t1), w(t1))) < −r∗ −K,

for all values of i, which in turn implies that(∑
i∈Kh

νiwi

)′

(t1) ⩽ −r
2

2

∑
i∈Kh

νi(t1)wi(t1) < 0,

which contradicts (56). Therefore, ∥νw∥1,h ⩽ ρα for all values of α > 1 and for all t ∈ (0, Tf ). We can then
iterate the arguments used to prove existence of a solution, and conclude that the solution can be extended
to any interval [0, T ]. As ∥νw∥1,h ⩽ ρα for all t, independently of α, taking the limit when α goes to 1, we
obtain (53).

4 Convergence of the numerical solution towards a weak solution

We study now the conditions under which a solution of problem (54) converges towards a solution of prob-
lem (19), in a certain sense that will be defined later. We split our analysis in two cases: first, the study of
convergence on a finite interval of time [0, T ]. We will see that for any T > 0, the solution obtained through
the particle method converges towards the solution of the PDE (19). However, the speed of convergence
might be affected by the value of T . The second case we study is the asymptotic proximity of both solutions
when t goes to ∞. This is a far more complex and interesting issue, and we show different examples exposing
some of the behaviours that can be observed.

Directly from the study of existence of solutions for each problem, we notice that the sets of hypotheses
we have used, do not coincide. We give a set of hypotheses which simultaneously guarantees the existence of
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solution for both problems, while taking into account the distinction of cases involved in the definition of κ.
For a certain T > 0 and k > 0, we consider the functions

ψa ∈ C([0, T ] × Rdx,W 1,∞(Rdy)) ∩C
(
[0, T ] × Rdy,Ck+1(Rdx) ∩W k+1,∞(Rdx)

)
, (57)

0 < ψg ⩽ ψg ∈ C
(
[0, T ] × Rx,W 1,∞(Rdy)

)
∩C

(
[0, T ] × Ry,Cκ(Rdx) ∩Wκ,∞(Rdx)

)
, (58)

ψd ∈ C
(
[0, T ] × Rdx,W 1,∞(Rdy)

)
∩C

(
[0, T ] × Rdy,Cκ(Rdx) ∩Wκ,∞(Rdx)

)
. (59)

As in Section 2 we introduce

a ∈ C([0, T ],W k+1,∞(Rd+1)), (60)

R ∈ C
(
[0, T ] × Rx,Wκ,∞

loc (Rdy)
)
∩C

(
[0, T ] × Ry,Cκ(Rdx) ∩Wκ,∞(Rdx))

)
(61)

We consider as well

0 ⩽ m ∈ C
(
[0, T ] × Rdx × Rdy,Wκ,∞(RI)

)
∩C

(
[0, T ] × Rdx × RdI ,Wκ,∞(Rdy)

)
∩C

(
[0, T ] × Rdy × RdI ,Cκ

c (Rdx)
)
.

(62)
satisfying hypothesis (7) through (18).
Finally, we consider v0 ∈ W k,1(Rd) if ∂Ia = 0 and v0 ∈ W k,1(Rd) ∩ W k,∞(Rd) with compact support
otherwise.

4.1 Convergence on a finite time interval

We recall that the function v represents the solution of problem (19) while xi, wi and νi, i ∈ Jh represents
that of problem (54). We recall as well that

max{∥v∥, ∥νw∥1,h} ⩽ max{∥v0∥L1(Rd), ∥v0hd∥l1 ,
I∗

ψg
} =: ρ.

Let ε > 0, r ∈ R and φ ∈ Cc(Rd) satisfy the following conditions∫
Rd

φ(x)dx = 1, (63)∫
Rd

xαφ(x)dx = 0, ∀ α ∈ Nn, |α| ⩽ r − 1. (64)

. We define, for all t ∈ [0, T ], x ∈ Rd

i)

vh(t, x) =
∑
i∈Jh

νi(t)wi(t)δ(x− xi(t)), (65)

a time dependent measure obtained as a sum of weighted Dirac deltas at xi(t),

ii)

vhε (t, x) = (vh(t) ∗ φε)(x) =
∑
i∈Jh

νi(t)wi(t)φε(x− xi(t)), (66)

a regular function obtained as the space convolution of vh(t, x) and φε(x), where

φε :=
1

εd
φ(

·
ε

).

We also introduce the following operator, for any function v ∈ L∞(0, T ;L1(Rd)):(
Πh
ε (t)v

)
(x) =

∑
i∈Jh

wi(t)v(t, xi(t))φε(x− xi(t)).

We recall a direct corollary of the Theorem 3 in [36]:
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Proposition 5. Let k, r be two integers, with k > d, and let us assume that a ∈ L∞ (0, T ;W k+1,∞(Rd)d
)
,

and that φ ∈ C1
c (Rd) ∩W k+1,1(Rd) satisfies conditions (63) and (64). Then, for any p ∈ [1,+∞], there

exists C = C(T ) > 0 such that, for any u ∈Wµ,1(Rd) (µ = max(r, k)),

∥u− Πh
ε (t)u∥Lp(Rd) ⩽ C

(
εr∥u∥W r,p(Rd) +

( ε
h

)k∥u∥Wk,p(Rd)

)
.

We seek to prove the following approximation result between vhε and v, the solution of problem (19).

Theorem 6. Assume that hypotheses (57) through (62) are satisfied, and that φ ∈ C1
c (Rd) ∩W k+1,1(Rd)

satisfies (63) and (64). Then, there exists C = C(T, a,R,m, ρ) > 0, a positive constant which depends on
T , a, R, m and ρ such that

∥v − vhε ∥L1(Rd) ⩽ C
(
εr +

(h
ε

)κ
+ hκ

)
∥v0∥Wµ,1(Rd), ∀ 0 ⩽ t ⩽ T,

where µ = max(r, κ).

The proof of Theorem 6 strongly relies on Proposition 5 and the following result:

Proposition 7. Under hypotheses (57) through (62), there exists a constant CT > 0, depending only on T
and on the parameters of problems (19) and (54), such that their respective solutions satisfy, for all t ∈ [0, T ],∑

i∈Jh

|v(t, xi(t)) − νi(t)|wi(t) ⩽ CTh
k−1∥v0∥Wµ,1(Rd). (67)

Proof. Consider βε as in (88). We define e = {ei(·)}i∈J where for all i ∈ J and t ∈ [0, T ],

ei(t) := v(t, xi(t)) − νi(t),

eε,i(t) := βε(ei(t))wi(t),

and compute
ėε,i(t) = β′

ε(ei(t))ėi(t)wi(t) + βε(ei(t))ẇi(t). (68)

We recall that

ėi(t) =

(
Gν,w(t, xi(t)) −Gv(t, xi(t))

)
νi(t) +

(
Aν,w(t, xi(t)) −Av(t, xi(t))

)
∇v(t, xi(t))

−Gv(t, xi(t))ei(t) + ∆M(t, xi(t)),

where

Gν,w(t, xi(t)) := div Aν,w(t, xi(t)) −R(t, xi(t), Ig(t, xi(t), ν, w)),

Gv(t, xi(t)) := div Av(t, xi(t)) +R(t, xi(t), (Igv)(t, xi(t))),

∆M(t, xi(t)) :=

∫
Rd

m(t, xi(t), y, (Idv)(t, xi))v(t, y)dy −
∑
j∈Jh

wj(t)νj(t)m(t, xi(t), xj(t), Id(t, xi(t), ν, w)).

The functions a and R being Lipschitz, there exists a constant C depending on the parameters of the problem
and the value ρ, such that∣∣∣∣Gν,w(t, xi(t)) −Gv(t, xi(t))

∣∣∣∣ ⩽C(|(Iav)(t, xi(t)) − Ia(t, xi(t), ν, w)|

+ |∂x(Iav)(t, xi(t)) − ∂xIa(t, xi(t), ν, w)|

+ |(Igv)(t, xi(t)) − Ig(t, xi(t), ν, w)|
)
.

