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Algebraic solutions of linear differential equations:

an arithmetic approach

Alin Bostan* Xavier Caruso† Julien Roques‡

April 11, 2023

Abstract

Given a linear differential equation with coefficients in Q(x), an important question is

to know whether its full space of solutions consists of algebraic functions, or at least if one

of its specific solutions is algebraic. After presenting motivating examples coming from
various branches of mathematics, we advertise in an elementary way a beautiful local-

global arithmetic approach to these questions, initiated by Grothendieck in the late sixties.

This approach has deep ramifications and leads to the still unsolved Grothendieck-Katz
p-curvature conjecture.
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1 Context, motivation and basic examples

We consider in this text linear differential equations of order r

ar(x)y
(r)(x) + ar−1(x)y

(r−1)(x) + · · ·+ a1(x)y
′(x) + a0(x)y(x) = 0, (1)

where the ai’s are known rational functions in Q(x) and y(x) is an unknown “function”. In

many applications, the sought solution y(x) is a formal power series with coefficients in Q.

Therefore, in what follows, when we write “function” we actually mean an element of Q[[x]]
unless otherwise specified. We will say that a function y ∈ Q[[x]] is differentially finite (in

short, D-finite) if it satisfies a linear differential equation like (1).

A function y ∈ Q[[x]] is called algebraic if it is algebraic over Q(x), that is, if y(x) satisfies

a polynomial equation of the form P (x, y(x)) = 0, for some P ∈ Q[x, y] \ {0}. Otherwise,

y(x) is called transcendental. The simplest algebraic functions are polynomials in Q[x], closely

followed by rational power series: these are rational functions in Q(x) that have no pole at

x = 0 and therefore admit a Taylor expansion around the origin. A little more general are

N -th roots of rational power series, such as y(x) = 1/ N
√
1− x. In all these three cases, y(x) is

clearly D-finite and satisfies a linear differential equation of order r = 1.

More generally, it is an old result (already known by Abel!) that any algebraic function is

D-finite. Precisely, if y(x) satisfies an algebraic equation P (x, y(x)) = 0 with P of degree n
in y, then y(x) also satisfies a differential equation like (1) of order r upper bounded by n.

This follows easily by the following reasoning. By differentiating P (x, y(x)) = 0 with respect

to x and by using the chain rule, we obtain the equality

Px(x, y(x)) + y′(x)Py(x, y(x)) = 0.

Here and in what follows we denote by Px the derivative ∂P/∂x of P with respect to x.

Therefore, if P is assumed to be a polynomial of minimal degree in y satisfied by y(x), then

Py(x, y(x)) is a nonzero function in Q[[x]], and hence y′(x) = −Px(x, y(x))/Py(x, y(x)) is a ra-

tional function in y(x). By using again the equation P (x, y(x)) = 0, it is easy to see (exercise!)

that any rational function in y(x) can be re-written as a polynomial of degree at most n − 1
in y(x). In other terms, the derivative y′(x) lives in the Q(x)-vector space generated by

1, y(x), . . . , y(x)n−1. The same similarly holds for all derivatives y(x), y′(x), y′′(x), . . . , y(n)(x),
and hence these elements must satisfy a nontrivial linear relation over Q(x); any such relation

yields a differential equation (1) of order at most n. Observe that the same reasoning also

proves the existence of an inhomogeneous linear differential equation of order at most n − 1
for y(x).

Example 1.1 (Catalan numbers). Consider walks on the half-line N that start from 0 and

consist of unit steps ±1, and denote by Ck the number of such walks of length k (the length

counts the number of used steps). One can prove that Ck = 1
k+1

(2k
k

)
(exercise!) and that

y(x) =
∑

k≥0Ckx
k satisfies the algebraic equation P (x, y(x)) = 0 where P (x, y) = xy2−y+1.

