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This contribution deals with L 2 hypocoercivity methods for kinetic Fokker-Planck equations with integrable local equilibria and a factorisation property that relates the Fokker-Planck and the transport operators. Rates of convergence in presence of a global equilibrium, or decay rates otherwise, are estimated either by the corresponding rates in the diffusion limit, or by the rates of convergence to local equilibria, under moment conditions. On the basis of the underlying functional inequalities, we establish a classification of decay and convergence rates for large times, which includes for instance sub-exponential local equilibria and subexponential potentials.

Introduction

Hypocoercivity refers to the method developed by C. Villani in order to capture large time asymptotics in kinetic equations, see [START_REF] Mouhot | Quantitative perturbative study of convergence to equilibrium for collisional kinetic models in the torus[END_REF]36], which borrows ideas from Hörmander's hypoelliptic theory and from the carré du champ method introduced by D. Bakry and M. Emery in [START_REF] Bakry | Diffusions hypercontractives[END_REF]. For this reason, the Fisher information plays an important role and, to some extent, we can consider it as an H 1 -theory. Here we shall focus more on the notion of L 2 -hypocoercivity inspired by [START_REF] Hérau | Hypocoercivity and exponential time decay for the linear inhomogeneous relaxation Boltzmann equation[END_REF] and introduced in [START_REF] Dolbeault | Hypocoercivity for kinetic equations with linear relaxation terms[END_REF][START_REF] Dolbeault | Hypocoercivity for linear kinetic equations conserving mass[END_REF] in a simple case of a kinetic Fokker-Planck equation, which puts the emphasis on the underlying diffusion limit. The heuristic idea is simple: while the Fokker-Planck diffusion operator controls the rate of convergence towards local equilibria in the velocity space, the equilibration of the spatial density (its convergence to the spatial density of a global equilibrium or its decay when no such equilibrium exists) can be interpreted as a diffusion in the position space, at least in a certain parabolic scaling, which results of the interplay of the diffusion in the velocity direction and the transport and the mixing in the phase space induced by the transport operator. The advantage of this approach is that rates are fully determined by the functional inequalities associated to the diffusion operator on the velocity space and to the diffusion limit in the position space. This paper is organized as follows. We start by recalling the abstract L 2 hypocoercivity method in Theorem 1 before applying it to the framework of non-Maxwellian local equilibria and a compatible transport operator in Corollary 1. Although an adaptation of the standard theory in presence of microscopic and macroscopic coercivity associated respectively to the Fokker-Planck operator and the diffusion limit, this result is new and covers for instance the case of relativistic transport. This framework is also well adapted to situations with weaker notions of coercivity corresponding to either an external potential with slower growth at infinity or to local equilibria with fatter tails than the Maxwellian. After reviewing various families of interpolation inequalities which dictate the asymptotic behaviours of the solutions to the Fokker-Planck equations, we extend the L 2 hypocoercivity method to the kinetic Fokker-Planck equations and establish a classification in terms the (microscopic) local equilibria and the (macroscopic) equilibria associated with the Fokker-Planck diffusion limit.

Reviewing extensively the literature on the asymptotic behaviour of the solutions of Fokker-Planck, degenerate Fokker-Planck and kinetic Fokker-Planck equations goes beyond our scope. Let us simply quote some papers directly related to our methods, with more details to be given later.

Concerning Fokker-Planck equations, coercivity for the diffusion operator means spectral gap and Poincaré inequality, and thus exponential decay of the solutions. This is a basic example of application of the carré du champ method: see [START_REF] Bakry | Analysis and geometry of Markov diffusion operators, Grundlehren der mathematischen Wissenschaften[END_REF]. Weak Poincaré inequalities are natural in the absence of spectral gaps as explained in [START_REF] Ben-Artzi | Weak Poincaré inequalities in the absence of spectral gaps[END_REF] and have been quite systematically explored: see [START_REF] Röckner | Weak Poincaré inequalities and -convergence rates of Markov semigroups[END_REF][START_REF] Bakry | Rate of convergence for ergodic continuous Markov processes: Lyapunov versus Poincaré[END_REF][START_REF] Kavian | The Fokker-Planck equation with subcritical confinement force[END_REF] and earlier references therein. However, such methods require strong assumptions on the initial data. This is the reason why we adopt an alternative approach based on moments and weighted functional inequalities, where the extreme case corresponds to Nash's inequality in absence of an external potential. See Table 1.

As for kinetic Fokker-Planck equations, hypocoercivity primarily refers to the method exposed in [36]. We can also quote [START_REF] Piazzoli | Relaxation to equilibrium for kinetic Fokker-Planck equation[END_REF] for a detailed presentation of the commutator method and of Bakry-Emery type computations applied to estimates of the relaxation to equilibrium. More results and further references can also be found in [START_REF] Dolbeault | Φ-Entropies: convexity, coercivity and hypocoercivity for Fokker-Planck and kinetic Fokker-Planck equations[END_REF]. In [START_REF] Hu | Subexponential decay in kinetic Fokker-Planck equation: weak hypocoercivity[END_REF] S. Hu and X. Wang introduced a weak hypocoercivity approach à la Villani, using a weak Poincaré inequality, and proved subexponential convergence to equilibrium. This was later extended to a class of degenerate diffusion processes in [START_REF] Grothaus | Weak Poincaré inequalities for convergence rate of degenerate diffusion processes[END_REF] by M. Grothaus and F.-Y. Wang using weak Poincaré inequalities for the symmetric and antisymmetric part of the generator, with non-exponential rates of convergence. In the same vein, C. Cao proved quantitative convergence rates for the kinetic Fokker-Planck equation with more general confinement forces in [START_REF] Cao | The kinetic Fokker-Planck equation with weak confinement force[END_REF][START_REF] Cao | The kinetic Fokker-Planck equation with general force[END_REF].

Alternatively the method of [START_REF] Dolbeault | Hypocoercivity for linear kinetic equations conserving mass[END_REF] was extended to cases without potentials in [START_REF] Bouin | Hypocoercivity without confinement[END_REF] while cases of weak or very weak potentials were considered respectively in [START_REF] Bouin | Hypocoercivity and sub-exponential local equilibria[END_REF] and [START_REF] Bouin | Diffusion and kinetic transport with very weak confinement[END_REF]. Here the idea is to introduce moments and weighted interpolation inequalities to prove non-exponential decay or convergence rates. In these papers the effort has been mostly focused on the role of the external potential and fat tail local equilibria were not taken into consideration. However, it is known from [START_REF] Mellet | Fractional diffusion limit for collisional kinetic equations[END_REF] that fat-tail local equilibria can be responsible of a fractional diffusion limit, which may govern decay rates in the case without external potential as shown in [START_REF] Bouin | Fractional hypocoercivity[END_REF], but this is not always the case. Non-Maxwellian local equilibria have been less explored than the Maxwellian case, but one has to mention [START_REF] Brigati | Time averages for kinetic Fokker-Planck equations[END_REF][START_REF] Brigati | How to construct decay rates for kinetic Fokker-Planck equations?[END_REF] for such an extension of the earlier works [START_REF] Albritton | Variational methods for the kinetic Fokker-Planck equation[END_REF][START_REF] Cao | On explicit L 2 -convergence rate estimate for underdamped Langevin dynamics[END_REF], with slightly different methods based on weak norms, Lions' lemma and time-averages.

From microscopic and macroscopic coercivity to hypocoercivity

Let us start by an expository section which collects some known results and introduces our present purpose. Let us consider the general evolution equation 𝑑𝐹 𝑑𝑡

+ T𝐹 = L𝐹 ( 1 
)
where 𝐹 is the density of a probability distribution defined on a real or complex Hilbert space H with scalar product •, • and norm • . We assume that T and L are two linear operators, respectively anti-Hermitian and Hermitian: T * = -T and 𝐿 * = L, where * denotes the adjoint with respect to •, • . We are interested in the decay rate of 𝐹 or in the convergence to a steady state 𝐹 ★ . We assume that 𝐹 ★ is unique, up to normalization. Since ( 1) is linear, we can always replace 𝐹 by 𝐹 -𝐹 ★ and study the convergence to 0 of an eventually sign changing function 𝐹. We have in mind that L is an elliptic degenerate operator. If Π is the orthogonal projection onto the kernel of L, we assume that L has the microscopic coercivity property in the sense that it is coercive on (1 -Π) H , where 1 is here a shorthand notation for the identity that will make sense in the functional setting of interest. In other words, we claim that 1 2

𝑑 𝑑𝑡 𝐹 2 = L𝐹, 𝐹 ≤ -𝜆 𝑚 (1 -Π)𝐹 2 (H1)
for some 𝜆 𝑚 > 0. This is not enough to conclude that 𝐹 (𝑡, •) decays exponentially as we have no decay rate on Ker(L), but if the operators L and T do not commute, we can hope that some of the decay properties on (1 -Π) H are transferred on Π H . This points towards the computation of various commutators and the whole machinery of Hörmander's hypoellipticity theory. A micro/macro approach offers a simpler framework, that has the advantage of clarifying the role played by various functional inequalities in estimating decay rates of 𝐹. The underlying ideas rely on the formal macroscopic limit of the scaled evolution equation

𝜀 𝑑𝐹 𝑑𝑡

+ T𝐹 = 1 𝜀 L𝐹
on the Hilbert space H , which is a typical parabolic scaling when 𝜀 is a small parameter. Using a formal expansion of a solution 𝐹 𝜀 = 𝐹 0 + 𝜀 𝐹 1 + 𝜀 2 𝐹 2 + O (𝜀 3 ) as 𝜀 → 0 + and solving the equation order by order, we obtain at order 𝑂 𝜀 -1 : L𝐹 0 = 0 , at order 𝑂 𝜀 0 :

T𝐹 0 = L𝐹 1 ,
at order 𝑂 𝜀 1 :

𝑑𝐹 0 𝑑𝑡 + T𝐹 1 = L𝐹 2 .
The first and second equation respectively read as 𝐹 0 = Π𝐹 0 and 𝐹 1 = -(TΠ) 𝐹 0 . After projection on Ker(L), the third equation becomes 𝑑 𝑑𝑡 (Π𝐹 0 ) -ΠT (TΠ) 𝐹 0 = ΠL𝐹 2 = 0 that we can also write as

𝜕𝐹 0 𝜕𝑡 + (TΠ) * (TΠ) 𝐹 0 = 0 . (2) 
Assuming macroscopic coercivity, i.e., the property that the operator (TΠ) * (TΠ) is coercive on (1 -Π) H , we obtain 1 2

𝑑 𝑑𝑡 𝐹 0 2 = -(TΠ) 𝐹 0 2 ≤ -𝜆 𝑀 𝐹 0 2 (H2)
for some 𝜆 𝑀 > 0. In order to derive (2), we implicitly used the fact that all terms are of order 𝜀, which relies on the parabolic macroscopic dynamics condition

ΠTΠ 𝐹 = 0 . (H3)
As in the hypocoercivity method of [START_REF] Dolbeault | Hypocoercivity for linear kinetic equations conserving mass[END_REF], let us consider the operator

A := 1 + (TΠ) * (TΠ) -1 (TΠ) *
where the (TΠ) * (TΠ) term is of course reminiscent of (2), and, the Lyapunov functional, or entropy,

H[𝐹] := 1 2 𝐹 2 + 𝛿 Re A𝐹, 𝐹 . (3) 
The parameter 𝛿 > 0, to be determined, as to be thought as a small parameter so that H[𝐹] is a perturbation of 

≤ TA𝐹 (Id -Π)𝐹 ≤ 1 2 𝜇 TA𝐹 2 + 𝜇 2 (Id -Π)𝐹 2 .
Applied with either 𝜇 = 1/2 or 𝜇 = 1, this estimate proves that A𝐹 ≤ 1 2 (Id -Π)𝐹 and TA𝐹 ≤ (Id -Π)𝐹 . Incidentally, this proves that

| TA𝐹, 𝐹 | = | TA𝐹, (Id -Π)𝐹 | ≤ (Id -Π)𝐹 2 , ( 4a 
)
| A𝐹, 𝐹 | ≤ 1 2 Π𝐹 (Id -Π)𝐹 ≤ 1 4 𝐹 2 . ( 4b 
)
We read from (4b) that H[𝐹] and 𝐹 2 are equivalent with

2 -𝛿 4 𝐹 2 ≤ H[𝐹] ≤ 2 + 𝛿 4 𝐹 2 .
However, the twist introduced in H[𝐹] by A𝐹, 𝐹 makes it exponentially decaying in 𝑡 if 𝐹 solves (1). We can indeed compute

- 𝑑 𝑑𝑡 H[𝐹] = D[𝐹]
where

D[𝐹] := -L𝐹, 𝐹 + 𝛿 ATΠ𝐹, 𝐹 -𝛿 Re TA𝐹, 𝐹 -Re AT(1 -Π)𝐹, 𝐹 + Re AL𝐹, 𝐹 . (5) 
By (H1), we know that -L𝐹, 𝐹 ≥ 𝜆 𝑚 (1 -Π)𝐹 2 . On the other hand, (H2) amounts to

(TΠ) * (TΠ) 𝐹, 𝐹 ≥ 𝜆 𝑀 𝐹 2 if 𝐹 ∈ Ker(L)
and, by construction, the operator A is therefore such that

ATΠ𝐹, 𝐹 ≥ 𝜆 𝑀 1 + 𝜆 𝑀 Π𝐹 2 . ( 6 
)
The first two terms in the definition of D[𝐹] can be combined to prove that

D[𝐹] ≥ 𝜆 𝑚 (1 -Π)𝐹 2 + 𝛿 𝜆 𝑀 1 + 𝜆 𝑀 Π𝐹 2 -𝛿 Re TA𝐹, 𝐹 -Re AT(1 -Π)𝐹, 𝐹 + Re AL𝐹, 𝐹 . (7) 
Under the additional assumption that the last term in the above identity involves only bounded auxiliary operators in the sense that

AT(1 -Π)𝐹 + AL𝐹 ≤ 𝐶 𝑀 (1 -Π)𝐹 , (H4) 
one obtains the entropy -entropy production inequality

D[𝐹] ≥ 𝜆 H[𝐹]
for some explicit constant 𝜆 > 0. The precise statement goes as follows. It has been established in [START_REF] Dolbeault | Hypocoercivity for linear kinetic equations conserving mass[END_REF] in the case of a real Hilbert space H and extended to complex Hilbert spaces in [START_REF] Bouin | Hypocoercivity without confinement[END_REF].