23



Notice that

|(Iav)(t, xi(t)) − Ia(t, xi(t), ν, w)| =

∣∣∣∣∫
Rd

ψa(t, xi(t), y)v(y)dy −
∑
j∈Jh

ψa(t, xi(t), xj(t))νj(t)wj(t)

∣∣∣∣
⩽

∣∣∣∣∫
Rd

ψa(t, xi(t), y)v(y)dy −
∑
j∈Jh

ψa(t, xi(t), xj(t))v(t, xj(t))wj(t)

∣∣∣∣
+

∣∣∣∣∑
j∈Jh

ψa(t, xi(t), xj(t))

(
v(t, xj(t) − νj(t))

)
wj(t)

∣∣∣∣
⩽C

(
hκ∥v∥Wκ,1(Rd) +

∑
j∈Jh

|ej(t)|wj(t)
)
,

where in the last line we have used Lemma 8 and the Wκ,1(Rd) regularity of v. Similar results are true for
|∂x(Iav)(t, xi(t)) − ∂xIa(t, xi(t), ν, w)| and |(Igv)(t, xi(t)) − Ig(t, xi(t), ν, w)|. In conclusion, thanks to (27),
there exists a constant CT , only depending on T , the parameters of the problem and the value ρ, such that∣∣∣∣Gν,w(t, xi(t)) −Gv(t, xi(t))

∣∣∣∣ ⩽ CT

(
hκ∥v0∥Wκ,1(Rd) +

∑
j∈Jh

|ej(t)|wj(t)
)
. (69)

Again, using the Lipschitz regularity of a, we see that∣∣∣∣Aν,w(t, xi(t)) −Av(t, xi(t))

∣∣∣∣ ⩽C|(Iav)(t, xi(t)) − Ia(t, xi(t), ν, w)|

⩽CT

(
hκ∥v0∥Wκ,1(Rd) +

∑
j∈Jh

|ej(t)|wj(t)
)
. (70)

The boundedness of a and R implies the existence of a constant G such that for all i ∈ J and t ∈ [0, T ],

|Gv(t, xi(t))| ⩽ G. (71)

We recall from the previous section that

∆M(t, xi(t)) = 0, ∀i ̸∈ Jm
h ,

where the set of indexes Jm
h has a finite number of elements, which depends on T . On the other hand, for

those i ∈ Jm
h , we have

|∆M(t, xi(t))|

⩽

∣∣∣∣∫
Rd

m(t, xi(t), y, (Idv)(t, xi(t)))v(t, y)dy −
∑
j∈Jh

wj(t)v(t, xj(t))m(t, xi(t), xj(t), (Idv)(t, xi(t)))

∣∣∣∣
+
∑
j∈Jh

wj(t)v(t, xj(t))

∣∣∣∣m(t, xi(t), xj(t), (Idv)(t, xi(t))) −m(t, xi(t), xj(t), Id(t, xi(t), ν, w))

∣∣∣∣
+
∑
j∈Jh

wj(t)|ej(t)|m(t, xi(t), xj(t), (Idv)(t, xi(t)))

⩽C

(
hκ∥v∥Wκ,1(Rd) + µ|(Idv)(t, xi(t)) − Id(t, xi(t), ν, w)|

∑
j∈Jh

wj(t)v(t, xj(t)) +M
∑
j∈Jh

|ej(t)|wj(t)
)
,

where we have used again Lemma 8, the Wκ,1(Rd) regularity of m(t, x, y, I)v(t, y) with respect to the y
variable, and the Lipschitz regularity of m. Furthermore, Lemma 8 gives us the bound∑

j∈Jh

wj(t)v(t, xj(t)) ⩽ ∥v∥L1(Rd) + Chκ∥v∥Wκ,1(Rd),
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which together with manipulations similar to those made for |(Iav)(t, xi(t))−Ia(t, xi(t), ν, w)|, and the bound
(27), gives

|∆M(t, xi(t))| ⩽ CT

(
hκ∥v0∥Wκ,1(Rd) +

∑
j∈Jh

|ej(t)|wj(t)
)
. (72)

We denote as K an arbitrary finite subset of Jh. If we add (68) for all values of i ∈ K, and use bounds (69)
through (72), together with the equation for wi, we get(∑

i∈K

eε,i(t)

)′

⩽CTB(t)

(
hκ∥v0∥Wκ,1(Rd) +

∑
j∈Jh

|ej(t)|wj(t)
)
,

where
B(t) :=

∑
i∈K

(νi(t) + |∇v(t, xi(t))|)wi(t) +G+ |K ∩ Jm
h |hdeãT + ã.

Given that ∑
i∈K

νi(t)wi(t) ⩽ ρ,

and ∑
i∈K

wj(t)|∇v(t, xj(t))| ⩽ ∥∇v∥L1(Rd) + Chκ−1∥∇v∥Wκ−1,1(Rd),

thanks to (27), we conclude that there exists a constant BT , independent of the choice of K and h, such
that B(t) ⩽ BT . Consequently, for all values of t ∈ [0, T ], h small enough and any finite subset of Jh, we
have the relation (∑

i∈K

eε,i(t)

)′

⩽ CT

(
hκ +

∑
j∈Jh

|ej(t)|wj(t)
)
.

Integrating between 0 and t, taking the limit when ε goes to zero, and using Grönwall’s lemma, we obtain
that there exists a constant CT , independent of K such that∑

i∈K

|ei(t)|wi(t) ⩽ CTh
κ∥v0∥Wκ,1(Rd).

Being CT independent of K and h, (67) is immediate.

In other words, we proved in Proposition 7 that the piece-wise constant functions that take values
v(t, xk(t)) and vk(t) respectively over the intervals Ωk(t) are close in L1(Rd).

Proof of Theorem 6. According to the triangle inequality,

∥v − vhε ∥L1(Rd) ⩽ ∥v − Πh
ε (t)v∥L1(Rd) + ∥Πh

ε (t)v − vhε ∥L1(Rd), (73)

it only remains to bound both terms on the right hand side.

i) According to Proposition 5 with p = 1, and bound (27)

∥v − Πh
ε (t)v∥L1(Rd) ⩽ C(εr +

( ε
h

)κ
)∥v∥µ,p ⩽ CT (εr +

( ε
h

)κ
)∥v0∥µ,p.

i i) On the other hand, one computes

∥Πh
ε (t)v − vhε ∥L1(Rd) =

∫
Rd

∣∣ ∑
i∈Jh

wi(t)φε(x− xi(t))
(
v(t, xi(t)) − νi(t)

)∣∣dx
⩽
∑
i∈Jh

(
wi(t)|v(t, xi(t)) − νi(t)|

∫
Rd

|φε(x− xi(t))|dx
)
.
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According to the definition of φε, with the change of variable x′ = x−xk(t)
ε , we note that∫

Rd

|φε(x− xk(t))|dx =

∫
Rd

|φ(x)|dx < +∞,

by hypothesis on φ. We have then, according to Proposition 7, that

∥Πh
ε (t)v − vhε ∥L1(Rd) ⩽ CTh

κ∥v0∥κ,1 ⩽ Chκ∥v0∥µ,1,

which concludes the proof of Theorem 6.

4.2 Asymptotic preserving properties

The study of the asymptotic behaviour of the solution for adaptive dynamics models, such as (19), is one of
the main interests often treated in the literature (see [3, 4, 6, 12, 15, 18, 22, 24, 30, 33]). For this reason,
the design of numerical methods which preserve the asymptotic behaviour, or at least, the identification of
the problems for which the asymptotics are preserved under a certain numerical scheme, is a priority. In
other words, given that v(t, ·) converges to a measure µ when t goes to infinity, we expect to identify the
conditions under which lim

h→0
lim

t→+∞
vhε(h)(t, ·) = µ, that is, ensuring the commutativity of diagram (74):

v(t, ·)
t→∞

// µ

h→0

x xh→0

vhε(h)(t) t→∞
// µh

(74)

In what follows, we formally define the concept of an asymptotic preserving approximation, and give exam-
ples and counter-examples of this concept.

We recall that, according to the Riesz representation theorem, the space of finite Radon measures can be
identified with the topological dual space of Cc(Rd). Hence, we say that a sequence of finite Radon measures
{µn}n∈N converges weakly to a finite Radon measure µ (denoted µn ⇀

n→+∞
µ) if for all ϕ ∈ Cc(Rd),∫

Rd

ϕ(x)dµn(x) −→
n→+∞

∫
Rd

ϕ(x)dµ(x).

This leads us to introduce the following definition:

Definition 1. We say that the particle solution vhε defined in (66) is an asymptotic preserving approximation
of v, the solution to (19), if for all ε : (0, 1] → R∗

+ which converges to 0 when h goes to 0, and all ϕ ∈ Cc(Rd),

lim sup
t→+∞

∣∣∣∣∫
Rd

ϕ(x)vhε(h)(t, x)dx−
∫
Rd

ϕ(x)v(t, x)dx

∣∣∣∣ −→h→0
0.

The following lemma ensures that, in the previous definition, vhε(h), introduced in (66), can be replaced

by vh, introduced in (65).

Lemma 9. The function vhε is an asymptotic preserving approximation of v if and only if

lim sup
t→+∞

∣∣∣∣∫
Rd

ϕ(x)dvh(t, x) −
∫
Rd

ϕ(x)v(t, x)dx

∣∣∣∣ −→h→0
0.
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Proof. Let us prove that for all ε : (0, 1] → R∗
+ which converges to 0 as h goes to 0, and all ϕ ∈ Cc(Rd),

lim sup
t→+∞

∣∣∣∣∫
Rd

ϕ(x)vhε(h)(t, x)dx−
∫
Rd

ϕ(x)dvh(t, x)

∣∣∣∣ −→h→0
0.