Then,

y′(x) =
y(x)2

1− 2xy(x)
=

(2x− 1)y(x) + 1

x(1− 4x)
,

hence y satisfies the inhomogeneous differential equation (4x2−x)y′(x)+(2x−1)y(x)+1 = 0.
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A naive though very natural question is whether the converse of Abel’s result holds: is

every D-finite function algebraic? The answer is negative, already for differential equations of

order r = 1, as the following example shows.

Example 1.2. The function exp(x) :=
∑

k≥0 x
k/k!, solution of y′ = y, is transcendental. Here

is a purely algebraic proof. Let us assume by contradiction that it satisfies a polynomial equa-

tion, of minimal degree n ≥ 1, of the form enx+
∑n−1

k=0 rk(x)e
kx = 0 for some rational functions

rk ∈ Q(x). By differentiating this equality with respect to x and by using exp′(x) = exp(x) we

get a new degree-n equation nenx +
∑n−1

k=0(r
′
k(x) + krk(x))e

kx = 0 which by minimality is the

n-th multiple of the former. In other words, r′k(x) + krk(x) = nrk(x) for all k < n. In partic-

ular, r′0(x) = nr0(x), which implies r0(x) ≡ 0 (indeed, if r0(x) = A(x)/B(x) for two coprime

polynomials A,B ∈ Q[x] with A′B − AB′ = nAB, then B divides AB′, hence B divides B′,
thus B′ ≡ 0; similarly, A′ ≡ 0 and hence nAB = 0, which implies A ≡ 0). But the nullity of r0
implies that exp(x) satisfies a polynomial equation of degree n− 1, a contradiction.

The reader could object that in Example 1.2 we were probably lucky, because the differen-

tial equation of exp(x) is so simple, being of order 1 with constant coefficients. Indeed, in the

particular case of the exponential function, there are many other ad-hoc transcendence proofs,

based on various branches of mathematics. For instance, an analytic argument is that, viewed

as a complex analytic function, any algebraic function needs to have a finite (and positive)

radius of convergence, while exp(z) is entire (that is, analytic in the whole complex plane).

Another proof is that exp(x) cannot satisfy a nontrivial algebraic equation, since otherwise by

specializing that equation at x = 1 we would obtain that the number e = exp(1) is an alge-

braic number, a statement known be to false since Hermite (1873). One could qualify this last

proof as “cheating”, since it is intuitively clear that proving transcendence of functions should

be easier than proving transcendence of numbers.

At this point, we can ask ourselves: is there a purely arithmetic proof of the transcendence

of exp(x)? This question can be seen as the starting point of the present article, whose main

aim is precisely to advertise a very beautiful number-theoretic approach to algebraicity of

solutions of linear differential equations. More generally, we can raise the following question.

Question 1.3. Is there any number-theoretic way to recognize whether the differential equa-

tion (1) admits only algebraic solutions in its solution space?

Nicely enough, the answer to this question is positive, for two distinct but related reasons.

Let us first explain them a bit in the case of the exponential function exp(x) =
∑

k≥0 x
k/k!.

The first arithmetic proof of the transcendence of exp(x) is based on the following result.

Proposition 1.4 (“Eisenstein’s criterion” (1852)). If the function y(x) =
∑

k≥0 akx
k ∈ Q[[x]]

is algebraic, then there exists N ∈ N \ {0} such that y(Nx)− y(0) ∈ Z[[x]]. In particular, only a

finite number of prime numbers can divide the denominators of the coefficients ak.

Since in the factorial sequence (k!)k≥0 obviously all prime numbers appear as divisors,

Proposition 1.4 immediately implies that exp(x) is transcendental.