Theorem 1 ([10, 21]) Let L and T be closed linear operators in the complex Hilbert space H , •, • . We assume that L is Hermitian and T is anti-Hermitian, and that (H1)-(H4) hold for some positive constants 𝜆 𝑚 , 𝜆 𝑀 , and 𝐶 𝑀 . Then there is some 𝛿 ★ ∈ (0, 2) ∩ (0, 𝜆 𝑚 ) such that, for any 𝛿 ∈ (0, 𝛿 ★ ), there are explicit constants 𝜆 > 0 and C > 1 for which, if 𝐹 solves (1) with initial datum 𝐹 0 ∈ H , then

H[𝐹 (𝑡, •)] ≤ H[𝐹 0 ] 𝑒 -𝜆 𝑡 and 𝐹 (𝑡, •) 2 ≤ C 𝑒 -𝜆 𝑡 𝐹 0 2 ∀ 𝑡 ≥ 0 . (8) 
The estimates of 𝜆 > 0 and C > 1 in [10, Proposition 4] have been improved in [2, Proposition 2] as follows.

With 𝑋 := (Id -Π)𝐹 and 𝑌 := Π𝐹 . Using (4b), we read from (3) that

H[𝐹] ≤ 1 2 𝑋 2 + 𝑌 2 + 𝛿 2 𝑋 𝑌
while it follows from ( 7), (4a) and (H4) that

D[𝐹] -𝜆 H[𝐹] ≥ 𝜆 𝑚 -𝛿 - 𝜆 2 𝑋 2 -𝛿 𝐶 𝑀 + 𝜆 2 𝑋 𝑌 + 𝛿 𝜆 𝑀 1 + 𝜆 𝑀 - 𝜆 2 
𝑌 2 .
With 𝐾 𝑀 := 𝜆 𝑀 1+𝜆 𝑀 < 1 and 𝛿 ★ := 4 𝐾 𝑀 𝜆 𝑚 4 𝐾 𝑀 +𝐶 2

𝑀

< 𝜆 𝑚 , a simple discriminant condition shows that for any 𝛿 ∈ (0, 𝛿 ★ ), the right-hand side is nonnegative for the largest (positive) solution of

𝛿 2 𝐶 𝑀 + 𝜆 2 2 -4 𝜆 𝑚 -𝛿 - 𝜆 2 𝛿 𝜆 𝑀 1 + 𝜆 𝑀 - 𝜆 2 = 0 .
We refer to [START_REF] Arnold | Sharpening of decay rates in Fourier based hypocoercivity methods[END_REF] for further details and to [START_REF] Grothaus | Hilbert space hypocoercivity for the Langevin dynamics revisited[END_REF] for more considerations on the functional framework.

In the framework of kinetic equations, T and L are respectively the transport operator and the collision operator acting on a distribution function 𝑓 (𝑡, 𝑥, 𝑣) where 𝑡 ≥ 0 is the time, 𝑥 is the position and 𝑣 is the velocity. To fix ideas, we shall assume that 𝑥, 𝑣 ∈ R 𝑑 and consider

• a transport operator defined by the Poisson bracket as

T 𝑓 := ∇ 𝑣 E • ∇ 𝑥 𝑓 -∇ 𝑥 E • ∇ 𝑣 𝑓 (9) 
corresponding to the Hamiltonian energy

(𝑥, 𝑣) ↦ → E (𝑥, 𝑣) := 1 𝛽 𝑣 𝛽 + 𝜙(𝑥) ,
where 𝜙 denotes an external, given potential, • a collision operator of Fokker-Planck type given by

L 𝑓 := ∇ 𝑣 • ∇ 𝑣 𝑓 + 𝑣 𝑣 𝛽-2 𝑓 . ( 10 
)
Here we use the notation

𝑣 := √︁ 1 + |𝑣| 2 .
Unless 𝛽 = 2, our choice of the transport operator differs from the transport operator corresponding to Newton's equations, namely 𝑣 • ∇ 𝑥 -∇ 𝑥 𝜙 • ∇ 𝑣 , which has been widely studied in the literature. More general dependences of E and L on 𝑣 than 𝑣 𝛽 , with for instance a power law asymptotic growth as |𝑣| → +∞, could be considered under minor changes. Our purpose is to study the asymptotic behaviour of the solution of

𝜕 𝑓 𝜕𝑡 + T 𝑓 = L 𝑓 , 𝑓 (𝑡 = 0, •, •) = 𝑓 0 (11) 
with T and L given respectively by ( 9) and [START_REF] Bouin | Hypocoercivity without confinement[END_REF] as 𝑡 → +∞. With these choices and under the condition that 𝑒 -𝜙 is integrable, a remarkable property is that the Gibbs state

𝑓 ★ (𝑥, 𝑣) := 1 𝑍 𝑒 -E ( 𝑥,𝑣) where 𝑍 = ∫ R 𝑑 𝑒 -𝜙 𝑑𝑥 ∫ R 𝑑 𝑒 -1 𝛽 𝑣 𝛽 𝑑𝑣 (12)
is a stationary solution of mass 𝑓 ★ L 1 (R 𝑑 ×R 𝑑 , 𝑑 𝑥 𝑑𝑣) = 1. We consider L as an operator on L 2 R 𝑑 , 𝑒 𝑣 𝛽 𝑑𝑣 acting on functions depending on the velocity variable 𝑣 and extend it to the Hilbert space L 2 (R 𝑑 × R 𝑑 , 𝑑𝜇) of functions depending on 𝑥 and 𝑣 where

𝑑𝜇 := 𝑑𝑥 𝑑𝑣 𝑓 ★ (𝑥, 𝑣) . Since 𝑓 ★ is integrable, notice that L 1 (R 𝑑 × R 𝑑 , 𝑑𝑥 𝑑𝑣) ⊂ L 2 R 𝑑 × R 𝑑 , 𝑑𝜇
) by a Cauchy-Schwarz inequality. After these preliminaries, we observe that 𝑓 ★ is local equilibrium, i.e., belongs to Ker(L) which is generated by functions of the type

𝑓 𝜌 (𝑥, 𝑣) := 𝜌(𝑥) 𝑒 -1 𝛽 𝑣 𝛽 ∫ R 𝑑 𝑒 -1 𝛽 𝑣 𝛽 𝑑𝑣 (13)
where 𝜌 ∈ L 2 R 𝑑 , 𝑒 -𝜙 𝑑𝑥 ⊃ L 1 (R 𝑑 , 𝑑𝑥) is an arbitrary function. The property T 𝑓 ★ = L 𝑓 ★ = 0 sometimes appears in the physics literature as a factorization property. The orthogonal projector onto Ker(L) is defined as the projection on local equilibria by

Π 𝑓 = 𝑓 𝜌 (𝑥, 𝑣) where 𝜌 = ∫ R 𝑑 𝑓 𝑑𝑣 .
Notice that 𝑓 and 𝑓 𝜌 have the same spatial density because ∫ R 𝑑 𝑓 𝜌 𝑑𝑣 = 𝜌. Under the assumption that the measure 𝑒 -𝜙 𝑑𝑥 admits a Poincaré inequality, that is, there is some positive constant 𝜆 𝜙 for which

∫ R 𝑑 |∇𝑢| 2 𝑒 -𝜙 𝑑𝑥 ≥ 𝜆 𝜙 ∫ R 𝑑 |𝑢| 2 𝑒 -𝜙 𝑑𝑥 ∀ 𝑢 ∈ D (R 𝑑 ) such that ∫ R 𝑑 𝑢 𝑒 -𝜙 𝑑𝑥 = 0 , (14) 
Theorem 1 applies as follows.

Corollary 1 Assume that 𝜙 is such that (14) holds for some 𝜆 1 > 0 and 𝛽 ≥ 1. If 𝑓 solves [START_REF] Bouin | Diffusion and kinetic transport with very weak confinement[END_REF] for some nonnegative function

𝑓 0 ∈ L 2 (R 𝑑 × R 𝑑 , 𝑑𝜇) with 𝑓 0 L 1 (R 𝑑 ×R 𝑑 , 𝑑 𝑥 𝑑𝑣) = 1
, then for some 𝛿 > 0, there exists

𝜆 > 0 and C > 1 such that (8) holds with • := • L 2 (R 𝑑 ×R 𝑑 , 𝑑 𝜇) .
The case 𝛽 = 2 is by now standard and covered in various papers: see [START_REF] Dolbeault | Hypocoercivity for kinetic equations with linear relaxation terms[END_REF][START_REF] Dolbeault | Hypocoercivity for linear kinetic equations conserving mass[END_REF] for an L 2 hypocoercivity approach and [START_REF] Hérau | Isotropic hypoellipticity and trend to equilibrium for the Fokker-Planck equation with a high-degree potential[END_REF][START_REF] Helffer | Hypoelliptic estimates and spectral theory for Fokker-Planck operators and Witten Laplacians[END_REF][START_REF] Hérau | Hypocoercivity and exponential time decay for the linear inhomogeneous relaxation Boltzmann equation[END_REF] as well as references therein for earlier results based on hypoelliptic methods. To our knowledge the case 𝛽 ≠ 2 has not been studied yet by L 2 -hypocoercivity methods, but convergence results are known from [START_REF] Cao | On explicit L 2 -convergence rate estimate for underdamped Langevin dynamics[END_REF][START_REF] Brigati | How to construct decay rates for kinetic Fokker-Planck equations?[END_REF] using other methods. Of particular interest in physics is the case 𝛽 = 1 where E is the standard energy for relativistic particles, up to physical constants (mass and speed of light are taken equal to 1), while the corresponding L operator is not much more than a caricature of a relativistic collision operator. Concerning L and from the point of view of phenomenological models, it is however interesting to consider local equilibria given by ( 13) and it makes sense to assume that stationary solutions have the factorization property. Throughout this paper, we will make this simplifying assumption. The strategy of the proof of Corollary 1 goes as follows. With 𝛽 ≥ 1, we have the Poincaré inequality: there is some

𝜆 𝑚 > 0 such that, for all 𝑔 ∈ L 2 (R 𝑑 , 𝑒 -1 𝛽 𝑣 𝛽 𝑑𝑣) such that ∫ R 𝑑 𝑔 𝑒 -1 𝛽 𝑣 𝛽 𝑑𝑣 = 0, we have ∫ R 𝑑 |∇𝑔| 2 𝑒 -1 𝛽 𝑣 𝛽 𝑑𝑣 ≥ 𝜆 𝑚 ∫ R 𝑑 |𝑔| 2 𝑒 -1 𝛽 𝑣 𝛽 𝑑𝑣 . (15) 
This is for instance a consequence of Persson's lemma based on the observation that 𝜓(𝑣)

:= 1 𝛽 𝑣 𝛽 is such that lim inf |𝑣 |→+∞ 1 4 |∇𝜓(𝑣)| 2 - 1 2 Δ𝜓(𝑣) > 0 .
See for instance [START_REF] Bouin | A variational proof of Nash's inequality[END_REF]Appendix A.1] for details. As a consequence, (H1) holds. The macroscopic coercivity condition (H2) follows from [START_REF] Brigati | Time averages for kinetic Fokker-Planck equations[END_REF]. The parabolic macroscopic dynamics condition (H3) is a simple consequence of the definitions of T and Π. Hence the only assumption that deserves some attention is (H4), which is obtained by elliptic estimates. A detailed proof is given in Section 4.6.

In the framework of ( 9) and ( 10), an elementary computation shows that (2) written for 𝑓 𝜌 defined by ( 13) reduces to the Fokker-Planck equation

𝜕 𝜌 𝜕𝑡 = 𝜎 Δ𝜌 + ∇ • (𝜌 ∇𝜙) (16) 
with diffusion coefficient 𝜎 given in terms of 𝛽 by

𝜎 = 1 𝑑 ∫ R 𝑑 |𝑣| 2 𝑣 2𝛽-4 𝑒 -1 𝛽 𝑣 𝛽 𝑑𝑣 . (17) 
In order to simplify the discussion, we shall assume that

𝜙(𝑥) = 1 𝛼 𝑥 𝛼 ∀ 𝑥 ∈ R 𝑑 .
Corollary 1 corresponds to 𝛼 ≥ 1. Our purpose is to investigate the decay rates of ( 11) in terms of 𝛽 > 0 and 𝛼 > 0. Let us start by studying the asymptotic behaviour of a solution 𝜌 of ( 16) depending on the various cases for the potential 𝜙. For completeness, we will also consider the limit case as 𝛼 → 0 and distinguish several cases depending on whether we take 𝜙 = 0 a.e., or (in the case of the Fokker-Planck equation), depending on 𝛾 > 0,

𝜙(𝑥) = 𝛾 log 𝑥 ∀ 𝑥 ∈ R 𝑑 .
Up to minor technicalities, general potentials 𝜙 with asymptotic power law or logarithmic growths as |𝑥| → +∞ could also be covered.