Let h > 0. According to the definitions of vh and vhε , and since
∫
Rd φε(h)(x− xi(t))dx = 1 for all i ∈ Jh

we get, for all t ⩾ 0,∣∣∣∣∫
Rd

ϕ(x)vhε(h)(t, x)dx−
∫
Rd

ϕ(x)dvh(t, x)

∣∣∣∣ =

∣∣∣∣∣
∫
Rd

∑
i∈Jh

νi(t)wi(t)
(
ϕ(x) − ϕ(xi(t))

)
φε(h)(x− xi(t))dx

∣∣∣∣∣
⩽
∑
i∈Jh

|νi(t)wi(t)|
∫
Rd

∣∣(ϕ(x) − ϕ(xi(t))
)
φε(h)(x− xi(t))

∣∣dx.
With the change of variable ‘y = x−xi(t)

ε(h) ’, we get, for all i ∈ Jh,∫
Rd

∣∣(ϕ(x) − ϕ(xi(t))
)
φε(h)(x− xi(t))

∣∣dx =

∫
K

∣∣(ϕ(ε(h)y + xi(t)) − ϕ(xi(t))
)
φ(y)

∣∣dy,
where K is the support of φ. Let η > 0. Since ϕ is continuous with a compact support, and thus uniformly
continuous, then |ϕ(ε(h)x + xi(t)) − ϕ(xi(t))| ⩽ η for all i ∈ Jh, x ∈ K, t ⩾ 0 and any h small enough.
Therefore, for any h small enough,∣∣∣∣∫

Rd

ϕ(x)vhε(h)(t, x)dx−
∫
Rd

ϕ(x)dvh(t, x)

∣∣∣∣ ⩽ η
∑
i∈Jh

νi(t)wi(t),

which concludes the proof, since there exists ρ > 0 such that 0 ⩽
∑
i∈Jh

νi(t)wi(t) ⩽ ρ for all h > 0, t ⩾ 0, as

proved in Theorem 4.

The problem of determining if vhε is an asymptotic preserving approximation of v is generally a difficult
question. In what follows, we deal with cases where we are able to determine the asymptotic behaviour
of both v and vh, and we check if the necessary and sufficient condition from Lemma 9 holds. From now
on, we assume that a is local and not time dependent, i.e. a(t, x, I) = a(x) and that that the functions m,
R, ψg and ψd are not time-dependent. We assume as well that the function (x, y, I) 7→ m(x, y, I) is not
only uniformly compactly supported as a function of the x variable, but relative to the y variable as well.
That is, there exist two compact sets Kx and Ky such that sup

y,I
m(x, y, I) = 0 for all y outside of Kx and

sup
x,I

m(x, y, I) = 0 for all x outside of Ky. We denote Kxy := Kx ∪Ky. Finally, we assume ψg and ψd to be

compactly supported as functions of the y variable.

4.2.1 Necessary conditions of convergence towards a Radon measure

With the help of necessary conditions, we would be able to rule out those cases where v does not converge
towards certain types of Radon measures, which are the object of our interest. We start by giving a general
result, involving the necessary conditions of convergence towards any Radon measure.

Lemma 10. Let us assume that v(t, ·) ⇀
t→+∞

µ in the weak sense in the space of finite Radon measures.

Then, for γ ∈ {g, d},

Iα(t, x) −→
t→+∞

∫
Rd

ψα(x, y)dµ(y) =: Iα(x) ∀x ∈ Rd,

and for all ϕ ∈ C1
0 (Rd),∫

Rd

(
a(x) · ∇ϕ(x) +R

(
x, Ig(x)

)
ϕ(x)

)
dµ(x) +

∫
Rd

(∫
Rd

m
(
x, y, Id(x)

)
ϕ(x)dx

)
dµ(y) = 0.
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Proof. Let us assume that v(t, ·) ⇀
t→+∞

µ. By definition of the weak convergence in the space of finite Radon

measure, for any ϕ ∈ C1
c (Rd), ∫

Rd

ϕ(x)v(t, x)dx →
t→+∞

∫
Rd

ϕ(x)dµ(x).

The first identity is thus a direct consequence of the definition of the weak convergence, applied with ϕ =
ψγ(x, ·), γ ∈ {g, d}.

Let ϕ ∈ Cc(Rd). One computes

d

dt

∫
Rd

ϕ(x)v(t, x)dx = −
∫
Rd

ϕ(x)∇ · (a(x)v(t, x)) +

∫
Rd

R(x, Ig(t, x))ϕ(x)v(t, x)dx

+

∫
Rd

(∫
Rd

m(x, y, Id(t, x))v(t, y)

)
ϕ(x)dx

=

∫
Rd

(
a(x) · ∇ϕ(x) +R(x, Ig(t, x))ϕ(x)

)
v(t, x)dx

+

∫
Rd

(∫
Rd

m(x, y, Id(t, x))ϕ(x)dx

)
v(t, y)dy

−→
t→+∞

∫
Rd

(
a(x) · ∇ϕ(x) +R

(
x, Ig(x)

)
ϕ(x)

)
dµ(x)

+

∫
Rd

(∫
Rd

m
(
x, y, Id(x)

)
ϕ(x)dx

)
dµ(y).

Thus, t 7→
∫
Rd ϕ(x)v(t, x)dx is a convergent function with a convergent derivative, which ensures that the

limit of its derivative is zero, which concludes the proof.

The following proposition provides a necessary condition for the convergence to a sum of Dirac masses.

Proposition 8. Let us assume that v(t, ·) ⇀
t→+∞

N∑
i=1

Ciδxi
, with x1, . . . , xN ∈ Rd, C1, . . . , CN > 0. Then,

for α = g, d, Iα(t, x) →
t→+∞

N∑
i=1

Ciψα(x, xi) =: Iα(x). Moreover, for all i ∈ {1, . . . , N}, a(xi) = 0,

R
(
xi, Ig(xi)

)
= 0, and for all x ∈ Rd, m(x, xi, Id(x)) = 0.

Proof. According to the previous lemma, for all ϕ ∈ C1
c (Rd),

N∑
i=1

Cia(xi) · ∇ϕ(xi) +

N∑
i=1

CiR
(
xi, Ig(xi)

)
ϕ(xi) +

N∑
i=1

Ci

∫
Rd

m
(
x, xi, Id(x)

)
ϕ(x)dx = 0.

Let ε > 0. For any non-negative function ϕε ∈ C1
c (Rd) with a support on Rd\

⋃N
i=1B(xi, ε), we have

that ∫
Rd

N∑
i=1

Cim
(
x, xi, Id(x)

)
ϕε(x)dx = 0,

which proves that x 7→
N∑
i=1

Cim
(
x, xi, Id(x)

)
is 0 on Rd\

⋃N
i=1B(xi, ε). Since m is a non-negative function,

for all i ∈ {1, ...N}, x 7→ m
(
x, xi, Id(x)

)
is 0 as well on Rd\

⋃N
i=1B(xi, ε), and therefore on Rd, since the

result holds for any ε > 0. Hence,

N∑
i=1

Cia(xi) · ∇ϕ(xi) +

N∑
i=1

CiR
(
xi, Ig(xi)

)
ϕ(xi) = 0,
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for any ϕ ∈ C1
c (Rd). By choosing ϕ1j such that

ϕ1j (xi) = δij and ∇ϕ1j (xi) = 0, i, j ∈ {1, ...N},

where δij represents the Kronecker delta, one proves that R
(
xi, Ig(xi)

)
= 0 for all i ∈ {1, ...N}.

Finally, by choosing ϕ2ij such that

∇ϕ2jl(xi) = δijel, i, j ∈ {1, ...N}, l ∈ {1, ...d},

where {el}dl=1 represents the euclidean basis in Rd, one proves that a(xi) = 0, for any i ∈ {1, . . . , N}.

4.2.2 Limit identification and asymptotic preserving approximations

In some cases, it is possible to guarantee the existence of a limit for vh and identify it.
Assume that there exists x̂ ∈ Rd an asymptotically stable equilibrium for the ODE ‘ẋ = a(x)’ and that there
exists C, δ > 0 such that

∀y ∈ supp(n0), t ≥ 0, ∥X(t, y) − x̂∥ ≤ Ce−δt. (75)

Moreover, let us assume that there exist positive values D, Im and IM such that

R(x, Im) ⩾ 0, R(x, IM ) ⩽ 0 and ∂IR(x, I) ⩽ −D, ∀x ∈ supp(v0). (76)

Then, we can compute the limit of vh when t goes to +∞, whatever the value of m, as stated in the following
proposition.

Proposition 9. Let us assume that supp
(
v0
)
is a compact set such that hypotheses (75) and (76) hold.

Then, vh converges to ρ̂h δx̂ in the weak sense in the space of Radon measures, where ρ̂h is the unique
solution of

R(x̂, ψg(x̂, x̂)ρ̂h) = 0.

The following lemma, proved in Appendix D, is required in the proof of this result.

Lemma 11. Let u ∈ C2 (R+,R) be a bounded function, and let us assume that there exist p0 > 0, p : R+ →
R+ a function which satisfies p ⩾ p0 and B ∈ L1(R+) an integrable function such that

ü(t) ⩾ −p(t)u̇(t) +B(t).

Then, there exists u∞ ∈ R such that lim
t→+∞

u(t) = u∞.