To formulate the second arithmetic proof of the transcendence of exp(x), we will need

a little bit of additional vocabulary. The differential equation (1) can be rewritten in the

compact form L (y) = 0, where L is the linear differential operator

L = ar(x)·∂r
x + ar−1(x)·∂r−1

x + · · · + a1(x)·∂x + a0(x). (2)
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We denote by Q(x)〈∂x〉 the set of such linear differential operators. For convenience, we also

allow the trivial operator, in which all coefficients ai(x) are zero. The elements of Q(x)〈∂x〉
act on functions in x by letting the variable ∂x act through the differentiation d

dx . The set

Q(x)〈∂x〉 is then endowed with a structure of noncommutative ring where the addition is the

usual one but the multiplication is twisted according to the following rule, reminiscent from

Leibniz’s differentiation rule:

∀r ∈ Q(x), ∂xr(x) = r(x)∂x + r′(x).

Although the ring Q(x)〈∂x〉 is noncommutative, it shares many properties with the classical

commutative ring of polynomials Q(x)[y]. First, one has a well-defined notion of degree:

the degree deg(L ) of the nonzero operator L in (2) is the order r of the corresponding

differential equation (1), that is the largest integer r such that ar(x) 6= 0. Second, the ring

Q(x)〈∂x〉 admits an Euclidean division.

Proposition 1.5. The ring Q(x)〈∂x〉 is left Euclidean, i.e., for all A,B ∈ Q(x)〈∂x〉 with B 6= 0,

there exist Q and R in Q(x)〈∂x〉 such that A = BQ+R and degR < degB. Moreover, the pair

(Q,R) is unique with these properties.

Using these notions, we can now formulate a very basic but important arithmetic result.

Proposition 1.6 (“Cartier’s lemma”). If all solutions of (1) are algebraic functions, then for all

but a finite number of prime numbers p, the remainder of the left Euclidean division of ∂p
x by L

has all its coefficients divisible by p.

Example 1.7. The generating function of the Catalan numbers, y(x) =
∑

k≥0Ckx
k, satisfies

the differential equation (4x2−x)y′′(x)+ (10x− 2)y′(x)+ 2y(x) = 0, which is easily deduced,

either from the inhomogeneous differential equation of order 1 in Example 1.1, or directly

from the recurrence (k + 2)Ck+1 − (4k + 2)Ck = 0. The associated differential operator is

L =
(
4x2 − x

)
∂2
x + (10x− 2) ∂x + 2, and the remainders of the left Euclidean divisions of ∂p

x

by L for p ∈ {2, 3, 5} are

∂2
x mod L = −2 (5x− 1)

x (4x− 1)
∂x −

2

x (4x− 1)
,

∂3
x mod L =

6
(
22x2 − 9x+ 1

)

x2 (4x− 1)2
∂x +

6(6x− 1)

x2 (4x− 1)2
,

∂5
x mod L =

120
(
386x4 − 325x3 + 110x2 − 17x+ 1

)

x4 (4x− 1)4
∂x +

120(130x3 − 69x2 + 14x− 1)

x4 (4x− 1)4
.

Note that indeed, we have ∂p
x mod L = 0 modulo p, in the three cases.

Proposition 1.6 will be discussed in more detail in §3.2.1. For now, let us simply observe

how it implies the transcendence of exp(x). In this case L = ∂x − 1. Hence ∂p
x mod L is

equal to 1 for all p. Indeed, in this case, L and ∂x commute, hence the computation of the

remainder is the same as the computation in Q[x] of the remainder of xp by x− 1, that is the

evaluation of xp at x = 1.
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Example 1.8. Let us consider the logarithmic function y(x) = log(1 − x). Of course, since

log(exp(x)) = x and exp(log(1 − x)) = 1 − x, the transcendence of the logarithm function

follows from the one of the exponential function. However, the two arithmetic criteria can be

used directly. First, Eisenstein’s criterion (Proposition 1.4) can be applied since log(1 − x) =
−
∑

k≥1 x
k/k. Second, we have L = (1− x)∂2

x − ∂x and it holds that (exercise!)

∂n
x mod L =

(n − 1)!

(1− x)n−1
∂x for all n ≥ 1.