Fokker-Planck equations with various external potentials, moments and functional inequalities

We collect some results on the asymptotic behaviour of the solutions of ( 16) as 𝑡 → +∞ based on various functional inequalities. In this section we omit the discussion of optimality cases and estimates on sharp constants in the functional inequalities. By default, constants in the inequalities are always taken to their optimal value. Table 1 collects the results in a synthetic picture, although without all details on the assumptions.

Strong confinement case: Poincaré inequality

If 𝜙(𝑥) = 1 𝛼 𝑥 𝛼 with 𝛼 ≥ 1, then ( 14) holds with 𝜆 𝜙 = 𝜆 𝑀 > 0. We apply it to 𝑢 = 𝜌/𝑒 -𝜙 . A solution 𝜌 of ( 16) with initial datum 𝜌 0 at 𝑡 = 0 satisfies

𝑑 𝑑𝑡 𝜌(𝑡, •) 2 L 2 (R 𝑑 , 𝑒 𝜙 𝑑 𝑥) = -2 𝜎 ∇𝜌(𝑡, •) 2 L 2 (R 𝑑 , 𝑒 𝜙 𝑑 𝑥) ≤ -2 𝜆 𝑀 𝜎 𝜌(𝑡, •) 2 L 2 (R 𝑑 , 𝑒 𝜙 𝑑 𝑥) ,
which yields the estimate

𝜌(𝑡, •) 2 L 2 (R 𝑑 , 𝑒 𝜙 𝑑 𝑥) ≤ 𝜌 0 2 L 2 (R 𝑑 , 𝑒 𝜙 𝑑 𝑥) 𝑒 -2 𝜆 𝑀 𝜎 𝑡 ∀ 𝑡 ≥ 0 .

Weak confinement case: weighted Poincaré inequality

The following results are taken from [9, Appendices A and B]. We assume here that 𝛼 ∈ (0, 1) and consider a solution of ( 16) with nonnegative initial datum

𝜌 0 ∈ L 1 (R 𝑑 , 𝑑𝑥) such that 𝜌 0 L 1 (R 𝑑 ) = 1.
The function 𝑢 = 𝜌 𝑒 𝜙 is a solution of the Ornstein-Uhlenbeck equation (also known as the backward Kolmogorov equation)

𝜕𝑢 𝜕𝑡 = 𝜎 Δ𝑢 -∇𝜙 • ∇𝑢 . ( 18 
)
With 𝑘 ≥ 0, let us compute

𝑑 𝑑𝑡 ∫ R 𝑑 |𝑢(𝑡, 𝑥)| 2 𝑥 𝑘 𝑒 -𝜙 𝑑𝑥 + 2 𝜎 ∫ R 𝑑 |∇ 𝑥 𝑢(𝑡, 𝑥)| 2 𝑥 𝑘 𝑒 -𝜙 𝑑𝑥 ≤ ∫ R 𝑑 𝑎 𝑘 -𝑏 𝑘 𝑥 𝛼-2 |𝑢(𝑡, 𝑥)| 2 𝑥 𝑘 𝑒 -𝜙 𝑑𝑥
for some 𝑎 𝑘 ∈ R, 𝑏 𝑘 ∈ (0, +∞). As a consequence, there exists a constant K (𝑘) > 0 such that

∫ R 𝑑 𝑥 𝑘 |𝜌(𝑡, 𝑥)| 2 𝑒 𝜙 𝑑𝑥 ≤ K (𝑘) ∫ R 𝑑 𝑥 𝑘 |𝜌 0 | 2 𝑒 𝜙 𝑑𝑥 ∀ 𝑡 ≥ 0 .
See [9, Proposition 4 and Appendix B.2] for details. With 𝑘 = 0, we notice that 𝑎 0 = 𝑏 0 = 0 and use the weighted Poincaré inequality

∫ R 𝑑 |∇ 𝑥 𝑢(𝑡, 𝑥)| 2 𝑒 -𝜙 𝑑𝑥 ≥ C wP 𝛼 ∫ R 𝑑 |𝑢(𝑡, 𝑥) -ū| 2 𝑒 -𝜙 𝑥 2 (1-𝛼) 𝑑𝑥 where ū = ∫ R 𝑑 𝑢 𝑒 -𝜙 𝑑𝑥 ∫ R 𝑑 𝑒 -𝜙 𝑑𝑥 (19) 
(notice that the average ū is computed with respect to the measure of the l.h.s.) to prove that

𝑑 𝑑𝑡 ∫ R 𝑑 |𝑢(𝑡, 𝑥) -ū| 2 𝑒 -𝜙 𝑑𝑥 = -2 𝜎 ∫ R 𝑑 |∇ 𝑥 𝑢(𝑡, 𝑥)| 2 𝑒 -𝜙 𝑑𝑥 ≤ -2 𝜎 C wP 𝛼 ∫ R 𝑑 |𝑢(𝑡, 𝑥) -ū| 2 𝑒 -𝜙 𝑥 2 (1-𝛼) 𝑑𝑥 . With 𝑘 ≥ 2 (1 -𝛼) and 𝜃 = 𝑘/ 𝑘 + 2 (1 -𝛼) , Hölder's inequality ∫ R 𝑑 |𝑢 -ū| 2 𝑒 -𝜙 𝑑𝑥 ≤ ∫ R 𝑑 |𝑢 -ū| 2 𝑒 -𝜙 𝑥 2 (1-𝛼) 𝑑𝑥 𝜃 ∫ R 𝑑 |𝑢 -ū| 2 𝑥 𝑘 𝑒 -𝜙 𝑑𝑥 1-𝜃 allows us to prove that ∫ R 𝑑 |𝜌(𝑡, 𝑥) -𝜌 ★ (𝑥)| 2 𝑒 𝜙 𝑑𝑥 ≤ 𝜌 0 -𝜌 ★ -4 (1-𝛼)/𝑘 L 2 (R 𝑑 , 𝑒 𝜙 𝑑 𝑥) + 4 (1 -𝛼) 𝜎 C wP 𝛼 𝑘 K 2 (1-𝛼)/𝑘 * 𝑡 -𝑘 2 (1-𝛼) ∀ 𝑡 ≥ 0 with K * := K (𝑘) 2 ∫ R 𝑑 𝑥 𝑘 |𝜌 0 | 2 𝑒 𝜙 𝑑𝑥 + ∫ R 𝑑 𝑥 𝑘 𝑒 -𝜙 𝑑𝑥 𝜌 0 2 L 1 (R 𝑑 ) .

Weak confinement, a limit case: Hardy-Poincaré inequality

The results in this case are new. In the limit as 𝛼 → 0 + , we can assume that 𝜙(𝑥) = 𝛾 log 𝑥 with 𝛾 > 𝑑 so that 𝑓 ★ defined by ( 12) is integrable. Let 𝑢 = 𝜌 𝑒 𝜙 be a solution of [START_REF] Cao | On explicit L 2 -convergence rate estimate for underdamped Langevin dynamics[END_REF]. With 𝑘 ≥ 0, let us compute

𝑑 𝑑𝑡 ∫ R 𝑑 |𝑢(𝑡, 𝑥)| 2 𝑥 𝑘 𝑒 -𝜙 𝑑𝑥 + 2 𝜎 ∫ R 𝑑 |∇ 𝑥 𝑢(𝑡, 𝑥)| 2 𝑥 𝑘 𝑒 -𝜙 𝑑𝑥 = 𝑘 ∫ R 𝑑 |𝑢(𝑡, 𝑥)| 2 𝑥 𝑘-2 𝑑 + (𝑘 -𝛾 -2) | 𝑥 | 2 𝑥 2 𝑒 -𝜙 𝑑𝑥 ≤ 𝑘 ∫ R 𝑑 |𝑢(𝑡, 𝑥)| 2 𝑥 𝑘-2 𝑑 + 𝑘 -𝛾 -2 -(𝑘 -𝛾 -2) 𝑥 -2 𝑒 -𝜙 𝑑𝑥 . ( 20 
)
By arguing as in [9, Proposition 4 and Appendix B.2], this is enough to prove that there exists a constant

K (𝑘) > 0 such that ∫ R 𝑑 𝑥 𝑘 |𝑢(𝑡, 𝑥)| 2 𝑒 -𝜙 𝑑𝑥 ≤ K (𝑘) ∫ R 𝑑 𝑥 𝑘 |𝜌 0 | 2 𝑒 𝜙 𝑑𝑥 ∀ 𝑡 ≥ 0 if 𝑘 ∈ (𝛾 -𝑑, 𝛾 + 2 -𝑑).
Notice that a better range of 𝑘 can be obtained as follows. Since 𝑥 𝑘 𝑒 -𝜙 = 𝑥 𝑘-𝛾 , we learn from [START_REF] Bonforte | Special fast diffusion with slow asymptotics: entropy method and flow on a Riemann manifold[END_REF][START_REF] Dolbeault | Fast diffusion equations: matching large time asymptotics by relative entropy methods[END_REF] that for some positive constant C HP 𝛾-𝑘 , we have the Hardy-Poincaré inequality

∫ R 𝑑 |∇ 𝑥 𝑢| 2 𝑥 𝑘 𝑒 -𝜙 𝑑𝑥 ≥ C HP 𝛾-𝑘 ∫ R 𝑑 |𝑢 -ū| 2 𝑥 𝑘-2 𝑒 -𝜙 𝑑𝑥 (21) 
for an appropriate choice of ū depending on 𝑘 -𝛾. In any case, Inequality [START_REF] Dolbeault | Hypocoercivity for kinetic equations with linear relaxation terms[END_REF] written with 𝑘 = 0, that is,

𝑑 𝑑𝑡 ∫ R 𝑑 |𝑢(𝑡, 𝑥) -ū| 2 𝑒 -𝜙 𝑑𝑥 ≤ -2 𝜎 ∫ R 𝑑 |∇ 𝑥 𝑢(𝑡, 𝑥)| 2 𝑒 -𝜙 𝑑𝑥
and then [START_REF] Dolbeault | Hypocoercivity for linear kinetic equations conserving mass[END_REF] combined with Hölder's inequality applied as in the case of the weighted Poincaré inequality (with

𝛼 = 0) show that ∫ R 𝑑 |𝜌(𝑡, 𝑥) -𝜌 ★ (𝑥)| 2 𝑒 𝜙 𝑑𝑥 ≤ ∫ R 𝑑 |𝜌 0 -𝜌 ★ | 2 𝑒 𝜙 𝑑𝑥 (1 + 𝑐 𝑡) -𝑘 2 ∀ 𝑡 ≥ 0
for some constant 𝑐 which depends on 𝑑, 𝛾, 𝜎, 𝑘,

∫ R 𝑑 |𝜌 0 | 2 𝑥 𝑘-𝛾 𝑑𝑥 and 𝜌 0 2 L 1 (R 𝑑 ) .

Very weak confinement case: Caffarelli-Kohn-Nirenberg inequality

According to [11, Theorem 1], if 1 ≤ 𝛾 < 𝑑 and 𝜙(𝑥) = 𝛾 log 𝑥 , a solution 𝜌 of ( 16) with nonnegative initial datum 𝜌 0 ∈ L 1 (R 𝑑 , 𝑥 𝑘 𝑑𝑥) ∩ L 2 R 𝑑 , 𝑒 𝜙 𝑑𝑥 with 𝑘 = max{2, 𝛾/2} satisfies the estimate

𝑀 𝑘 (𝑡) := ∫ R 𝑑 𝑥 𝑘 𝜌(𝑡, 𝑥) 𝑑𝑥 ≤ 2 𝑘-2 2 𝑀 0 + 𝑀 𝑘 (0) -𝑀 0 2/𝑘 + 2 𝜎 𝑑 + 𝑘 -2 -𝛾 𝑀 2/𝑘 0 𝑡 𝑘/2
.

With 𝑒 -𝜙 = 𝑥 -𝛾 and 𝑢 = 𝜌 𝑥 𝛾 , a solution 𝑢 of (18) satisfies the estimate

𝑑 𝑑𝑡 ∫ R 𝑑 |𝑢(𝑡, 𝑥)| 2 𝑥 -𝛾 𝑑𝑥 = -2 𝜎 ∫ R 𝑑 |∇𝑢(𝑡, 𝑥)| 2 𝑥 -𝛾 𝑑𝑥 Combined with the inhomogeneous Caffarelli-Kohn-Nirenberg inequality ∫ R 𝑑 |𝑢| 2 𝑥 -𝛾 𝑑𝑥 ≤ C CKN 𝑘,𝛾 ∫ R 𝑑 |∇𝑢| 2 𝑥 -𝛾 𝑑𝑥 𝑎 ∫ R 𝑑 𝑢 𝑥 𝑘-𝛾 𝑑𝑥 2(1-𝑎) with 𝑎 = 𝑑 + 2𝑘 -𝛾 𝑑 + 2 + 2𝑘 -𝛾 , this proves the decay estimate 𝜌(𝑡, •) 2 L 2 (R 𝑑 , 𝑒 𝜙 𝑑 𝑥) ≤ 𝜌 0 2 L 2 (R 𝑑 , 𝑒 𝜙 𝑑 𝑥) (1 + 𝑐 𝑡) -𝑑-𝛾 2 ∀ 𝑡 ≥ 0
where the constant 𝑐 depends on 𝑑, 𝛾, 𝜎, 𝜌 0 L 2 (R 𝑑 , 𝑒 𝜙 𝑑 𝑥) , 𝑀 0 = 𝑢 0 1 , and 𝑀 𝑘 (0) = |𝑥| 𝑘 𝜌 0 1 . For more details, as well as a proof of the Caffarelli-Kohn-Nirenberg inequality, see [START_REF] Bouin | Diffusion and kinetic transport with very weak confinement[END_REF]Appendix B].