Proof of Proposition 9. Given that supp
(
v0
)
∪Kxy is a compact set which is strictly contained in the basin

of attraction of x̂ we will have the existence of J0
h ⊂ Jh, with |J0

h | < +∞ such that νh(t) ̸≡ 0 only for
i ∈ J0

h .
Let us denote, for all i ∈ J0

h , αi(t) := νi(t)wi(t), and

ρh(t) :=
∑
i∈Jh

αi(t) =
∑
i∈J0

h

αi(t).

Let us note that, according to the hypotheses on a, for all i ∈ J0
h , xi(t) converges to x̂. Thus,

vh(t) − ρh(t)δx̂ ⇀
t→+∞

0.

Hence, it only remains to prove that ρh converges to the expected limit. According to the definition of ρh,

ρ̇h(t) =
∑
i∈J0

h

R(xi(t), Ig(t, xi(t)))αi(t) +
∑
i,j∈J0

h

wi(t)m(xi(t), xj(t), Id(t, xi(t)))αj(t)

︸ ︷︷ ︸
:=ε(t)

. (77)
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According to hypothesis 75, there exist C, δ > 0 such that

∥xi(t) − x̂∥ ⩽ Ce−δt, ∀i ∈ J0
h , ∀t ⩾ 0.

Thus, for all i ∈ J0
h ,

wi(t) = e
∫ t
0
div a(xi(s))dswi(0) ⩽ e

∫ t
0
div a(xi(s))−div a(x̂)ds︸ ︷︷ ︸

⩽C̃

ediv a(x̂)twi(0),

which proves, since div a(x̂) < 0, that there exist C ′, δ′ such that for all t ⩾ 0,

0 ⩽ max
i∈J0

h

wi(t) ⩽ C ′e−δ
′t. (78)

In particular, it proves that t 7→ ε(t) defined in (77), converges to zero with an exponential speed, since

|ε(t)| ⩽ max
i∈Jh

wi(t)|J0
h |∥m∥L∞ρh(t),

and ρh is bounded, according to Theorem 4.
Moreover, according to the hypothesis on ψg, ψg ρ(t) ⩽ Ig(t, xi(t)) ⩽ ∥ψg∥∞ ρ(t). Thus, according to the

hypotheses (76) on R, the relation

ρ̇h(t) ⩾

(
min
i∈J0

h

(R(xi(t), Ig(t, xi(t))))

)
ρh(t)

implies that, as soon as ρh becomes small, and so does Ig, ρh becomes increasing, which proves that ρh is
lower bounded by a positive constant. Moreover, since ρh and ε are bounded, and

∥α̇∥l1 =
∑
i∈J0

h

|α̇(t)| ⩽
∑
i∈J0

h

(2|div a(xi(t))| + |R(xi(t), Ig(t, xi(t)))|)αi(t) + ε(t)

⩽
(
2∥a∥W 1,∞(Rd) +R

)
ρh(t) + ε(t),

where
R := max

t∈R,i∈J0
h

|R(xi(t), Ig(t, xi(t)))|,

then ∥α̇∥l1 is also bounded.
Now, let us prove that ρh satisfies the equality of Lemma 11. First, for γ ∈ {g, d}, we compute

∣∣∣∣ ddtIγ(t, xi(t)) − ψγ(x̂, x̂)ρ̇h(t)

∣∣∣∣ ⩽
∣∣∣∣∣∣
∑
j∈J0

h

(
a(xi(t))∂xψγ(xi(t), xj(t)) + a(xj(t))∂yψγ(xi(t), xj(t))

)
αj(t)

∣∣∣∣∣∣
+

∣∣∣∣∣∣
∑
j∈J0

h

(
ψγ(xi(t), xj(t)) − ψγ(x̂, x̂)

)
α̇j(t)

∣∣∣∣∣∣
⩽2 max

i∈J0
h

|a(xi(t))|∥ψγ∥W 1,∞(Rd)ρh(t) + max
i,j∈J0

h

|ψγ(xi(t), xj(t)) − ψγ(x̂, x̂)|∥α̇∥l1 .

Since hypothesis (75), is satisfied, the functions t 7→ max
i∈J0

h

|a(xi(t))| and t 7→ max
i,j∈J0

h

|ψγ(xi(t), xj(t))−ψγ(x̂, x̂)|

converge to zero with an exponential speed. Since |J0
h | < +∞, this proves that, for γ ∈ {g, d},∑

i∈J0
h

∣∣∣∣ ddtIγ(t, xi(t)) − ψγ(x̂, x̂)ρ̇h(t)

∣∣∣∣ = O(e−δt), (79)
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for a certain δ > 0.
Thus, by differentiating (77), we get

ρ̈h(t) =
∑
i∈J0

h

a(xi(t))∂xR(xi(t), Ig(t, xi(t)))αi(t) +
∑
i∈J0

h

(
d

dt
Ig(t, xi(t))

)
∂IR(xi(t), Ig(t, xi(t)))αi(t)

+
∑
i∈J0

h

α̇i(t)R(xi(t), Ig(t, xi(t))) +
∑
i,j∈J0

h

wi(t)m(xi(t), xj(t), Id(t, xi(t)))α̇j(t)

+
∑
i,j∈J0

h

ẇi(t)m(xi(t), xj(t), Id(t, xi(t)))αj(t) +
∑
i,j∈J0

h

wi(t)
d

dt
m(xi(t), xj(t), Id(t, xi(t)))αj(t),

where

i)
∑
i∈J0

h

a(xi(t))∂xR(xi(t), Ig(t, xi(t)))αi(t) = O(e−δt), since max
i∈Jh

|a(xi(t))| converges to zero with expo-

nential speed, and ∂xR and ρh are bounded,

ii) according to (79),
∑
i∈J0

h

(
d
dtIg(t, xi(t))

)
∂IR(xi(t), Ig(t, xi(t)))αi(t) = −p(t)ρ̇h(t) +O(e−δt), where

p(t) = −ψg(x̂, x̂)
∑
i∈J0

h

∂IR(xi(t), Ig(t, xi(t)))αi(t) ⩾ Dψg min
t⩾0

ρh(t) > 0,

iii) ∑
i∈J0

h

α̇i(t)R(xi(t), Ig(t, xi(t))) =
∑
i∈J0

h

R(xi(t), Ig(t, xi(t)))
2αi(t)

︸ ︷︷ ︸
:=P (t)⩾0

+
∑
i,j∈J0

h

wi(t)R(xi(t), Ig(t, xi(t)))αj(t)m(t, xi(t), xj(t), Id(t, xi(t)))

︸ ︷︷ ︸
=O(e−δt)

,

where the relation for the second term was proved thanks to the bound∣∣∣∣∣∣
∑
i,j∈J0

h

wi(t)R(xi(t), Ig(t, xi(t)))αj(t)m(t, xi(t), xj(t), Id(t, xi(t)))

∣∣∣∣∣∣ ⩽M Rρh(t)|J0
h |max

i∈Jh

wi(t),

the boundedness of ρh and inequality (78),

iv) ∑
i,j∈J0

h

wi(t)m(xi(t), xj(t), Id(t, xi(t)))α̇j(t) +
∑
i,j∈J0

h

ẇi(t)m(xi(t), xj(t), Id(t, xi(t)))αj(t)

+
∑
i,j∈J0

h

wi(t)
d

dt
m(xi(t), xj(t), Id(t, xi(t)))αj(t) = O(e−δt),

since for all t ≥ 0,∣∣∣∣∣∣
∑
i,j∈J0

h

wi(t)m(xi(t), xj(t), Id(t, xi(t)))α̇j(t)

∣∣∣∣∣∣ ⩽M |J0
h |∥α̇∥l1 max

i∈J0
h

wi(t),
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∣∣∣∣∣∣
∑
i,j∈Jh

ẇi(t)m(xi(t), xj(t), Id(t, xi(t)))αj(t)

∣∣∣∣∣∣ ⩽Mρh(t)|J0
h |∥a∥W 1,∞(Rd) max

i∈J0
h

wi(t),

and∣∣∣∣∣∣
∑
i,j∈Jh

wi(t)
d

dt
m(xi(t), xj(t), Id(t, xi(t)))αj(t)

∣∣∣∣∣∣ ⩽M

(
∥a∥L∞(R) +

∣∣ d
dt
Ig(t, xi(t))

∣∣) ρh(t)|J0
h |max

i∈J0
h

wi(t),

where d
dtId(t, xi(t)) is bounded thanks to (79). For these three inequalities, we conclude with (78).

Hence, ρ̈h(t) ⩾ −p(t)ρ̇h(t) + O(e−δt). According to Lemma 11, ρh has a limit when t goes to ∞, which
we denote ρ̂h. Since ρ̇h(t) =

∑
i∈J0

h

R(xi(t), Ig(t, xi(t)))αi(t) + ε(t), which converges to R(x̂, ψg(x̂, x̂)ρ̂h)ρ̂h, we

deduce that R(x̂, ψg(x̂, x̂)ρ̂h) = 0, since ρ̂h > 0.

