L2 Hypocoercivity methods for kinetic Fokker-Planck equations with factorised Gibbs states - Archive ouverte HAL
Chapitre D'ouvrage Année : 2023

L2 Hypocoercivity methods for kinetic Fokker-Planck equations with factorised Gibbs states

Résumé

This contribution deals with L2 hypocoercivity methods for kinetic Fokker-Planck equations with integrable local equilibria and a factorisation property that relates the Fokker-Planck and the transport operators. Rates of convergence in presence of a global equilibrium, or decay rates otherwise, are estimated either by the corresponding rates in the diffusion limit, or by the rates of convergence to local equilibria, under moment conditions. On the basis of the underlying functional inequalities, we establish a classification of decay and convergence rates for large times, which includes for instance sub-exponential local equilibria and subexponential potentials.
Fichier principal
Vignette du fichier
BDZ2023.pdf (436.62 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-04079910 , version 1 (24-04-2023)
hal-04079910 , version 2 (09-08-2023)
hal-04079910 , version 3 (29-11-2024)

Identifiants

Citer

Emeric Bouin, Jean Dolbeault, Luca Ziviani. L2 Hypocoercivity methods for kinetic Fokker-Planck equations with factorised Gibbs states. Menozzi, S., Pascucci, A., Polidoro, S. Kolmogorov Operators and Their Applications, Kolmogorov Operators and Their Applications (56), Springer, pp.23-56, 2023, Springer INdAM Series, ⟨10.1007/978-981-97-0225-1_2⟩. ⟨hal-04079910v2⟩
88 Consultations
113 Téléchargements

Altmetric

Partager

More