No potential case: Nash's inequality

We assume that 𝜙 = 0 so that ( 16) is the standard heat equation. By Nash's inequality

𝑢 L 2 (R 𝑑 ) ≤ C Nash ∇𝑢 𝑑 𝑑+2 L 2 (R 𝑑 ) 𝑢 2 𝑑+2 L 1 (R 𝑑 ) ∀ 𝑢 ∈ H 1 (R 𝑑 , 𝑑𝑥) ,
a solution 𝜌 of ( 16) with initial datum 𝜌 0 at 𝑡 = 0 satisfies

𝑑 𝑑𝑡 𝜌(𝑡, •) 2 L 2 (R 𝑑 ) = -2 𝜎 ∇𝜌(𝑡, •) 2 L 2 (R 𝑑 ) .
Hence 𝑦(𝑡)

:= 𝜌(𝑡, •) 2 L 2 (R 𝑑 ) solves the differential inequality 𝑦 ≤ -2 𝜎 C -1 Nash 𝜌 0 -4 𝑑 L 1 (R 𝑑 ) 𝑦 1+ 2
𝑑 which, after integration, yields the estimate

𝜌(𝑡, •) 2 L 2 (R 𝑑 ) ≤ 𝜌 0 -4/𝑑 L 2 (R 𝑑 ) + 4 𝜎 𝑑 C Nash 𝜌 0 -4/𝑑 L 1 (R 𝑑 ) 𝑡 -𝑑/2 ∀ 𝑡 ≥ 0 . Potential 𝜙 = 0 𝜙(𝑥) = 𝛾 log 𝑥 𝛾 < 𝑑 𝜙(𝑥) = 𝛾 log 𝑥 𝛾 > 𝑑 𝜙(𝑥) = 1 𝛼 𝑥 𝛼 𝛼 ∈ (0, 1) 𝜙(𝑥) = 1 𝛼 𝑥 𝛼 𝛼 ≥ 1 Inequality Nash Caffarelli-Kohn- Nirenberg Hardy-Poincaré Weighted Poincaré Poincaré Asymptotic behavior 𝑡 -𝑑/2 decay 𝑡 -(𝑑-𝛾)/2 decay 𝑡 -𝑘/2 convergence 𝑡 -𝑘 2 (1-𝛼) convergence 𝑒 -𝜆 𝑡 convergence Table 1
Short summary of the behaviours as 𝑡 → +∞ of the solution of ( 16) depending on the choice of 𝜙, with some references. On the left side (𝜙 = 0 or 𝛾 < 𝑑), there is no global stationary solution and we study decay rates. On the right side, we investigate the convergence rates to a global stationary solution. Under additional or different constraints on the initial data, other behaviours can be obtained based for instance on weak Poincaré inequalities: see [35, Theorem 2.1], [START_REF] Bakry | Rate of convergence for ergodic continuous Markov processes: Lyapunov versus Poincaré[END_REF]Theorem 1.4] and [START_REF] Kavian | The Fokker-Planck equation with subcritical confinement force[END_REF]. ( * ) The use of the Poincaré inequality in relation with the Fokker-Planck equation has a long history, which we cannot cover entirely here: we can for instance refer to [START_REF] Nash | Continuity of solutions of parabolic and elliptic equations[END_REF], and to [START_REF] Bakry | Analysis and geometry of Markov diffusion operators, Grundlehren der mathematischen Wissenschaften[END_REF]Chapter 4] for an overview in the context of Markov processes.

A short summary

In case of the Fokker-Planck equation ( 16), Table 1 summarizes what is known on decay rates based on moment estimates and interpolation inequalities. Cases in gray will be further considered in the case of kinetic equations.

Kinetic Fokker-Planck equations and hypocoercivity results

State of the art

Some known results are collected in Table 2. They are exclusively concerned with the classical transport operator

T 𝑓 := 𝑣 • ∇ 𝑥 𝑓 -∇ 𝑥 𝜙 • ∇ 𝑣 𝑓 ,
i.e., coincide with our framework if 𝛽 = 2 (at the level of the transport operator).

Potential 𝜙 = 0 𝜙(𝑥) = 1 𝛼 𝑥 𝛼 𝛼 ∈ (0, 1) 𝜙(𝑥) = 1 𝛼 𝑥 𝛼 𝛼 ≥ 1, or T 𝑑 Macro Poincaré 𝜓(𝑣) = 1 𝛽 𝑣 𝛽 𝛽 ≥ 1 Micro Poincaré 𝑡 -𝑑/2 decay [10] 𝑒 -𝑡 𝑏 , 𝑏 < 1 𝛽 = 2 convergence [16]
𝑒 -𝜆 𝑡 convergence [START_REF] Hérau | Hypocoercivity and exponential time decay for the linear inhomogeneous relaxation Boltzmann equation[END_REF][START_REF] Mouhot | Quantitative perturbative study of convergence to equilibrium for collisional kinetic models in the torus[END_REF][START_REF] Dolbeault | Hypocoercivity for kinetic equations with linear relaxation terms[END_REF][START_REF] Dolbeault | Hypocoercivity for linear kinetic equations conserving mass[END_REF][START_REF] Mischler | Exponential stability of slowly decaying solutions to the kinetic-Fokker-Planck equation[END_REF][START_REF] Albritton | Variational methods for the kinetic Fokker-Planck equation[END_REF][START_REF] Cao | On explicit L 2 -convergence rate estimate for underdamped Langevin dynamics[END_REF][START_REF] Brigati | Time averages for kinetic Fokker-Planck equations[END_REF][START_REF] Brigati | How to construct decay rates for kinetic Fokker-Planck equations?[END_REF] 𝜓(𝑣) = 1 𝛽 𝑣 𝛽 𝛽 ∈ (0, 1)

𝑡 -𝜁 𝜁 = min{ 𝑑 2 , ℓ 2(1-𝛽) } decay, [9] 𝑡 -𝜁 convergence [13]
𝑡 -𝜁 convergence [START_REF] Bouin | Decay estimates for kinetic Fokker-Planck equations with heavy tailed stationary solutions[END_REF] Limit as 𝛽 → 0 + 𝜓(𝑣) = -(𝑑 + 𝜀) log 𝑣 𝜀 ∈ (0, 2) fractional diffusion limit, [START_REF] Bouin | Fractional hypocoercivity[END_REF] [13] 𝑡 -𝜁 if 𝜀 > 2 convergence [START_REF] Bouin | Decay estimates for kinetic Fokker-Planck equations with heavy tailed stationary solutions[END_REF] Table 2 Rough classification of the asymptotic behaviour of the solutions of

𝜕 𝑡 𝑓 + 𝑣 • ∇ 𝑥 𝑓 -∇ 𝑥 𝜙 • ∇ 𝑣 𝑓 = 𝑓 ★ ∇ 𝑣 𝑓 -1
★ ∇ 𝑣 𝑓 as 𝑡 → +∞ where 𝑓 ★ ( 𝑥, 𝑣) = 𝑍 -1 exp (-𝜙 ( 𝑥) -𝜓 (𝑣)). Additional assumptions on the initial datum 𝑓 0 = 𝑓 (𝑡 = 0, •, •) are needed: for instance in the case 𝛼 ≥ 1 and 𝛽 ∈ (0, 1), the initial datum is such that 𝑓 0 ∈ L 2 R 𝑑 × R 𝑑 , 𝑣 (1-𝛽) 𝜎 𝑑 𝜇 . In the case 𝜙 = 0 and 𝛽 ∈ (0, 1), we assume that 𝑓 0 ∈ L 2 R 𝑑 × R 𝑑 , 𝑣 ℓ/2 𝑑 𝜇 . If 𝛼 ∈ (0, 1) and 𝛽 ∈ (0, 1), using the weak Poincaré inequality requires specific bounds. Further cases and more detailed assumptions can be found in the references collected above.

In Table 2, if 𝛽 ≥ 1, Micro Poincaré refers to a Poincaré inequality written in the velocity variable 𝑣, which controls the convergence towards a local equilibrium while, Macro Poincaré refers to a Poincaré inequality written in the position variable 𝑥, which controls the convergence of the solution in the macroscopic or diffusion limit, towards a global equilibrium, or to 0 if there is no such equilibrium. Cases in gray will be further considered in the case of the transport operator given by (9).

Notation and basic observations

From here on, we assume that 𝜓(𝑣) = 1 𝛽 𝑣 𝛽 and 𝜙(𝑥) = 1 𝛼 𝑥 𝛼 for some 𝛽 > 0 and 𝛼 > 0, use the notation

𝜌 ★ := 𝑒 -𝜙 ∫ R 𝑑 𝑒 -𝜙 𝑑𝑥 , 𝜌 𝑓 := ∫ R 𝑑 𝑓 𝑑𝑣 and 𝑢 𝑓 := 𝜌 𝑓 𝜌 ★ ,
and consider the transport operator given by [START_REF] Bouin | Hypocoercivity and sub-exponential local equilibria[END_REF]. We recall that 𝑓 ★ is defined by [START_REF] Bouin | A variational proof of Nash's inequality[END_REF]. The following observations can be omitted at first reading and will be used only in Sections 4.4-4.6 for proving Theorem 2. We can write

Π 𝑓 = 𝜌 𝑓 𝑒 -𝜓 ∫ R 𝑑 𝑒 -𝜓 𝑑𝑣 = 𝑢 𝑓 𝑓 ★ , TΠ 𝑓 = 𝑣 𝛽-2 (𝑣 • ∇ 𝑥 𝑢 𝑓 ) 𝑓 ★ and ΠT 𝑓 = ∇ 𝑥 • ∫ R 𝑑 𝑣 𝑣 𝛽-2 𝑓 𝑑𝑣 𝑓 ★ 𝜌 ★ .
If 𝑓 = 𝑢 𝑓 ★ ∈ Ker(L) and 𝜎 is defined by [START_REF] Cao | The kinetic Fokker-Planck equation with general force[END_REF], then

(TΠ) * (TΠ) 𝑓 = - 𝜎 𝜌 ★ ∇ 𝑥 • 𝜌 ★ ∇ 𝑥 𝑢 𝑓 ★ = -𝜎 Δ 𝑥 𝑢 -∇ 𝑥 𝜙 • ∇ 𝑥 𝑢 𝑓 ★ , Solving 𝑔 = 1 + (TΠ) * (TΠ) -1
𝑓 means that 𝑔 = 𝑢 𝑓 ★ where 𝑢 = 𝑢 𝑔 solves

𝑢 -𝜎 Δ 𝑥 𝑢 -∇ 𝑥 𝜙 • ∇ 𝑥 𝑢 = 𝑢 𝑓 . (22) 
In order to justify integrations by parts (see Section 4.4 below), one can notice that 𝑐 𝑓 ★ with an arbitrary 𝑐 ∈ R can be used as a barrier function, so that we can assume that 𝑢 𝑓 is bounded as |𝑥| → +∞. Standard elliptic estimates apply to the solution 𝑢 of ( 22) and one can conclude using density arguments.

Main result

Our goal is to get a classification similar to the results summarized in Table 2 for 𝛽 ≠ 2 in the transport operator defined by [START_REF] Bouin | Hypocoercivity and sub-exponential local equilibria[END_REF], i.e., with T 𝑓 := ∇ 𝑣 E • ∇ 𝑥 𝑓 -∇ 𝑥 E • ∇ 𝑣 𝑓 . As far as we know, this transport operator has not been studied yet in the framework of hypocoercivity methods, except for some recent results in the bounded domain case in [START_REF] Albritton | Variational methods for the kinetic Fokker-Planck equation[END_REF][START_REF] Brigati | Time averages for kinetic Fokker-Planck equations[END_REF] or when 𝛼 ≥ 1 in [START_REF] Cao | On explicit L 2 -convergence rate estimate for underdamped Langevin dynamics[END_REF][START_REF] Brigati | How to construct decay rates for kinetic Fokker-Planck equations?[END_REF] which are based on weak norms and Lions' lemma.

Theorem 2 Let 𝑓 = 𝑓 (𝑡, 𝑥, 𝑣) be a solution of [START_REF] Bouin | Diffusion and kinetic transport with very weak confinement[END_REF] with transport and collision operators given respectively by [START_REF] Bouin | Hypocoercivity and sub-exponential local equilibria[END_REF] and [START_REF] Bouin | Hypocoercivity without confinement[END_REF] for some 𝛽 > 0 and 𝛼 > 0. With 𝑓 ★ defined by [START_REF] Bouin | A variational proof of Nash's inequality[END_REF], we assume that the initial datum satisfies

0 ≤ 𝑓 0 ≤ 𝐶 𝑓 ★ ( 23 
)
for a suitable constant 𝐶 > 0. Depending on 𝛽 and 𝛼, we have the following convergence and decay estimates.