When m ≡ 0 and under the same assumptions for the remaining coefficients of the problem as in
Proposition 9, we are able to identify the limit of v and prove that it coincides with the limit of vh. According
to Lemma 9, this ensures that vhε is an asymptotic preserving approximation of v.

Theorem 10. Let us assume that there exists x̂ ∈ Rd which is an asymptotically stable equilibrium for the
ODE ẋ = a(x) such that hypothesis (75) holds. We assume as well that m ≡ 0 and that hypotheses (76)
hold. Then, v converges to ρ̂ δx̂ in the weak sense in the space of Radon measures, where ρ̂ is the unique
solution of

R(x̂, ψg(x̂, x̂)ρ̂) = 0.

Consequently, vhε is an asymptotic preserving approximation of v.

Proof. Let us recall that

ρ(t) =

∫
Rd

v(t, x)dx.

We recall as well that, the function a being only dependent of x, the characteristic lines Xt(x) := X(t, x)
satisfy X−1

t (x) := X−1(t, x) = X−t(x) and Xt(Xs(x)) = Xt+s(x). By using the fact that, for any x ∈ Rd,

v(t, x) = v0(X−t(x))eG(0,t,x),

where

G(s, t, x) :=

∫ t

s

R(Xτ−t(x), (Igv)(τ,Xτ−t(x))) − div a(Xτ−t(x))dτ,

and that, by hypothesis, K := supp(v0) is a compact set included in the basin of attraction of x̂, one proves
that supp(v(t, ·)) is the image of supp(v0) by Xt(·). Since Xt(y) converges to x̂ for all y ∈ supp(v0), we
prove that Kt := supp(v(t, ·)) = Xt(supp(v0)) = Xt(K) is a compact set included in the basin of attraction
of x̂, for all t ⩾ 0. By (75), there exist C > 0 and δ > 0 such that

∥Xt(y) − x̂∥ ⩽ Ce−δt, ∀y ∈ K, ∀t ⩾ 0.

Let ϕ ∈ Cc(Rd). By definition of ρ and by using the change of variable ‘x = Xt(y)’ we get∣∣∣∣ ∫
Rd

ϕ(x)v(t, x) − ρ(t)ϕ(x̂)

∣∣∣∣ ⩽ ∫
Kt

|ϕ(x) − ϕ(x̂)|v(t, x)dx

=

∫
K

|ϕ(Xt(y)) − ϕ(x̂)|v(t,Xt(y))e
∫ t
0
div a(Xt(y))dy

⩽ max
y∈K

|ϕ(Xt(y)) − ϕ(x̂)|
∫
K

v(t,Xt(y))e
∫ t
0
div a(Xt(y))dy

= max
y∈K

|ϕ(Xt(y)) − ϕ(x̂)|ρ(t).
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Since ρ is bounded, this proves that

v(t, ·) − ρ(t)δx̂ ⇀
t→+∞

0. (80)

Hence, it only remains to prove that ρ converges to the expected limit. We see that

ρ̇(t) =

∫
Rd

R(x, (Igv)(t, x))v(t, x)dx. (81)

First, let us note that ρ has a positive lower bound. Indeed, according to the hypothesis on ψg, for all x ∈ Rd,
ψg ρ(t) ⩽ (Igv)(t, x) ⩽ ∥ψg∥L∞ ρ(t). Thus,

ρ̇(t) ⩾

(
min
x∈Kt

(R(x, (Igv)(t, x))

)
ρ(t).

Hence, as soon as ρ(t) becomes small, and so does Ig(t, x), ρ becomes increasing, which proves that ρ is
lower bounded by a positive constant. We get an upper bound for |ρ̇(t)| from the relation

|ρ̇(t)| ⩽
(

max
x∈Kt

(R(x, (Igv)(t, x))

)
ρ(t),

and the boundedness of ρ(t).
We introduce now the function

ṽ(t, y) = v(t,Xt(y))e
∫ t
0
div a(Xs(y))ds,

which satisfies ∫
K

ṽ(t, y)dy =

∫
Kt

v(t, x)dx = ρ(t).

Moreover,

∂tṽ(t, y) =R(Xt(y), (Igv)(t,Xt(y)))ṽ(t, y). (82)

Before proving that ρ satisfies the equality of Lemma 11, we observe that the following relation holds for all
y ∈ K: ∣∣∣∣ ddt (Igv)(t,Xt(y)) − ψg(x̂, x̂)ρ̇(t)

∣∣∣∣ ⩽ ∣∣∣∣∫
Kt

a(Xt(y)) · ∇xψg(Xt(y), z)v(t, z)dz

∣∣∣∣
+

∣∣∣∣∫
Kt

(
ψg(Xt(y), z) − ψg(x̂, x̂)

)
∂tv(t, z)dz

∣∣∣∣ . (83)

From the equation satisfied by v, we see that∫
Kt

(
ψg(Xt(y), z) − ψg(x̂, x̂)

)
∂tv(t, z)dz

=

∫
Kt

∇zψg(Xt(y), z)a(z)v(t, z)dz

+

∫
Kt

(
ψg(Xt(y), z) − ψg(x̂, x̂)

)
R(z, (Igv)(t, z))v(t, z)dz

=

∫
K

∇zψg(Xt(y), Xt(z̄))a(Xt(z̄))ṽ(t, z̄)dz̄

+

∫
K

(
ψg(Xt(y), Xt(z̄)) − ψg(x̂, x̂)

)
R(Xt(z̄), (Igv)(t,Xt(z̄)))ṽ(t, z̄)dz̄
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which allows us to conclude that∣∣∣∣∫
Kt

(
ψg(Xt(y), z) − ψg(x̂, x̂)

)
∂tv(t, z)dz

∣∣∣∣ ⩽max
z̄∈K

∥a(Xt(z̄))∥∥ψg∥W 1,∞(Rd)ρ(t)

+ max
y,z̄∈K

|ψg(Xt(y), Xt(z̄)) − ψg(x̂, x̂)|Rρ(t).

Using this relation in (83) gives∣∣∣∣ ddt (Iγv)(t,Xt(y)) − ψγ(x̂, x̂)ρ̇(t)

∣∣∣∣ ⩽2 max
z̄∈K

∥a(Xt(z̄))∥∥ψγ∥W 1,∞(Rd)ρ(t)

+ max
y,z̄∈K

|ψγ(Xt(y), Xt(z̄)) − ψγ(x̂, x̂)|Rρ(t),

which proves, according to hypothesis (75), that for all y ∈ K

d

dt
Ig(t,X(t, y)) = ψg(x̂, x̂)ρ̇(t) +O(e−δt)), (84)

for a certain δ > 0.
Differentiating (81) we get

ρ̈(t) =
d

dt

(∫
Kt

R(x, (Igv)(t, x))v(t, x)dx

)
=
d

dt

(∫
K

R(Xt(y), (Igv)(t,Xt(y)))ṽ(t, y)dy

)
=

∫
K

a(Xt(y)) · ∇xR(Xt(y), (Igv)(t,Xt(y)))ṽ(t, y)dy

+

∫
K

d

dt
(Igv)(t,Xt(y))∂IR(Xt(y), (Igv)(t,Xt(y)))ṽ(t, y)dy

+

∫
K

R(Xt(y), (Igv)(t,Xt(y)))∂tṽ(t, y)dy.

Let us note that

i) Since a(Xt(y)) converges uniformly to zero with an exponential speed, then∫
Rd

a(Xt(y)) · ∇xR (Xt(y), (Igv)(t,Xt(y))) ṽ(t, y))dy = O(e−δt),

thanks to the boundedness of ∇xR and ρ(t).

ii) According to (84),∫
K

d

dt
(Igv)(t,Xt(y))∂IR(Xt(y), (Igv)(t,Xt(y)))ṽ(t, y)dy = −p(t)ρ̇(t) +O(e−δt),

with

p(t) := −ψg(x̂, x̂)

∫
K

∂IR(Xt(y), (Igv)(t,Xt(y)))ṽ(t, y)dy ⩾ ψg(x̂, x̂)Dmin
t⩾0

ρ(t) > 0.

iii) Directly from (82),∫
K

R(Xt(y), (Igv)(t,Xt(y)))∂tṽ(t, y)dy =

∫
K

(
R(Xt(y), (Igv)(t,Xt(y)))

)2
ṽ(t, y)dy

=: P (t) ⩾ 0.
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Thus, ρ̈(t) ⩾ −p(t)ρ̇(t) +O(e−δt), hence, ρ converges, thanks to Lemma 11.
Recalling (80), v(t, ·) thus converges to ρ̂δx̂, where ρ̂ is the limit of ρ. We conclude, according to

Proposition 8, that ρ̂ satisfies the expected equality.
Having proved that v and vh share the same limit is enough then to conclude, thanks to Lemma 9, that vhε
is an asymptotic preserving approximation.

If m is not 0, under very specific hypotheses over its support, we can extend the result of Theorem 10.
The explanation behind this is simple: as long as the population is composed of traits that are not prone to
mutatations, it will evolve as in the case where mutations are not possible at all.

