Algebraic solutions of linear differential equations: an arithmetic approach - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2023

Algebraic solutions of linear differential equations: an arithmetic approach

Résumé

Given a linear differential equation with coefficients in $\mathbb{Q}(x)$, an important question is to know whether its full space of solutions consists of algebraic functions, or at least if one of its specific solutions is algebraic. After presenting motivating examples coming from various branches of mathematics, we advertise in an elementary way a beautiful local-global arithmetic approach to these questions, initiated by Grothendieck in the late sixties. This approach has deep ramifications and leads to the still unsolved Grothendieck-Katz $p$-curvature conjecture.
Fichier principal
Vignette du fichier
BoCaRo23-HAL.pdf (479.91 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-04065092 , version 1 (11-04-2023)

Identifiants

  • HAL Id : hal-04065092 , version 1

Citer

Alin Bostan, Xavier Caruso, Julien Roques. Algebraic solutions of linear differential equations: an arithmetic approach. 2023. ⟨hal-04065092⟩
119 Consultations
498 Téléchargements

Partager

More