1. Assume 𝛽 ≥ 1 and 𝛼 ≥ 1. Then there exist constants C > 0 and 𝜆 > 0 such that any solution 𝑓 of (11)

with initial datum 𝑓 0 ∈ L 2 (R 𝑑 × R 𝑑 , 𝑑𝜇) satisfies 𝑓 -𝑓 ★ 2 L 2 (R 𝑑 ×R 𝑑 , 𝑑 𝜇) ≤ C 𝑒 -𝜆𝑡 𝑓 0 -𝑓 ★ 2 L 2 (R 𝑑 ×R 𝑑 , 𝑑 𝜇) ∀ 𝑡 ≥ 0 .
2. Assume 𝛽 ∈ (0, 1) and 𝛼 ≥ 1. Then there exists a constant C ℓ > 0 such that any solution 𝑓 of [START_REF] Bouin | Diffusion and kinetic transport with very weak confinement[END_REF], with initial datum 𝑓 0 ∈ L 2 R 𝑑 × R 𝑑 , 𝑣 ℓ 𝑑𝜇 for some ℓ > 0, satisfies

𝑓 -𝑓 ★ 2 L 2 (R 𝑑 ×R 𝑑 , 𝑑 𝜇) ≤ C ℓ (1 + 𝑡) -ℓ 2(1-𝛽) 𝑓 0 -𝑓 ★ 2 L 2 (R 𝑑 ×R 𝑑 , 𝑑 𝜇) ∀ 𝑡 ≥ 0 .
3. Assume 𝛽 ≥ 1 and 𝛼 ∈ (0, 1). Then there exists a constant C 𝑘 > 0 such that any solution 𝑓 of [START_REF] Bouin | Diffusion and kinetic transport with very weak confinement[END_REF], with initial datum 𝑓 0 ∈ L 2 R 𝑑 × R 𝑑 , 𝑥 𝑘 𝑑𝜇 for some 𝑘 > 0, satisfies

𝑓 -𝑓 ★ 2 L 2 (R 𝑑 ×R 𝑑 , 𝑑 𝜇) ≤ C 𝑘 (1 + 𝑡) -𝑘 2(1-𝛼) 𝑓 0 -𝑓 ★ 2 L 2 (R 𝑑 ×R 𝑑 , 𝑑 𝜇) ∀ 𝑡 ≥ 0 .
4. Assume 𝛽 ∈ (0, 1) and 𝛼 ∈ (0, 1). Then there exist a constant C 𝑘,ℓ > 0 such that any solution 𝑓 of [START_REF] Bouin | Diffusion and kinetic transport with very weak confinement[END_REF],

with initial datum 𝑓 0 ∈ L 2 R 𝑑 × R 𝑑 , 𝑥 𝑘 𝑑𝜇 ∩ L 2 R 𝑑 × R 𝑑 , 𝑣 ℓ 𝑑𝜇 for some 𝑘 > 0 and ℓ > 0, satisfies 𝑓 -𝑓 ★ 2 L 2 (R 𝑑 ×R 𝑑 , 𝑑 𝜇) ≤ C 𝑘,ℓ (1 + 𝑡) -𝜁 𝑓 0 -𝑓 ★ 2 L 2 (R 𝑑 ×R 𝑑 , 𝑑 𝜇) ∀ 𝑡 ≥ 0 .
where

𝜁 = min 𝑘 2(1-𝛼) , ℓ 2(1-𝛽)
5. Assume 𝛽 ≥ 1 and 𝜙 = 0. Then there exist a constant K > 0 depending on 𝑓 0 L 1 (R 𝑑 ×R 𝑑 , 𝑑 𝑥 𝑑𝑣) such that any solution 𝑓 of [START_REF] Bouin | Diffusion and kinetic transport with very weak confinement[END_REF], with initial datum

𝑓 0 ∈ L 2 (R 𝑑 × R 𝑑 , 𝑑𝜇), satisfies 𝑓 2 L 2 (R 𝑑 ×R 𝑑 , 𝑑 𝜇) ≤ K (1 + 𝑡) -𝑑 2 𝑓 0 2 L 2 (R 𝑑 ×R 𝑑 , 𝑑 𝜇) ∀ 𝑡 ≥ 0 .
6. Assume 𝛽 ∈ (0, 1) and 𝜙 = 0. Then there exist a constant K ℓ > 0 such that any solution 𝑓 of [START_REF] Bouin | Diffusion and kinetic transport with very weak confinement[END_REF], with initial datum

𝑓 0 ∈ L 2 R 𝑑 × R 𝑑 , 𝑣 ℓ 𝑑𝜇 for some ℓ > 0, satisfies 𝑓 2 L 2 (R 𝑑 ×R 𝑑 , 𝑑 𝜇) ≤ K ℓ (1 + 𝑡) -𝜁 𝑓 0 2 L 2 (R 𝑑 ×R 𝑑 , 𝑑 𝜇) ∀ 𝑡 ≥ 0 ,
where 𝜁 = min 𝑑 2 , ℓ 2(1-𝛽) . In the statement of Theorem 2, even if it is not specified, the constants may depend on norms of 𝑓 0 . See Table 3 for a summary of the results. Assumption ( 23) is a simplifying assumption which can be removed in various cases: see for instance [START_REF] Dolbeault | Hypocoercivity for linear kinetic equations conserving mass[END_REF][START_REF] Mischler | Exponential stability of slowly decaying solutions to the kinetic-Fokker-Planck equation[END_REF][START_REF] Cao | The kinetic Fokker-Planck equation with weak confinement force[END_REF][START_REF] Bouin | Hypocoercivity and sub-exponential local equilibria[END_REF]. It allows an immediate conservation of moments along the flow, see Lemma 3 below.

Potential 𝜙 = 0 𝜙(𝑥) = 1 𝛼 𝑥 𝛼 𝛼 ∈ (0, 1) 𝜙(𝑥) = 1 𝛼 𝑥 𝛼 𝛼 ≥ 1 𝜓(𝑣) = 1 𝛽 𝑣 𝛽 𝛽 ≥ 1 Micro Poincaré 𝑡 -𝑑/2 decay 𝑡 -𝑘 2(1-𝛼) convergence 𝑒 -𝜆𝑡 convergence 𝜓(𝑣) = 1 𝛽 𝑣 𝛽 𝛽 ∈ (0, 1) 𝑡 -min 𝑑 2 , ℓ 2(1-𝛽) convergence 𝑡 -min 𝑘 2(1-𝛼) , ℓ 2(1-𝛽) convergence 𝑡 -ℓ 2(1-𝛽) convergence Table 3
Summary of the results of Theorem 2. See the statement for the precise meaning of the rates and the assumptions.

Remark. The results of Theorem 2 can be extended to functions 𝜓 and 𝜙 depending monotonously on |𝑣| and |𝑥| respectively, which behave like 𝑣 𝛽 and 𝑥 𝛼 as |𝑣| → +∞ and |𝑥| → +∞. Typically, one has to assume that for any 𝑣 ∈ R 𝑑 ,

𝐶 1 𝑣 𝛽 ≤ 𝜙(𝑣) ≤ 𝐶 2 𝑣 𝛽 , 𝐶 3 |𝑣| 𝑣 𝛽-1 ≤ 𝑣 • ∇ 𝑣 𝜓(𝑣) ≤ 𝐶 4 |𝑣| 𝑣 𝛽-1 and |Hess(𝜓)|(𝑣) ≤ 𝐶 5 𝑣 𝛽-2
for some positive constants 𝐶 𝑖 , with 𝑖 = 1, . . . , 5, and similar estimates for 𝜙.

An estimate of the entropy production

Let us introduce the weighted norm defined by

𝑓 𝛽 := 𝑓 L 2 (R 𝑑 ×R 𝑑 , 𝑣 -2(1-𝛽)+ 𝑑 𝜇)
where (1 -𝛽) + denotes the positive part of 1 -𝛽. As a consequence 𝑓 2 denotes the standard norm with no weight and we keep using the notation •, • for the associated scalar product. We can rephrase the Poincaré inequality [START_REF] Brigati | How to construct decay rates for kinetic Fokker-Planck equations?[END_REF] corresponding to the case 𝛽 ≥ 1, and the weighted Poincaré inequality [START_REF] Dolbeault | Φ-Entropies: convexity, coercivity and hypocoercivity for Fokker-Planck and kinetic Fokker-Planck equations[END_REF] rewritten in the variable 𝑣 with 𝛽 ∈ (0, 1) instead of 𝛼 and 𝜆 𝑚 = C 𝛽 , as

-L 𝑓 , 𝑓 ≥ 𝜆 𝑚 (1 -Π) 𝑓 2 𝛽 .
In the language of Theorem 1, this inequality replaces (H1) while (H3) is still satified. Next we use the notation of Section 2 for A, H and D, with T and L given respectively by ( 9) and [START_REF] Bouin | Hypocoercivity without confinement[END_REF].

Lemma 1 For any 𝛽 > 0, there is a positive constant 𝜅 such that

D[ 𝑓 ] ≥ 𝜅 (1 -Π) 𝑓 2 𝛽 + ATΠ 𝑓 , Π 𝑓 . ( 24 
)
Proof We recall that by ( 5), D is defined as

D[ 𝑓 ] := -L 𝑓 , 𝑓 + 𝛿 ATΠ 𝑓 , 𝑓 -𝛿 Re TA 𝑓 , 𝑓 -Re AT(1 -Π) 𝑓 , 𝑓 + Re AL 𝑓 , 𝑓 .
In order to prove Lemma 1, we have to give estimates on the last three terms using (1-Π) 𝑓 𝛽 and ATΠ 𝑓 , Π 𝑓 . We obtain these estimates in four steps, as follows.

Step 1. Expressions of ATΠ 𝑓 , Π 𝑓 . We consider the function 𝑢 = 𝑢(𝑥) implicitly defined by 𝑢 𝑓 ★ = 1 + (TΠ) * (TΠ) -1 Π 𝑓 , that is, the solution of ( 22) that can be rewritten as

𝑢 - 𝜎 𝜌 ★ ∇ 𝑥 • 𝜌 ★ ∇ 𝑥 𝑢 = 𝑢 𝑓 = 𝜌 𝑓 𝜌 ★ . ( 25 
)
We deduce from

ATΠ 𝑓 = 1 + (TΠ) * (TΠ) (TΠ) * (TΠ) 𝑓 = Π 𝑓 -1 + (TΠ) * (TΠ) -1 𝑓 = Π 𝑓 -𝑢 𝑓 ★ = 𝜌 𝑓 𝜌 ★ -𝑢 𝑓 ★ and (25) that ATΠ 𝑓 , Π 𝑓 = -𝜎 ∫ R 𝑑 ∇ 𝑥 • 𝜌 ★ ∇ 𝑥 𝑢 𝜌 𝑓 𝑑𝑥 = -𝜎 ∫ R 𝑑 ∇ 𝑥 • 𝜌 ★ ∇ 𝑥 𝑢 𝑢 - 𝜎 𝜌 ★ ∇ 𝑥 • 𝜌 ★ ∇ 𝑥 𝑢 𝑑𝑥 , that is, ATΠ 𝑓 , Π 𝑓 = 𝜎 ∫ R 𝑑 |∇ 𝑥 𝑢| 2 𝜌 ★ 𝑑𝑥 + 𝜎 2 ∫ R 𝑑 ∇ 𝑥 • 𝜌 ★ ∇ 𝑥 𝑢 2 𝜌 -1 ★ 𝑑𝑥 . (26) 
Testing [START_REF] Helffer | Hypoelliptic estimates and spectral theory for Fokker-Planck operators and Witten Laplacians[END_REF] with 𝑢 𝜌 ★ , we learn after an integration by parts that

∫ R 𝑑 |𝑢| 2 𝜌 ★ 𝑑𝑥 + 𝜎 ∫ R 𝑑 |∇𝑢| 2 𝜌 ★ 𝑑𝑥 = ∫ R 𝑑 𝑢 𝜌 𝑓 𝑑𝑥 ≤ ∫ R 𝑑 |𝑢| 2 𝜌 ★ 𝑑𝑥 1/2 Π 𝑓
where the inequality arises from a Cauchy-Schwarz estimate using

Π 𝑓 2 = ∫ R 𝑑 |𝜌 𝑓 | 2 𝜌 -1 ★ 𝑑𝑥. Hence ∫ R 𝑑 |𝑢| 2 𝜌 ★ 𝑑𝑥 ≤ Π 𝑓 2 and 𝜎 ∫ R 𝑑 |∇𝑢| 2 𝜌 ★ 𝑑𝑥 ≤ Π 𝑓 2 . ( 27 
)
Step 2. An estimate of | TA 𝑓 , 𝑓 |. We know from (4a) that

| TA 𝑓 , 𝑓 | ≤ (1 -Π) 𝑓 2 2 if 𝛽 ≥ 1.
With 𝜎 defined by [START_REF] Cao | The kinetic Fokker-Planck equation with general force[END_REF], we claim that Re TA 𝑓 , 𝑓 ≤ 1

𝜎 (1 -Π) 𝑓 2 𝛽 ( 28 
)
also holds if 𝛽 ∈ (0, 1). In this later case, let us consider the function 𝑤 = 𝑤(𝑥) implicitly defined by 𝑤 𝑓 ★ = A 𝑓 , that is, the solution of

𝑤 - 𝜎 𝜌 ★ ∇ 𝑥 • (𝜌 ★ ∇ 𝑥 𝑤) = - 1 𝜌 ★ ∇ 𝑥 • ∫ R 𝑑 𝑣 𝑣 𝛽-2 𝑓 𝑑𝑣 .
Testing with 𝑤 𝜌 ★ we obtain

𝜎 ∫ R 𝑑 |∇ 𝑥 𝑤| 2 𝜌 ★ 𝑑𝑥 ≤ ∫ R 𝑑 |𝑤| 2 𝜌 ★ 𝑑𝑥 + 𝜎 ∫ R 𝑑 |∇ 𝑥 𝑤| 2 𝜌 ★ 𝑑𝑥 = ∫ R 𝑑 ∇ 𝑥 𝑤 • ∫ R 𝑑 𝑣 𝑣 𝛽-2 𝑓 𝑑𝑣 𝑑𝑥 .
By applying the Cauchy-Schwarz inequality and after squaring, we obtain

𝜎 2 ∫ R 𝑑 |∇ 𝑥 𝑤| 2 𝜌 ★ 𝑑𝑥 ≤ ∫ R 𝑑 ∫ R 𝑑 𝑣 𝑣 𝛽-2 (1 -Π) 𝑓 𝑑𝑣 2 𝜌 -1 ★ 𝑑𝑥 ≤ (1 -Π) 𝑓 2 𝛽 using |𝑣|/ 𝑣 ≤ 1 so that ∫ R 𝑑 |𝑣| 2 𝑣 -2 𝑒 -𝜓 𝑑𝑣/ ∫ R 𝑑 𝑒 -𝜓 𝑑𝑣 ≤ 1.
Altogether, we prove [START_REF] Hu | Subexponential decay in kinetic Fokker-Planck equation: weak hypocoercivity[END_REF] with

TA 𝑓 𝑣 (1-𝛽) + 2 2 = T(𝑤 𝑓 ★ ) 𝑣 (1-𝛽) + 2 2 = ∬ R 𝑑 ×R 𝑑 𝑣 𝑣 • ∇ 𝑥 𝑤 2 𝑣 2(𝛽-1) + 𝑓 ★ 𝑑𝑥 𝑑𝑣 ≤ 1 𝜎 2 (1 -Π) 𝑓 2 𝛽 .
Step 3. We claim that, for some explicit constant 𝐶 𝛽 > 0,

Re AL(1 -Π) 𝑓 , 𝑓 ≤ 𝐶 𝛽 𝜎 (1 -Π) 𝑓 𝛽 ATΠ 𝑓 , Π 𝑓 . (29) 
This follows from a direct computation. Consider 𝑢 = 𝑢(𝑥) defined by [START_REF] Helffer | Hypoelliptic estimates and spectral theory for Fokker-Planck operators and Witten Laplacians[END_REF] and observe that A * Π 𝑓 = T(𝑢 𝑓 ★ ).