Theorem 11. Let us assume that there exists x̂ ∈ Rd which is an asymptotically stable equilibrium for the
ODE ẋ = a(x) such that (75) holds. Moreover, let us assume that supp

(
v0
)
∪Kx is a compact set such that

there exist C ′, δ′ > 0 such that

∀y ∈ supp
(
v0
)
∪Kx, t ≥ 0, ∥X(t, y) − x̂∥ ≤ C ′e−δ

′t,

that
⋃
s⩾0

(
Xs(supp(v0) ∪Kx)

)
∩Ky = ∅ and that hypothesis (76) holds. Then, v converges to ρ̂ δx̂ in the weak

sense in the space of Radon measures, where ρ̂ is the unique solution of

R(x̂, ψg(x̂, x̂)ρ̂) = 0.

Consequently, vhε is an asymptotic preserving approximation of v.

Proof. By using the fact that, for any x ∈ Rd,

v(t, x) = v0(X−t(x))eG(0,t,x) +

∫ t

0

∫
Rd

m(Xs−t(x), z, (Idv)(s,Xs−t(x)))v(s, z)dzeG(s,t,x)ds,

where

G(s, t, x) :=

∫ t

s

R(Xτ−t(x), (Igv)(τ,Xτ−t(x))) − div a(Xτ−t(x))dτ,

we observe that supp(v(t, x)) ⊂ Xt(supp(v0)) ∪
⋃

0⩽s⩽t
Xs(Kx) ⊂

⋃
s⩾0

(
Xs(supp(v0) ∪Kx)

)
, therefore

v(t, x) =v0(X−t(x))eG(0,t,x) +

∫ t

0

∫
Rd

m(Xs−t(x), z, (Idv)(s,Xs−t(x)))v(s, z)dzeG(s,t,x)ds

=v0(X−t(x))eG(0,t,x) +

∫ t

0

∫
supp(v(t,x))∩Ky

m(Xs−t(x), z, (Idv)(s,Xs−t(x)))v(s, z)dzeG(s,t,x)ds

=v0(X−t(x))eG(0,t,x).

Therefore, we can replicate the proof for the case m ≡ 0.

The result of Theorem 10 does not generalize when supp
(
v0
)

is not strictly contained in the basin of
attraction of xs, as shown in the following result:

Proposition 12. Let us consider the one-dimensional PDE
∂tv(t, x) + ∇x · (a(x)v(t, x)) = (r(x) − ρ(t))v(t, x),

ρ(t) =
∫
R v(t, x)dx,

n(0, ·) = n0(·),
(85)

which is a particular case of (19), and let us assume that there exist xu < xs such that a(xu) = a(xs) = 0,

a′(xu) > 0, a′(xs) < 0, supp(n0) ⊂ [xu, xs], n
0(xu) = 0, and that there exists α > 0 such that n0

′
(x) =

O
x→x+

u

((x− xu)α) and that r(xu) − (1 + α)f ′(xu) > r(xs). Then, vhε is not an asymptotic preserving approx-

imation of v.
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Proof. The long-time behaviour of the solution of (85) has been studied in detail in [24], and it has been
proved, under the hypotheses of Proposition 12, that v converges to a function in L1. Let us now compute
the limit of vh. Since n0(xu) = 0, we can assume, without loss of generality, that for all i ∈ Jh, x0i ∈ (0, 1].
Thus, since a > 0 on (xu, xs), for all t ⩾ 0, xi(t) converges to xs. As seen in the proof of Proposition 9, vh

therefore converges to r(xs)δxs
, and vhε is therefore not a asymptotic preserving approximation of v.

5 Simulations

In this section, we present some simulations obtained with the particle method developed throughout the
article. In Figure 1, we deal with the non-local advection equation presented in [22], which writes

∂tv(t, x) + ∇x (a(t, I1v(t, x), I2v(t, x)) = 0, x ∈ Rd, t ≥ 0, (86)

with Ijv(t, x) =
∫
R2 xjv(t, x)dx, for j ∈ {1, 2}. Note that this equation is not exactly a particular case of (1),

since there are two non-local terms involved for advection, but the particle method can straightforwardly be
adapted to this case. As in this paper, we show that, depending on the parameters, the solution of this PDE
can converge to a single Dirac mass, to a sum of two Dirac masses, or to the sum of four Dirac masses. The
parameters used for the simulations are the same as the one detailed in Figures 9, 10 and 11 of [22].

Figure 2 illustrates different scenarios for the equation
∂tv(t, x) + ∇x (a(x)v(t, x)) = (r(x) − ρ(t))n(t, x),

ρ(t) =
∫
R v(t, x)dx,

n(0, x) = n0(x),

(87)

with a(x) = x(1−x), and an initial solution supported in [0, 1]. This equation has been studied in [24] where
it has been proved that its solution can either converge to a function in L1, (which depends on the initial
condition), or to a Dirac mass on 1, depending on the functions r and n0.
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(a) Monostability

(b) Bistability

(c) Quadstability

Figure 1: The three possible regimes of convergence for equation (86), obtained with the particle method.
The lines (a), (b) and (c) respectively show the convergence to a single Dirac mass, two Dirac masses and
four Dirac masses, and have been obtained by choosing the parameters of Figures 9, 10 and 11 of [22]. In
the three cases, we have chosen N = 100, h = 2./100, ε = h0.8, and the cut off function φ is a Gaussian.

37



(a) Solution of (87) at different time steps, with n0(x) = 1− x, r(x) = 6− 4x.

(b) Solution of (87) at different time steps, with n0(x) = x(1− x), r(x) = 6− 4x.

(c) Solution of (87) at different time steps, with n0(x) = x2, r(x) = 6− 4x.

(d) Solution of (87) at different time steps, with n0(x) = 6, r(x) = 6− 0.5x.

Figure 2: Different possible regimes of convergence for the solution of (87). The first three lines (green, blue
and orange curves), show the convergence to a function in L1, which can be explicitly computed (see [24]),
and is represented by a black dashed line. Note that the limit function is different when the initial condition
changes. The last line (red curves) shows the convergence to a Dirac mass in 1. In the four cases, we have

chosen a(x) = x(1 − x), N = 5000, h = 1
N , ε =

√
h and the cut-off function φ is a Gaussian.

A Proof of the results over the characteristics

In order to prove results which involve the use of absolute values, we introduce a smooth re-normalizing
sequence of functions. Consider a sequence of smooth positive functions βε satisfying βε(0) = 0, βε(s) > 0
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for all s ̸= 0, βε(s) ⩽ |s|, βε(s) → |s| almost everywhere, |β̇ε(s)| ⩽ 1 and sβ̇ε(s) → |s| almost everywhere.
For example we may choose

βε(s) =


−s− ε(1 − 2

π ) if s ⩽ −ε,

2ε
π

(
1 − cos( π2εs)

)
if −ε < s < ε,

s− ε(1 − 2
π ) if s ⩾ ε.

(88)

Proof of Lemma 1. We introduce the notation

∆Xj(t) := Xj
u1

(t, y1) −Xj
u2

(t, y2).

For all t ∈ [0, T ], the function

Uε(t) :=

d∑
j=1

βε(∆Xj(t))

satisfies then the relation

U̇ε(t) =

d∑
j=1

β̇ε(∆Xj(t)) (aj(t,Xu1
(t, y1), (Iau1)(t,Xu1

(t, y1))) − aj(t,Xu2
(t, y2), (Iau2)(t,Xu2

(t, y2))))

⩽
d∑
j=1

(
∥aj∥W 1,∞

x

d∑
i=1

|∆Xi(t)| + ∥aj∥W 1,∞
I

|(Iau1)(t,Xu1(t, y1)) − (Iau2)(t,Xu2(t, y2))|

)

⩽d∥a∥W 1,∞
x,I

(
d∑
i=1

|∆Xi(t)| + |(Iau1)(t,Xu1
(t, y1)) − (Iau2)(t,Xu2

(t, y2))|

)

⩽d∥a∥W 1,∞
x,I

(
(1 + ∥ψa∥W 1,∞

x L∞
y
∥u1∥)

d∑
i=1

|∆Xi(t)| + ∥ψa∥L∞∥u1 − u2∥L1(Rd)

)
.

Integrating between 0 and t we get

Uε(t, y) − Uε(0, y)

⩽ d∥a∥L∞
t W 1,∞

x,I

(
(1 + ∥ψa∥L∞

t,yW
1,∞
x

∥u1∥)

∫ t

0

d∑
i=1

|∆Xi(t)|ds+ ∥ψa∥L∞

∫ t

0

∥u1 − u2∥L1(Rd)ds

)
.

Taking the limit when ε goes to 0 and applying Grönwall’s lemma we get the desired result.

Proof of Lemma 2. We explicitly give the proof for k = 1. The proof for higher values of k follows the same
ideas.
Thanks to the hypothesis over a, the function Xu is one time differentiable with respect to y, and directly
from (20) we get the system of equations{

˙∂yiXu(t, y) = Ja(t,Xu(t, y))∂yiXu(t, y), t ∈ [0, T ],

∂yiXu(0, y) = ei,
(89)

for all values of i ∈ {1, . . . , d}, where

[Ja(t, x)]ij := ∂xi
aj(t, x, (Iau)(t, x)) + ∂Iaj(t, x, (Iau)(t, x))

∫
Rd

∂xi
ψa(t, x, y)u(t, y)dy, (90)

is the Jacobian matrix of the function a(t, x, (Iau)(t, x)) and the ei represent the canonical basis of Rd.
The function

Vε(t, y) :=

n∑
i,j=1

βε(∂yiX
j
u(t, y))
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satisfies then

V̇ε(t, y) =

n∑
i,j=1

β̇ε(∂yiX
j
u(t, y))

d∑
k=1

[Ja(t,Xu(t, y))]kj ∂yiX
k
u(t, y)

and consequently

V̇ε(t, y) ⩽ d∥a∥W 1,∞
x,I

(1 + ∥ψa∥W 1,∞
x L∞

y
∥u∥)

n∑
i,j=1

|∂yiXj
u(t, y)|.

Integrating between 0 and t, we obtain the relation

Vε(t, y) − Vε(0, y) ⩽ d α̃1

∫ t

0

n∑
i,j=1

|∂yiXj
u(s, y)|ds

with α̃1 := sup
t∈[0,T ]

∥a∥W 1,∞
x,I

(1 + ∥ψa∥W 1,∞
x L∞

y
∥u∥), which after taking the limit when ε goes to 0 leads to

n∑
i,j=1

|∂yiXj
u(t, y)| ⩽ d+ dα̃1

∫ t

0

n∑
i,j=1

|∂yiXj
u(s, y)|ds.

We obtain (21) thanks to Grönwall’s lemma.
In order to prove (22) we adopt the notation

∆∂ykX
j(t) := ∂ykX

j
u1

(t, y1) − ∂ykX
j
u2

(t, y2)

and define
[JXu

(t, y)]jk := ∂ykX
j
u(t, y),

which satisfies the relation

˙JXu
(t, y) = Ja(t,Xu(t, y))JXu

(t, y), JXu
(0, y) = Id,

with Ja(t, x) as defined on (90). Consequently, we have that

Dε(t) :=

d∑
j=1

d∑
k=1

βε
(
∆∂ykX

j(t)
)

satisfies for all t ∈ [0, T ]

Ḋε(t) =

d∑
j=1

d∑
k=1

β̇ε
(
∆∂ykX

j(t)
) d∑
i=1

(
[Ja(t,Xu1

(t, y1))]ij∂ykX
i
u1

(t, y1) − [Ja(t,Xu2
(t, y2))]ij∂ykX

i
u2

(t, y2)
)

⩽
d∑
j=1

d∑
k=1

d∑
i=1

∣∣[Ja(t,Xu1
(t, y1))]ij∂ykX

i
u1

(t, y1) − [Ja(t,Xu2
(t, y2))]ij∂ykX

i
u2

(t, y2)
∣∣

⩽
d∑
j=1

d∑
k=1

d∑
i=1

|[Ja(t,Xu1
(t, y1))]ij |

∣∣∆∂ykXi(t)
∣∣

+

d∑
j=1

d∑
k=1

d∑
i=1

|[Ja(t,Xu1
(t, y1))]ij − [Ja(t,Xu2

(t, y2))]ij |
∣∣∂ykXi

u2
(t, y2)

∣∣ .
From the hypothesis over a and ψa we see that

|[Ja(t,Xu1
(t, y1))]ij | ⩽ ∥a∥W 1,∞

x,I
(1 + ∥ψa∥W 1,∞

x L∞
y
∥u1∥).
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Furthermore, from the definition of Ja(t, x) we conclude that there exists a constant C, depending only on
∥a∥W 2,∞

x,I
, ∥ψa∥W 2,∞

x L∞
y

and ∥ui∥ such that

|[Ja(t,Xu1
(t, y1))]ij − [Ja(t,Xu2

(t, y2))]ij | ⩽ C(

d∑
j=1

|Xj
u1

(t, y1) −Xj
u2

(t, y2)| + ∥u1 − u2∥L1(Rd))

⩽ C(|y1 − y2| + ∥u1 − u2∥1 + ∥u1 − u2∥L1(Rd)),

where we have used the results from Lemma 1 on the second line.
Putting all estimates together, we conclude that there exist constants C1 and C2 only depending on ∥a∥W 2,∞

x,I
,

∥ψa∥W 2,∞
x L∞

y
and ∥ui∥, such that

Ḋε(t) ⩽ C1

d∑
j=1

d∑
k=1

|∂ykXj
u1

(t, y1) − ∂ykX
j
u2

(t, y2)| + C2(|y1 − y2| + ∥u1 − u2∥1 + ∥u1 − u2∥L1(Rd)).

Integrating in time, using Grönwall’s lemma and taking the limit when ε goes to zero, we obtain (22).

Proof of Lemma 3. We explicitly give the proof for k = 1. The proof for higher values of k follows the same
ideas.
Differentiating once each component of the equality Xu(t,X−1

u (t, x)) = x with respect to each of the variables
xk, we obtain the family of relations

d∑
i=1

∂yiX
j
u(t,X−1

u (t, x))∂xk

(
X−1
u

)i
(t, x) = δjk, j, k = 1, . . . , d,

where δjk represents the Kronecker’s delta. Written in matrix form, this equality reads

JXu
(t,X−1

u (t, x))JX−1
u

(t, x) = Id.

It is known that the matrix JXu
(t, y) is invertible for all values of x, furthermore, its determinant is given

by the expression

det(JXu
(t, y)) = e

∫ t
0
∇x·a(s,y,(Iau)(s,y))+∂Ia(s,y,(Iau)(s,y))·

∫
Rd

∇xψa(s,y,z)u(s,z)dzds

⩾ cT > 0

for all values of t ∈ [0, T ] and y ∈ Rd.
We conclude by writing

JX−1
u

(t, x) = J−1
Xu

(t,X−1
u (t, x)),

and noticing that all of the components of J−1
Xu

(t,X−1
u (t, x)) are a combination of sums and multiplications of

the components of JXu
(t,X−1

u (t, x)), divided by det(JXu
(t, y)). The bound (21) from Lemma 2, together with

the lower bound for the determinant of JXu(t, y) gives the bound (23) over the components of JX−1
u

(t, x).

Proof of Lemma 4. We explicitly give the proof for k = 1. The proof for higher values of k follows the same
ideas.
Differentiating with respect to t the relation Xui(t,X

−1
ui

(t, x)) = x, for i = 1, 2, we see that

a(t, x, (Iaui)(t, x)) + JXui
(t,X−1

ui
(t, x))Ẋ−1

ui
(t, x) = 0,

which gives
Ẋ−1
ui

(t, x) = −J−1
Xui

(t,X−1
ui

(t, x))a(t, x, (Iaui)(t, x)). (91)
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From now on we adopt the notations

Ai(t, x) := a(t, x, (Iaui)(t, x)),

Ki(t, x) := −J−1
Xui

(t,X−1
ui

(t, x)),

∆X−1
j (t, x) :=

(
X−1
u1

)j
(t, x) −

(
X−1
u2

)j
(t, x).

The function

Wε(t, x) :=

d∑
j=1

βε(∆X
−1
j (t, x))

satisfies the relation

Ẇε(t, x) =

d∑
j=1

d∑
k=1

β̇ε(∆X
−1
j (t, x))

(
K1
jk(t, x)A1

k(t, x) −K2
jk(t, x)A2

k(t, x)
)

⩽
d∑
j=1

d∑
k=1

|K1
jk(t, x)A1

k(t, x) −K2
jk(t, x)A2

k(t, x)|.

From Lemma 3 we know that all components of Ki are uniformly bounded by a constant only depending on
T and ∥ui∥. We deduce from the hypothesis over a that the components of Ai are uniformly bounded by
ã := ∥a∥L∞ . Therefore

Ẇε(t, x) ⩽ dC̃(T, ∥u1∥)

d∑
k=1

|A1
k(t, x) −A2

k(t, x)| + ã

d∑
j=1

d∑
k=1

|K1
jk(t, x) −K2

jk(t, x)|.

The function a being L-Lipschitz with respect to the I variable, we have that, for all values of k

|A1
k(t, x) −A2

k(t, x)| ⩽ L∥ψa∥L∞∥u1 − u2∥L1(Rd).

On the other hand, from the definition of Ki and Lemma 2 we conclude that there exists C, depending on
T , ∥a∥W 2,∞

x,I
, ∥ψa∥W 2,∞

x L∞
y

and ∥ui∥ such that

|K1
jk(t, x) −K2

jk(t, x)| ⩽


0, if ∂Ia = 0,

C

(
d∑
j=1

|
(
X−1
u1

)j
(t, x) −

(
X−1
u2

)j
(t, x)| + ∥u1 − u2∥1

)
, if ∂Ia ̸= 0.

Putting everything together, integrating between 0 and t, taking the limit when ε goes to 0 and applying
Grönwall’s lemma we get (24).