Then AL(1 -Π) 𝑓 , Π 𝑓 = (1 -Π) 𝑓 , LT(𝑢 𝑓 ★ ) . Since LT(𝑢 𝑓 ★ ) = L 𝑣 𝛽-2 𝑣 • ∇ 𝑥 𝑢 𝑓 ★ = 𝜉 (𝑣) • ∇ 𝑥 𝑢 𝑓 ★
where 𝜉 (𝑣) := ∇ 𝑣 • Hess 𝑣 (𝜓) -∇ 𝑣 𝜓 • Hess 𝑣 (𝜓) is a vector valued function of 𝑣, it follows that

LT(𝑢 𝑓 ★ ) 𝑣 (1-𝛽) + 2 2 ≤ 𝐶 𝛽 ∫ R 𝑑 |∇ 𝑥 𝑢| 2 𝜌 ★ 𝑑𝑥 with 𝐶 𝛽 = ∫ R 𝑑 |𝜉 (𝑣)| 2 𝑣 2(1-𝛽) + 𝑒 -𝜓 ∫ R 𝑑 𝑒 -𝜓 𝑑𝑣 𝑑𝑣 .
Then (29) follows from [START_REF] Hérau | Hypocoercivity and exponential time decay for the linear inhomogeneous relaxation Boltzmann equation[END_REF].

Step 4. We claim that, for some explicit constant 𝐶 > 0,

AT(1 -Π) 𝑓 , Π 𝑓 ≤ 𝐶 (1 -Π) 𝑓 𝛽 ATΠ 𝑓 , Π 𝑓 1/2 . ( 30 
)
With 𝑢 = 𝑢(𝑥) defined by [START_REF] Helffer | Hypoelliptic estimates and spectral theory for Fokker-Planck operators and Witten Laplacians[END_REF], we have (AT) * Π 𝑓 = -T 2 (𝑢 𝑓 ★ ) and

AT(1 -Π) 𝑓 , Π 𝑓 = (1 -Π) 𝑓 , -T 2 (𝑢 𝑓 ★ ) .
Using the expression (9) for T, a computation yields

T 2 (𝑢 𝑓 ★ ) = ∇ 𝑣 𝜓 • Hess 𝑥 (𝑢) • ∇ 𝑣 𝜓 -∇ 𝑥 𝑢 • Hess 𝑣 (𝜓) • ∇ 𝑥 𝜙 𝑓 ★ .
Adding and subtracting

(∇ 𝑣 𝜓 • ∇ 𝑥 𝑢) (∇ 𝑣 𝜓 • ∇ 𝑥 𝜙), we can rewrite T 2 (𝑢 𝑓 ★ ) = ∇ 𝑣 𝜓 • Hess(𝑢) -∇ 𝑥 𝑢 ⊗ ∇ 𝑥 𝜙 • ∇ 𝑣 𝜓 𝑓 ★ -∇ 𝑥 𝑢 • Hess(𝜓) -∇ 𝑣 𝜓 ⊗ ∇ 𝑣 𝜓 • ∇ 𝑥 𝜙 𝑓 ★
where ∇ 𝑥 𝑢 ⊗ ∇ 𝑥 𝜙 and ∇ 𝑣 𝜓 ⊗ ∇ 𝑣 𝜓 are respectively the matrices with entries 𝜕 𝑥 𝑖 𝑢 𝜕 𝑥 𝑗 𝜙 𝑖, 𝑗 and 𝜕 𝑣 𝑖 𝜓 𝜕 𝑣 𝑗 𝜓 𝑖, 𝑗 . We estimate independently the two terms in the expression of T 2 (𝑢 𝑓 ★ ).

(1) The second term is estimated by

∇ 𝑥 𝑢 • Hess(𝜓) -∇ 𝑣 𝜓 ⊗ ∇ 𝑣 𝜓 • ∇ 𝑥 𝜙 𝑓 ★ 𝑣 (1-𝛽) + 2 2 ≤ ∬ R 𝑑 ×R 𝑑 |∇ 𝑥 𝑢| 2 Hess(𝜓) -∇ 𝑣 𝜓 ⊗ ∇ 𝑣 𝜓 2 |∇ 𝑥 𝜙| 2 𝑣 2(1-𝛽) + 𝑓 ★ 𝑑𝑥 𝑑𝑣 ≤ 𝐶 𝛽,2 ∫ R 𝑑 |∇ 𝑥 𝑢| 2 |∇ 𝑥 𝜙| 2 𝜌 ★ 𝑑𝑥 where 𝐶 𝛽,2 = ∫ R 𝑑 Hess(𝜓) -∇ 𝑣 𝜓 ⊗ ∇ 𝑣 𝜓 2 𝑣 2(1-𝛽) + 𝑒 -𝜓 𝑑𝑣 ∫ R 𝑑 𝑒 -𝜓 𝑑𝑣.
Using the fact that |∇ 𝑥 𝜙| 2 is bounded for 𝛼 ∈ (0, 1) and [START_REF] Dolbeault | Hypocoercivity for linear kinetic equations conserving mass[END_REF]Lemma 8] if 𝛼 ≥ 1, there is some constant 𝑐 𝛼 > 0 such that the solution of [START_REF] Helffer | Hypoelliptic estimates and spectral theory for Fokker-Planck operators and Witten Laplacians[END_REF] satisfies

∫ R 𝑑 |∇ 𝑥 𝑢| 2 |∇ 𝑥 𝜙| 2 𝜌 ★ 𝑑𝑥 ≤ 𝑐 𝛼 ∫ R 𝑑 |∇ 𝑥 𝑢| 2 𝜌 ★ 𝑑𝑥 , (31) 
which, after using [START_REF] Hérau | Hypocoercivity and exponential time decay for the linear inhomogeneous relaxation Boltzmann equation[END_REF], is enough to obtain the bound

∇ 𝑥 𝑢 • Hess(𝜓) -∇ 𝑣 𝜓 ⊗ ∇ 𝑣 𝜓 • ∇ 𝑥 𝜙 𝑓 ★ 𝑣 (1-𝛽) + 2 2 ≤ 𝑐 𝛼 𝐶 𝛽,2 𝜎 (1 -Π) 𝑓 𝛽 ATΠ 𝑓 , Π 𝑓 1/2 .
(2) For the first term, we have

∇ 𝑣 𝜓 • Hess(𝑢) -∇ 𝑥 𝑢 ⊗ ∇ 𝑥 𝜙 • ∇ 𝑣 𝜓 𝑓 ★ 𝑣 (1-𝛽) + 2 2 ≤ ∬ R 𝑑 ×R 𝑑 |∇ 𝑣 𝜓| 4 Hess(𝑢) -∇ 𝑥 𝑢 ⊗ ∇ 𝑥 𝜙 2 𝑣 2(1-𝛽) + 𝑓 ★ 𝑑𝑥 𝑑𝑣 ≤ 𝐶 𝛽,3 ∫ R 𝑑 Hess(𝑢) -∇ 𝑥 𝑢 ⊗ ∇ 𝑥 𝜙 2 𝜌 ★ 𝑑𝑥
where

𝐶 𝛽,3 = ∫ R 𝑑 |∇ 𝑣 𝜓| 4 𝑣 2(1-𝛽) + 𝑒 -𝜓 𝑑𝑣 ∫ R 𝑑 𝑒 -𝜓 𝑑𝑣. Notice that Hess(𝑢) -∇ 𝑥 𝑢 ⊗ ∇ 𝑥 𝜙 is the matrix with entries 𝜕 𝑥 𝑖 𝑥 𝑗 𝑢 -𝜕 𝑥 𝑖 𝑢 𝜕 𝑥 𝑗 𝜙 = 𝜕 𝑥 𝑖 𝜌 ★ 𝜕 𝑥 𝑗 𝑢 𝜌 -1 ★ for 𝑖, 𝑗 = 1, . . . , 𝑑. Hence ∫ R 𝑑 Hess(𝑢) -∇ 𝑥 𝑢 ⊗ ∇ 𝑥 𝜙 2 𝜌 ★ 𝑑𝑥 = 𝑑 ∑︁ 𝑖, 𝑗=1 ∫ R 𝑑 𝜕 𝑥 𝑖 𝜌 ★ 𝜕 𝑥 𝑗 𝑢 2 𝜌 -1 ★ 𝑑𝑥 = ∫ R 𝑑 ∇ 𝑥 • 𝜌 ★ ∇ 𝑥 𝑢 2 𝜌 -1 ★ 𝑑𝑥 + ∫ R 𝑑 |∇ 𝑥 𝑢| 2 Δ 𝑥 𝜙 𝜌 ★ 𝑑𝑥 - ∫ R 𝑑 Hess(𝜙) : ∇ 𝑥 𝑢 ⊗ ∇ 𝑥 𝑢 𝜌 ★ 𝑑𝑥 . ( 32 
)
To prove [START_REF] Mouhot | Quantitative perturbative study of convergence to equilibrium for collisional kinetic models in the torus[END_REF], it is indeed enough to notice that

∫ R 𝑑 𝜕 𝑥 𝑖 (𝜌 ★ 𝜕 𝑥 𝑗 𝑢) 2 𝜌 -1 ★ 𝑑𝑥 = - ∫ R 𝑑 𝜕 𝑥 𝑖 𝜙 𝜕 𝑥 𝑗 𝑢 𝜕 𝑥 𝑖 (𝜌 ★ 𝜕 𝑥 𝑗 𝑢) 𝑑𝑥 + ∫ R 𝑑 𝜕 2 𝑥 𝑖 𝑥 𝑗 𝑢 𝜕 𝑥 𝑖 (𝜌 ★ 𝜕 𝑥 𝑗 𝑢) 𝑑𝑥 .
The observation on the solutions of [START_REF] Dolbeault | Fast diffusion equations: matching large time asymptotics by relative entropy methods[END_REF] Putting everything together, we get

∫ R 𝑑 𝜕 𝑥 𝑖 (𝜌 ★ 𝜕 𝑥 𝑗 𝑢) 2 𝜌 -1 ★ 𝑑𝑥 = ∫ R 𝑑 𝜕 2 𝑥 𝑖 𝑥 𝑖 𝜙 (𝜕 𝑥 𝑗 𝑢) 2 𝜌 ★ 𝑑𝑥 + ∫ R 𝑑 𝜕 𝑥 𝑖 (𝜌 ★ 𝜕 𝑥 𝑖 𝑢) 𝜕 𝑥 𝑗 𝜌 ★ 𝜕 𝑥 𝑗 𝑢 𝑑𝑥 - ∫ R 𝑑 𝜕 2 𝑥 𝑗 𝑥 𝑖 𝜙 𝜕 𝑥 𝑖 𝑢 𝜕 𝑥 𝑗 𝑢 𝜌 ★ 𝑑𝑥
and ( 32) is obtained by summing over 𝑖 and 𝑗. Finally all integrals are estimated by ATΠ 𝑓 , Π 𝑓 using [START_REF] Hérau | Hypocoercivity and exponential time decay for the linear inhomogeneous relaxation Boltzmann equation[END_REF] and the improved Poincaré inequality [START_REF] Mischler | Exponential stability of slowly decaying solutions to the kinetic-Fokker-Planck equation[END_REF], which completes the proof of [START_REF] Mellet | Fractional diffusion limit for collisional kinetic equations[END_REF].

In all cases, we conclude that T 2 (𝑢 𝑓 ★ ) 𝑣 (1-𝛽) + 2 2 ≤ 𝐶 ATΠ 𝑓 , Π 𝑓 using [START_REF] Hérau | Hypocoercivity and exponential time decay for the linear inhomogeneous relaxation Boltzmann equation[END_REF], for some explicit constant 𝐶 > 0. This completes the proof of [START_REF] Mellet | Fractional diffusion limit for collisional kinetic equations[END_REF]. 28), ( 29) and ( 30), we control | TA 𝑓 , 𝑓 |, Re AL(1 -Π) 𝑓 , 𝑓 and AT(1 -Π) 𝑓 , Π 𝑓 . A discriminant condition on 𝛿 completes the proof of Lemma 1 as in the proof of Theorem 1.

Conclusion. By (

Moment estimates

Lemma 2 Let 𝑢 = 𝑢(𝑥) be defined in terms of 𝑓 as in [START_REF] Helffer | Hypoelliptic estimates and spectral theory for Fokker-Planck operators and Witten Laplacians[END_REF] and assume For any 𝑘 ≥ 0, there exists a constant 𝐶 𝑘 > 0 such that

𝑀 𝑘 := ∫ R 𝑑 |𝑢| 2 𝑥 𝑘 𝜌 ★ 𝑑𝑥 ≤ 𝐶 𝑘 ∬ R 𝑑 ×R 𝑑 |Π 𝑓 | 2 𝑥 𝑘 𝑓 -1 ★ 𝑑𝑥 𝑑𝑣 . ( 33 
)
Proof The case 𝑘 = 0 is true from [START_REF] Hérau | Isotropic hypoellipticity and trend to equilibrium for the Fokker-Planck equation with a high-degree potential[END_REF]. By squaring equation [START_REF] Helffer | Hypoelliptic estimates and spectral theory for Fokker-Planck operators and Witten Laplacians[END_REF] and testing with 𝑥 𝑘 𝜌 ★ , we obtain

∫ R 𝑑 𝑢 2 𝑥 𝑘 𝜌 ★ 𝑑𝑥 + 2 𝜎 ∫ R 𝑑 ∇ 𝑥 𝑢 𝑥 𝑘 • ∇ 𝑥 𝑢 𝜌 ★ 𝑑𝑥 + 𝜎 2 ∫ R 𝑑 |∇ 𝑥 (𝜌 ★ ∇ 𝑥 𝑢)| 2 𝑥 𝑘 𝜌 ★ 𝑑𝑥 = ∫ R 𝑑 𝜌 2 𝑓 𝑥 𝑘 𝜌 ★ 𝑑𝑥 .
Moreover, after an integration by parts, we have

2 𝜎 ∫ R 𝑑 ∇ 𝑥 (𝑢 𝑥 𝑘 ) • ∇ 𝑥 𝑢 𝜌 ★ 𝑑𝑥 = 2 𝜎 ∫ R 𝑑 |∇ 𝑥 𝑢| 2 𝑥 𝑘 𝜌 ★ 𝑑𝑥 -𝜎 ∫ R 𝑑 |𝑢| 2 (Δ 𝑥 𝑥 𝑘 -∇ 𝑥 𝑥 𝑘 • ∇ 𝑥 𝜙) 𝜌 ★ 𝑑𝑥 = 2 𝜎 ∫ R 𝑑 |∇ 𝑥 𝑢| 2 𝑥 𝑘 𝜌 ★ 𝑑𝑥 -𝜎 𝑘 (𝑘 + 𝑑 -2) 𝑀 𝑘-2 + 𝜎 𝑘 (𝑘 -2) 𝑀 𝑘-4 + 𝜎 𝑘 𝑀 𝑘+𝛼-2 -𝜎 𝑘 𝑀 𝑘+𝛼-4 .
After dropping the positive terms we get

𝑀 𝑘 ≤ ∫ R 𝑑 𝜌 2 𝑓 𝜌 ★ 𝑥 𝑘 𝑑𝑥 + 𝜎 𝑘 (𝑘 + 𝑑 -2) 𝑀 𝑘-2 + 𝜎 𝑘 𝑀 𝑘+𝛼-4 .
Inequality [START_REF] Nash | Continuity of solutions of parabolic and elliptic equations[END_REF] follows by induction and interpolation.

Under the simplifying assumption [START_REF] Grothaus | Hilbert space hypocoercivity for the Langevin dynamics revisited[END_REF], we also obtain moment estimates directly for the distribution function 𝑓 .

Here there is space for improvements.

Lemma 3 Let 𝑓 = 𝑓 (𝑡, 𝑥, 𝑣) be a solution of [START_REF] Bouin | Diffusion and kinetic transport with very weak confinement[END_REF] with transport and collision operators given respectively by [START_REF] Bouin | Hypocoercivity and sub-exponential local equilibria[END_REF] and [START_REF] Bouin | Hypocoercivity without confinement[END_REF] for some 𝛽 > 0 and 𝛼 > 0. Assume that the initial datum 𝑓 0 satisfies the bound [START_REF] Grothaus | Hilbert space hypocoercivity for the Langevin dynamics revisited[END_REF]. Then for any 𝑘 > 0 and for any ℓ > 0 there exist positive constants 𝐶 𝑘 and 𝐶 ℓ such that, for any 𝑡 ≥ 0

𝐽 𝑘 (𝑡) := ∬ R 𝑑 ×R 𝑑 | 𝑓 (𝑡, 𝑥, 𝑣)| 2 𝑥 𝑘 𝑓 -1 ★ 𝑑𝑥 𝑑𝑣 ≤ 𝐶 𝑘 , (34) 
𝐾 ℓ (𝑡) := ∬ R 𝑑 ×R 𝑑 | 𝑓 (𝑡, 𝑥, 𝑣)| 2 𝑣 ℓ 𝑓 -1 ★ 𝑑𝑥 𝑑𝑣 ≤ 𝐶 ℓ . ( 35 
)
Proof Since 𝑓 ★ is a stationary solution, the maximum principle yields

𝑓 (𝑡, •, •) ≤ 𝐶 𝑓 ★ ∀𝑡 ≥ 0.
Therefore [START_REF] Piazzoli | Relaxation to equilibrium for kinetic Fokker-Planck equation[END_REF] and [START_REF] Röckner | Weak Poincaré inequalities and -convergence rates of Markov semigroups[END_REF] follow by taking

𝐶 𝑘 = 𝐶 2 ∬ R 𝑑 ×R 𝑑 𝑓 ★ 𝑥 𝑘 𝑑𝑥 𝑑𝑣 and 𝐶 ℓ = 𝐶 2 ∬ R 𝑑 ×R 𝑑 𝑓 ★ 𝑣 ℓ 𝑑𝑥 𝑑𝑣 .
This completes the proof of Lemma 3.

Notice that, with the elementary estimates

2 𝑘 2 -1 1 + 𝑟 𝑘 ≤ 𝑟 𝑘 ≤ 1 + 𝑟 𝑘 if 𝑘 ∈ (0, 2) , 1 + 𝑟 𝑘 ≤ 𝑟 𝑘 ≤ 2 𝑘 2 -1 1 + 𝑟 𝑘 if 𝑘 ≥ 2 ,
we have the simple moment estimate

𝑀 𝑘, 𝜂 := ∫ R 𝑑 𝑥 𝑘 𝑒 -1 𝜂 𝑥 𝜂 𝑑𝑥 ≤ max 1, 2 𝑘 2 -1 S 𝑑-1 ∫ ∞ 0 𝑟 𝑑-1 1 + 𝑟 𝑘 𝑒 -𝑟 𝜂 𝜂 𝑑𝑟 = max 1, 2 𝑘 2 -1 2 𝜋 𝑑 2 Γ( 𝑑 2 ) 𝜂 𝑑-𝜂 𝜂 Γ 𝑑 𝜂 + 𝜂 𝑘 𝜂 Γ 𝑑+𝑘 𝜂
for any 𝑘 > 0 and Γ is the Euler Gamma function. As a consequence, 𝑓 ★ defined by [START_REF] Bouin | A variational proof of Nash's inequality[END_REF] with

𝑍 = 𝑀 0,𝛽 𝑀 0, 𝛼 is such that ∬ R 𝑑 ×R 𝑑 𝑥 𝑘 𝑓 ★ 𝑑𝑥 𝑑𝑣 = 𝑀 𝑘, 𝛼 𝑀 0, 𝛼 and ∬ R 𝑑 ×R 𝑑 𝑣 ℓ 𝑓 ★ 𝑑𝑥 𝑑𝑣 = 𝑀 𝑘,𝛽 𝑀 0,𝛽 . 

Proof of Theorem 2

In this section we will work in the framework of Theorem 2, i.e. we will consider a solution 𝑓 = 𝑓 (𝑡, 𝑥, 𝑣) to the kinetic Fokker-Planck equation [START_REF] Bouin | Diffusion and kinetic transport with very weak confinement[END_REF] with initial datum 0 ≤ 𝑓 0 ≤ 𝐶 𝑓 ★ , for a certain 𝐶 > 0. As sign plays no role, up to replacing 𝑓 with 𝑓 -𝑓 ★ when 𝑓 ★ is integrable, we may assume that

∬ R 𝑑 ×R 𝑑 𝑓 (𝑡, 𝑥, 𝑣) 𝑑𝑥 𝑑𝑣 = 0 ∀ 𝑡 ≥ 0 . (36) 
We distinguish various cases depending on the values of 𝛽 and 𝛼.

• Case 𝜷 ≥ 1 and 𝜶 ≥ 1

Thanks to Lemma 1, we have

D[ 𝑓 ] ≥ 𝜅 (1 -Π) 𝑓 2 L 2 (R 𝑑 ×R 𝑑 , 𝑑 𝜇) + ATΠ 𝑓 , Π 𝑓 .
for some 𝜅 > 0. Because of the assumption 𝛼 ≥ 1 the operator (TΠ) * (TΠ) is coercive, that is (H2) hold. As a consequence we also have [START_REF] Ben-Artzi | Weak Poincaré inequalities in the absence of spectral gaps[END_REF], i.e.,

ATΠ 𝑓 , Π 𝑓 ≥ 𝜆 𝑀 1 + 𝜆 𝑀 Π 𝑓 2 L 2 (R 𝑑 ×R 𝑑 , 𝑑 𝜇) . Therefore D[ 𝑓 ] ≥ 𝜅 𝜆 𝑀 1 + 𝜆 𝑀 𝑓 2 L 2 (R 𝑑 ×R 𝑑 , 𝑑 𝜇)
holds for some 𝜅 > 0, which gives exponential convergence:

𝑓 (𝑡, •, •) 2 L 2 (R 𝑑 ×R 𝑑 , 𝑑 𝜇) ≤ 4 2 -𝛿 H[ 𝑓 (𝑡, •, •)] ≤ 4 2 -𝛿 H[ 𝑓 0 ] 𝑒 -𝜆𝑡 where 𝜆 = 𝜅 𝜆 𝑀 1 + 𝜆 𝑀 .
Exactly the same proof applies in the case of Corollary 1, with 𝜆 𝑀 now given by the Poincaré inequality associated with the measure 𝑒 -𝜙 𝑑𝑥, of which the case 𝜙(𝑥) = 1 𝛼 𝑥 𝛼 with 𝛼 ≥ 1 is a special case.

• Case 𝜷 ∈ (0, 1) and 𝜶 ≥ 1

In this case, on the one hand we still have macroscopic coercivity (H2) due to the fact that 𝛼 ≥ 1, but on the other hand, a loss of weight now appears for the microscopic component because of 𝛽 ∈ (0, 1). Inequality [START_REF] Grothaus | Weak Poincaré inequalities for convergence rate of degenerate diffusion processes[END_REF] now reads as

D[ 𝑓 ] ≥ 𝜅 (1 -Π) 𝑓 2 L 2 (R 𝑑 ×R 𝑑 , 𝑣 -2(1-𝛽) 𝑑 𝜇) + 𝜆 𝑀 1 + 𝜆 𝑀 𝑓 2 L 2 (R 𝑑 ×R 𝑑 , 𝑑 𝜇) .
In order to recover the L 2 (R 𝑑 × R 𝑑 , 𝑑𝜇) norm we need to interpolate with the conservation of moments. Let ℓ > 0 and notice that 𝑓 0 ∈ L 2 (R 𝑑 × R 𝑑 , 𝑣 ℓ 𝑑𝜇) by our assumption on the initial datum [START_REF] Grothaus | Hilbert space hypocoercivity for the Langevin dynamics revisited[END_REF]. Setting 𝑎 = ℓ/ ℓ + 2(1 -𝛽) , by Hölder's inequality and Lemma 3, we have

(1 -Π) 𝑓 2 L 2 (R 𝑑 ×R 𝑑 , 𝑑 𝜇) ≤ (1 -Π) 𝑓 2𝑎 L 2 (R 𝑑 ×R 𝑑 , 𝑣 -2(1-𝛽) 𝑑 𝜇) (1 -Π) 𝑓 2(1-𝑎) L 2 (R 𝑑 ×R 𝑑 , 𝑣 ℓ 𝑑 𝜇) ≤ (1 -Π) 𝑓 2𝑎 L 2 (R 𝑑 ×R 𝑑 , 𝑣 -2(1-𝛽) 𝑑 𝜇) 𝐾 ℓ (𝑡) 1-𝑎 ≤ 𝐶 1-𝑎 ℓ (1 -Π) 𝑓 2𝑎 L 2 (R 𝑑 ×R 𝑑 , 𝑣 -2(1-𝛽) 𝑑 𝜇) .
As a consequence, for a certain constant 𝐶 > 0 we have

D[ 𝑓 ] ≥ 𝐶 (1 -Π) 𝑓 2 1+ 2(1-𝛽) ℓ L 2 (R 𝑑 ×R 𝑑 , 𝑑 𝜇) + Π 𝑓 2 L 2 (R 𝑑 ×R 𝑑 , 𝑑 𝜇) ≥ 𝐶 𝑓 2 1+ 2(1-𝛽) ℓ L 2 (R 𝑑 ×R 𝑑 , 𝑑 𝜇) .
By the Bihari-LaSalle estimate, we finally have

H[ 𝑓 ] ≤ H[ 𝑓 0 ] 1 + 𝐶 H[ 𝑓 0 ] 2(1-𝛽) ℓ 𝑡 -ℓ 2(1-𝛽)
.