B Existence of solution for a system of ODEs with infinitely many
unknowns and equations

Proof of Lemma 7. For all u ∈ XT
h , there exists a sequence of elements uδ ∈ XT

h such that:

1) Kδ
h := {k ∈ Jh : uδk ̸= 0} has a finite number of elements.

2)
lim
δ→0

∥u− uδ∥1,h = 0.
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We denote Kδ := |Kδ
h | and notice that the system

ẋδk(t) = Auδ,w(t, xδk), xδk(0) = x0k, (92)

is composed of a coupled system of Kδ equations and unknowns (corresponding to those k ∈ Kδ
h ), and an

uncoupled infinite number of equations, corresponding to those k ̸∈ Kδ
h . Therefore, thanks to the classic

Cauchy-Lipschitz theory, the system (92) has a unique solution xδk ∈ C1([0, T ]), k ∈ Jh.

We claim that for all values of k, the sequence xδ1k − xδ2k is a Cauchy sequence in C1([0, T ]), therefore is has
a limit that we will call xk(t), which is solution to (49).
We first remark that xδ1 − xδ2 ∈ Y Th due to the fact that |xδk(t) − x0k| ⩽ ∥a∥L∞T for all values of k and δ.
Consider now βε as defined in (88), then

β̇ε(x
δ1
k − xδ2k ) ⩽ |Auδ1 ,w(t, xδ1k ) −Auδ2 ,w(t, xδ2k )|

∥a∥W 1,∞
x

|xδ1k − xδ2k | + ∥a∥W 1,∞
I

|Ia(t, xδ1k , u
δ1 , w) − Ia(t, xδ1k , u

δ2 , w)|.

Noticing that

|Ia(t, xδ1k , u
δ1 , w) − Ia(t, xδ1k , u

δ2 , w)| = |
∑
j∈Jh

(
uδ1j (t)ψa(t, xδ1k , x

δ1
j (t)) − uδ2j (t)ψa(t, xδ2k , x

δ2
j (t))

)
wj(t)|

⩽ (∥ψa∥L∞∥uδ1 − uδ2∥1,h + ∥uδ2∥1,h∥ψa∥W 1,∞
x,y

∥xδ1 − xδ2∥∞,h)∥w∥∞,h,

we deduce the existence of two constants3, C1 and C2, only depending on a, ψa, u and w, such that

β̇ε(x
δ1
k − xδ2k ) ⩽ C1∥xδ1 − xδ2∥∞,h + C2∥uδ1 − uδ2∥1,h.

Integrating between 0 and t, taking the maximum over k and t and using Grönwall’s lemma, we conclude
that there exists a constant CT , only depending on T and the coefficients of the problem, such that

∥xδ1 − xδ2∥∞,h ⩽ CT ∥uδ1 − uδ2∥1,h.

Proceeding in a similar way with the absolute value of ẋδ1 − ẋδ2 we obtain that

∥ẋδ1 − ẋδ2∥∞,h ⩽ CT ∥uδ1 − uδ2∥1,h.

Recalling that uδ is a Cauchy sequence on XT
h , then so it is xδk on C1([0, T ]), for each k.

Let x := {xk}k∈Jh
be the limit of xδ when δ goes to 0. With a simple continuity argument we conclude

that x is a solution of (49) over [0, T ]. The uniqueness can be obtained by assuming the existence of two
solutions, deriving the equation satisfied by the difference and using Grönwall’s lemma to conclude that they
have to be equal.

C A result from approximation theory

As mentioned before, Lemma 8 is a direct corollary of Lemma 8 in [36], that we recall here

Lemma 12. Let k > d an integer. Assume that

a ∈ (L∞(0, T ;W k+1,∞(Rd)))d.

Then, there exists a constant C > 0 such that for all functions φ ∈W k,p(Rd), 1 ⩽ p ⩽ +∞, and t ∈ [0, T ],

∥φ−
∑
i∈Jh

wi(t)φ(xi(t))δ(· − xi(t))∥W−k,p(Rd) ⩽ Chk∥φ∥Wk,p(Rd).

3Notice that in order to obtain the estimate over Ia, we used the hypothesis of differentiability over both variables on ψa
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Given that for fixed functions ν ∈ XT
h and w ∈ Y Th we have the inclusion

Aν,w : (t, x) 7→ a(t, x, Ia(t, x, ν, w)) ∈ (L∞(0, T ;W k+1,∞(Rd)))d,

then Lemma 12 holds true as well for the values of xi obtained in Section 3.

Proof of Lemma 8. We recall that W−k,1(Rd) is the dual space of W k,∞(Rd). Thus, for any ψ ∈W−k,1(Rd)
we have

∥ψ∥−k,1 = sup
f∈Wk,∞(Rd)

|⟨ψ, f⟩|
∥f∥k,∞

.

Since the function f ≡ 1 belongs to W k,∞(Rd), and has norm equal to 1 in this space, we get for all
φ ∈W k,p(Rd) ∣∣∣∣ ∫

Rd

φ(x)dx−
∑
i∈Jh

wi(t)φ(xi(t))

∣∣∣∣ =

∣∣∣∣⟨φ−
∑
i∈Jh

wi(t)φ(xi(t))δ(· − xi(t)), 1⟩
∣∣∣∣

⩽ ∥φ−
∑
i∈Jh

wi(t)φ(xi(t))δ(· − xi(t))∥−k,1.

We conclude by applying Lemma 12 with p = 1.

D Proofs of convergence results from ODE theory

This appendix is dedicated to the proofs of lemma 11, used in subsection 4.2. In order to prove this lemma,
we use the following result:

Lemma 13. Let α > 0 and B ∈ L1(R+). Then, all the solutions of the ODE

u̇(t) = −αu(t) +B(t)

are in L1(R+).

Proof of lemma 13. The solution of this ODE is explicitly given by

u(t) = u(0)e−αt +

∫ t

0

e−α(t−s)B(s)ds.

Hence, ∫ +∞

0

|u(t)|dt ⩽ |u(0)|
∫ +∞

0

e−αtdt+

∫∫
R2

+

e−α(t−s)|B(s)|1{s⩽t}dsdt.

With the change of variables y = s, z = t− s, we get∫∫
R2

+

e−α(t−s)|B(s)|1{s⩽t}dsdt ⩽
∫ +∞

0

|B(y)|dy
∫ +∞

0

e−αzdz,

which concludes the proof.

Proof of Lemma 11. First, let us note that if u̇ is a BV function, i.e. if
∫ +∞
0

|u̇(t)|dt < +∞, then u is
a Cauchy function, and thus converges. Let us denote v := u̇. Since u is assumed to be bounded, and
|v| = v + 2v−, where v− denotes the negative part of v, it is enough to prove that v− ∈ L1(Rd). By
hypothesis,

v̇(t) = −p(t)v(t) + P (t) +B(t),

which implies that
˙v−(t) ⩽ −p0 v−(t) +B(t).

We conclude, according to lemma 13, that v− ∈ L1(Rd), which implies that u converges.
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[17] Pierre Degond and Francisco-José Mustieles. “A deterministic approximation of diffusion equations
using particles”. In: SIAM Journal on Scientific and Statistical Computing 11.2 (1990), pp. 293–310.

45

https://doi.org/10.1158/0008-5472.CAN-14-2103
https://cancerres.aacrjournals.org/content/75/6/930.full.pdf
https://cancerres.aacrjournals.org/content/75/6/930.full.pdf
https://cancerres.aacrjournals.org/content/75/6/930
https://cancerres.aacrjournals.org/content/75/6/930


[18] Laurent Desvillettes et al. “On selection dynamics for continuous structured populations”. In: Com-
munications in Mathematical Sciences 6.3 (2008), pp. 729–747.

[19] Ulf Dieckmann and Richard Law. “The dynamical theory of coevolution: a derivation from stochastic
ecological processes”. In: Journal of mathematical biology 34.5 (1996), pp. 579–612.

[20] Odo Diekmann et al. “The dynamics of adaptation: an illuminating example and a Hamilton–Jacobi
approach”. In: Theoretical population biology 67.4 (2005), pp. 257–271.

[21] Ronald J DiPerna and Pierre-Louis Lions. “Ordinary differential equations, transport theory and
Sobolev spaces”. In: Inventiones mathematicae 98.3 (1989), pp. 511–547.

[22] Avner Friedman, Chiu-Yen Kao, and Chih-Wen Shih. “Asymptotic phases in a cell differentiation
model”. In: Journal of Differential Equations 247.3 (2009), pp. 736–769.

[23] Stefan AH Geritz, Eva Kisdi, Johan AJ Metz, et al. “Evolutionarily singular strategies and the adaptive
growth and branching of the evolutionary tree”. In: Evolutionary ecology 12.1 (1998), pp. 35–57.

[24] Jules Guilberteau, Camille Pouchol, and Nastassia Pouradier Duteil. “Long-time behaviour of an
advection-selection equation”. In: arXiv preprint arXiv:2301.02470 (2023).
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