• Case 𝜷 ≥ 1 and 𝜶 ∈ (0, 1)

In this case we have the symmetrical situation compared to the previous one. The dissipation of entropy is

D[ 𝑓 ] ≥ 𝜅 (1 -Π) 𝑓 2 L 2 (R 𝑑 ×R 𝑑 , 𝑑 𝜇) + ATΠ 𝑓 , Π 𝑓
where now ATΠ 𝑓 , Π 𝑓 does not produce macroscopic coercivity, but is given in terms of 𝑢 by [START_REF] Hérau | Hypocoercivity and exponential time decay for the linear inhomogeneous relaxation Boltzmann equation[END_REF]. Fix 𝑘 > 0 and assume that 𝑓 0 ∈ L 2 (R 𝑑 × R 𝑑 , 𝑥 𝑘 𝑑𝜇), then from Lemma 2 and 3, we have that the moments 𝑀 𝑘 (𝑡) = ∫ R 𝑑 |𝑢| 2 𝑥 𝑘 𝜌 ★ 𝑑𝑥 are uniformly bounded in time. With 𝑏 = 𝑘/ 𝑘 + 2(1 -𝛼) ∈ (0, 1), using Hölder's inequality and the weighted Poincaré inequality with non-classical average of [9, Cor. 10], we obtain In view of the expression of Φ, we conclude that 𝑧 monotonically converges to 0 as 𝑡 → +∞ and, as a consequence 𝑧 also converges to 0. This implies that after some time 𝑡 0 ≥ 0, we have

Π 𝑓 2 L 2 (R 𝑑 ×R 𝑑 ,𝑑 𝜇) = ∫ R 𝑑 |𝑢| 2 𝜌 ★ 𝑑𝑥 + 2 𝜎 ∫ R 𝑑 |∇ 𝑥 𝑢| 2 𝜌 ★ 𝑑𝑥 + 𝜎 2 ∫ R 𝑑 |∇ 𝑥 • (𝜌 ★ ∇ 𝑥 𝑢)| 2 𝜌 ★ 𝑑𝑥 ≤ ∫ R 𝑑 |𝑢| 2 𝑥 -2(1-𝛼) 𝜌 ★ 𝑑𝑥 𝑏 ∫ R 𝑑 |𝑢| 2 𝑥 𝑘 𝜌 ★ 𝑑𝑥 1-𝑏 + 2 ATΠ 𝑓 , Π 𝑓 ≤ C wP 𝛼 𝑏 ∫ R 𝑑 |∇ 𝑥 𝑢| 2 𝜌 ★ 𝑑𝑥 𝑏 ∫ R 𝑑 |𝑢| 2 𝑥 𝑘 𝜌 ★ 𝑑𝑥
Φ -𝜅 -1 𝑧 ≤ 𝐶 -𝜅 -1 𝑧 𝑏 ,
Where 𝐶 denotes a positive constant that may change from line to line. Altogether, we end up with the differential inequality 𝑧 ≤ -𝐶 𝑧 1/𝑏 .

Integrating and using 𝑏 1-𝑏 = 𝑘 2(1-𝛼) , we obtain that 𝑧(𝑡) ≤ 𝐶 (1 + 𝑡) -𝑘 2(1-𝛼) .

• Case 𝜷 ∈ (0, 1) and 𝜶 ∈ (0, 1)

If 𝛽 ∈ (0, 1) and 𝛼 ∈ (0, 1) we have neither microscopic coercivity nor macroscopic coercivity. The dissipation of entropy is ∀ 𝑡 ≥ 0 by the Bihari-LaSalle estimate.

• Case 𝜷 ≥ 1 and 𝝓 = 0

In absence of a global equilibrium, we can still consider [START_REF] Grothaus | Weak Poincaré inequalities for convergence rate of degenerate diffusion processes[END_REF] written with 𝜌 ★ = 1. Identity (26) now reads as

ATΠ 𝑓 , Π 𝑓 = 𝜎 ∫ R 𝑑 |∇ 𝑥 𝑢| 2 𝑑𝑥 + 𝜎 2 ∫ R 𝑑 |Δ 𝑥 𝑢| 2 𝑑𝑥 .
Because of Nash's inequality and the conservation of mass, we have • Case 𝜷 ∈ (0, 1) and 𝝓 = 0

Π
We proceed as in the previous case. The macroscopic part obeys the same estimate ATΠ 𝑓 , Π 𝑓 𝐶 Π 𝑓 2(1+ 2 𝑑 ) .

The microscopic component has to be interpolated with moments:

(1 -Π) 𝑓 2 L 2 (R 𝑑 ×R 𝑑 , 𝑑 𝜇) ≤ 𝐶 (1 -Π) 𝑓 2𝑏 L 2 (R 𝑑 ×R 𝑑 , 𝑣 -2(1-𝛽) 𝑑 𝜇) .

We conclude that, as 𝑓 L 2 (R 𝑑 ×R 𝑑 , 𝑑 𝜇) → 0, 

D[ 𝑓 ] ≥ 𝐶 (1 -Π) 𝑓 2 1+

≤ 2 + 𝛿 4 Φ

 4 𝜅 -1 D[ 𝑓 ] . Therefore the decay of H[ 𝑓 ] is estimated by the decay of the solution 𝑧(𝑡) of 𝑧 = 𝑑𝑧 𝑑𝑡 = -𝜅 Φ -1 4 𝑧 2 + 𝛿 , 𝑧(0) = H[ 𝑓 0 ] .

D[ 2 L 2 ( 2 + 𝛿 4 Ψ

 2224 𝑓 ] ≥ 𝜅 (1 -Π) 𝑓 2 L 2 (R 𝑑 ×R 𝑑 , 𝑣 -2(1-𝛽) 𝑑 𝜇) + ATΠ 𝑓 , Π 𝑓 and we have to interpolate with moments in both variables 𝑥 and 𝑣. As in the previous cases, we haveΠ 𝑓 2 L 2 (R 𝑑 ×R 𝑑 , 𝑑 𝜇) ≤ 𝐶 ATΠ 𝑓 , Π 𝑓 𝑏 + 2 ATΠ 𝑓 , Π 𝑓 = Φ ATΠ 𝑓 , Π 𝑓 and (1 -Π) 𝑓 2 L 2 (R 𝑑 ×R 𝑑 , 𝑑 𝜇) ≤ 𝐶 (1 -Π) 𝑓 2𝑎 L 2 (R 𝑑 ×R 𝑑 , 𝑣 -2(1-𝛽) 𝑑 𝜇) =: Ψ (1 -Π) 𝑓 R 𝑑 ×R 𝑑 , 𝑣 -2(1-𝛽) 𝑑 𝜇)with 𝑎 = ℓ ℓ+2(1-𝛽) and 𝑏 = 𝑘 𝑘+2(1-𝛼) . As above we haveH[ 𝑓 ] ≤ 2 + 𝛿 4 Ψ (1 -Π) 𝑓 2 L 2 (R 𝑑 ×R 𝑑 , 𝑣 -2(1-𝛽) 𝑑 𝜇) + Φ ATΠ 𝑓 , Π 𝑓 ≤ 𝜅 -1 D[ 𝑓 ] + Φ 𝜅 -1 D[ 𝑓 ] .Notice that the function 𝑡 ↦ → Ψ(𝑡) + Φ(𝑡) is increasing, concave and Ψ(0) + Φ(0) = 0. Moreover we have𝑑 𝑑𝑡 H[ 𝑓 (𝑡, •, •)] ≤ -𝜅 (Ψ + Φ) -1 4 2 + 𝛿 H[ 𝑓 (𝑡, •, •)] .As a consequence, H[ 𝑓 (𝑡, •, •)] can be estimated by the solution 𝑧 of𝑧 = -𝜅 (Ψ + Φ) -1 4 𝑧 2 + 𝛿 .For the same reasons as before, 𝑧 converges to 0 as 𝑡 → +∞. Using the explicit expressions of Φ and Ψ, we see that there exists some 𝑡 0 ≥ 0 such that, for any 𝑡 ≥ 𝑡 0 ,(Ψ + Φ) -𝜅 -1 𝑧 ≤ 𝐶 -𝜅 -1 𝑧𝜁for some 𝐶 > 0, where 𝜁 = min{𝑎, 𝑏}. This inequality leads to 𝑧 ≤ -𝐶 𝑧 1/𝜁 and therefore to 𝑧(𝑡) ≤ 𝐶 (1 + 𝑡) -min 𝑘 2(1-𝛼) , ℓ 2(1-𝛽)
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 1 𝐹2 . The following estimate is by now classical but deserves some emphasis. Let us consider 𝐺 = A𝐹, i.e., the solution of (TΠ) * 𝐹 = 𝐺 + (TΠ) * TΠ 𝐺. As in [21,Lemma 1], by a Cauchy-Schwarz inequality, we learn that TA𝐹, 𝐹 = 𝐺, (TΠ) * 𝐹 = 𝐺 2 + TΠ𝐺 2 = A𝐹 2 + TA𝐹 2

  in Section 4.2 applies. By integrating by parts, the two integrals are 𝑥 𝑖 𝑥 𝑗 𝑢 𝜕 𝑥 𝑖 (𝜌 ★ 𝜕 𝑥 𝑗 𝑢) 𝑑𝑥 = 𝑥 𝑖 𝑥 𝑖 𝑢 𝜕 𝑥 𝑗 (𝜌 ★ 𝜕 𝑥 𝑗 𝑢) 𝑑𝑥 , 𝜕 𝑥 𝑖 𝜙 𝜕 𝑥 𝑗 𝑢 𝜕 𝑥 𝑖 (𝜌 ★ 𝜕 𝑥 𝑗 𝑢) 𝑑𝑥 = 𝑥 𝑖 𝑥 𝑖 𝜙 𝜕 𝑥 𝑗 𝑢 𝜌 ★ 𝜕 𝑥 𝑗 𝑢 𝑑𝑥 + ∫ R 𝑑 𝜕 𝑥 𝑖 𝜙 𝜕 2 𝑥 𝑖 𝑥 𝑗 𝑢 𝜌 ★ 𝜕 𝑥 𝑗 𝑢 𝑑𝑥 𝑥 𝑖 𝑥 𝑖 𝜙 𝜕 𝑥 𝑗 𝑢 𝜌 ★ 𝜕 𝑥 𝑗 𝑢 𝑑𝑥 -∫ R 𝑑 𝜕 𝑥 𝑖 𝜙 𝜕 𝑥 𝑖 𝑢𝜕 𝑥 𝑗 𝜌 ★ 𝜕 𝑥 𝑗 𝑢 𝑑𝑥 𝑥 𝑗 𝑥 𝑖 𝜙 𝜕 𝑥 𝑖 𝑢 𝜌 ★ 𝜕 𝑥 𝑗 𝑢 𝑑𝑥 .
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  ATΠ 𝑓 , Π 𝑓 ≤ 𝐶 ATΠ 𝑓 , Π 𝑓 𝑏 + 2 ATΠ 𝑓 , Π 𝑓 =: Φ ATΠ 𝑓 , Π 𝑓 where 𝐶 depends on C wP 𝛼 and the bound on 𝑓 0 L 2 (R 𝑑 ×R 𝑑 , 𝑥 𝑘 𝑑 𝜇) . In the weighted Poincaré inequality we used (36), hence ∫ R 𝑑 𝑢 𝜌 ★ 𝑑𝑥 = ∬ R 𝑑 ×R 𝑑 𝑓 𝑑𝑥 𝑑𝑣 = 0. Now we have
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H[ 𝑓 ] ≤ 2 + 𝛿 4 𝑓 2 L 2 (R 𝑑 ×R 𝑑 ,𝑑 𝜇) ≤ 2 + 𝛿 4 (1 -Π) 𝑓 2 L 2 (R 𝑑 ×R 𝑑 ,𝑑 𝜇) + Φ ATΠ 𝑓 , Π 𝑓 ≤ 2 + 𝛿 4 Φ (1 -Π) 𝑓 2 L 2 (R 𝑑 ×R 𝑑 ,𝑑 𝜇) + ATΠ 𝑓 , Π 𝑓

  𝑓 2 L 2 (R 𝑑 ×R 𝑑 ,𝑑 𝜇) = 𝑢 2 L 2 (𝑑 𝑥) + 2 𝜎 ∇ 𝑥 𝑢 2 L 2 (𝑑 𝑥) + 𝜎 2 Δ 𝑥 𝑢 2 L 2 (𝑑 𝑥) ≤ 𝐶 Nash 𝑢 4 𝑑+2 L 1 (𝑑 𝑥) ∇ 𝑥 𝑢 2𝑑 𝑑+2 L 2 (𝑑 𝑥) + 2 ATΠ 𝑓 , Π 𝑓 ≤ 𝐶 ATΠ 𝑓 , Π 𝑓 𝑑 𝑑+2 + 2 ATΠ 𝑓 , Π 𝑓 .In the asymptotic regime of small Π 𝑓 2 L 2 (R 𝑑 ×R 𝑑 , 𝑑 𝜇) , we haveATΠ 𝑓 , Π 𝑓 ≥ 𝐶 Π 𝑓 2(1+ 2 𝑑 )for some suitable constant 𝐶 > 0, andD[ 𝑓 ] ≥ 𝐶 (1 -Π) 𝑓 2 L 2 (R 𝑑 ×R 𝑑 ,𝑑 𝜇) + Π 𝑓 𝑑 ) L 2 (R 𝑑 ×R 𝑑 ,𝑑 𝜇) ≥ 𝐶 𝑓 2(1+ 2 𝑑 ) .By the Bihari-LaSalle estimate, we can finally concludeH[ 𝑓 (𝑡, •, •)] ≤ H[ 𝑓 0 ] 1 + 𝐶 H[ 𝑓 0 ]
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  𝑑 )L 2 (R 𝑑 ×R 𝑑 , 𝑑 𝜇) ≥ 𝐶 𝑓 𝑑 ×R 𝑑 , 𝑑 𝜇)where 𝜁 = min{ 𝑘 2(1-𝛽) , 𝑑 2 }. By the Bihari-LaSalle estimate we concludeH[ 𝑓 ] ≤ H[ 𝑓 0 ] 1 + 𝐶 H[ 𝑓 0 ]
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2(1-𝛽) 𝑘 L 2 (R 𝑑 ×R 𝑑 , 𝑑 𝜇) + Π 𝑓
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