Therefore, Wilson’s theorem implies that modulo any prime number p, the remainder ∂p
x mod

L is equal to − 1
(1−x)p−1 ∂x, hence it is never 0. Then, Proposition 1.6 implies that log(1 − x)

is transcendental.

A natural question is whether the converses of Proposition 1.4 and Proposition 1.6 have

any chance to hold true. Concerning Proposition 1.4, the first example that comes to mind is

the function y(x) =
∑

k≥0 k!x
k, which is D-finite and satisfies x2y′′(x)+(3x−1)y′(x)+y(x) = 0.

It obviously satisfies the assumption of Proposition 1.4 since its coefficients are integers. But

y(x) is not algebraic. This can be seen in various ways. One of them is again analytic, by

observing that y(x) has radius of convergence 0. Another one is more algebraic, by seeing that

y(x) does not satisfy any first-order differential equation, and that its second-order differential

equation above admits in its solution space the transcendental solution e−1/x/x.

However, the reader may object that this counterexample is “degenerate” since the co-

efficient sequence (k!)k≥0 grows too fast, which is not compatible with the growth of the

coefficient sequence of an algebraic function. A better converse of Proposition 1.4 would

be: is there any example of a D-finite but transcendental function y ∈ Z[[x]], whose coefficient

sequence grows at most geometrically? The answer is again positive.

Example 1.9. Let again (Ck) be the sequence of Catalan numbers, and consider the function

y(x) =
∑

k≥0Ck

(2k
k

)
xk. One easily checks that it is D-finite and it satisfies the second-order

equation x(16x − 1)y′′(x) + 2(16x − 1)y′(x) + 4y(x) = 0. From there, it follows that y(x) is

the Gauss hypergeometric function 2F1([1/2, 1/2], [2]; 16x) and classical results (that we shall

recall in §2.1.3) imply that y(x) is transcendental.

Thus, even the stronger converse of Proposition 1.4 appears to be false. One may wonder

if there is any way to reinforce even further the conclusion of Proposition 1.4, such that

its converse becomes true. As of today, this is still an open problem, although there exist

conjectural statements in this spirit. One of them is the following:

Conjecture 1.10 (Christol-André conjecture). Assume that y(x) =
∑

k≥0 akx
k ∈ Q[[x]] is D-

finite, such that:

(1) the sequence (ak)k≥0 has at most geometric growth;

(2) there exists N ∈ N such that y(Nx)− y(0) ∈ Z[[x]];

(3) in the minimal-order monic linear differential equation satisfied by y(x), the point x = 0
is not a pole of any of the coefficients ai(x).

Then, y(x) is algebraic.
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It is also conjectured that condition (3) can be replaced by

(3b) the minimal-order linear differential equation satisfied by y(x) does not have any loga-

rithms in its “local solutions” at x = 0.

Now, what about the converse of Proposition 1.6? It turns out that this converse is one of

the simplest formulations of what is usually called the Grothendieck conjecture. This conjecture

has been formulated in the late 1960s and it has a rich history. It was proved for some

important classes of differential equations (1), which will be discussed in Section 3.

Conjecture 1.11 (Grothendieck’s conjecture, version 1). Let L ∈ Q(x)〈∂x〉 be the differential

operator attached to (1). If for all but a finite number of prime numbers p, the remainder of the

left Euclidean division of ∂p
x by L has all its coefficients divisible by p, then all solutions of (1)

are algebraic functions.

Example 1.12. Consider the operator

L = 2x (x− 1) ∂2
x + (4x− 1) ∂x + 1.

Then, the reduction modulo p of ∂p
x mod L is equal to 0 if p ≡ 1 mod 4; else, it is equal to

− 2

(x(x− 1))
p−1

2

∂x −
1

(x− 1)
p+1

2 x
p−1

2

.

Therefore, for half of the primes p, the remainder is nonzero, hence Proposition 1.6 implies

that L does not admit only algebraic solutions.

Example 1.13. Consider now the operator

Lr = 2x (x− 1) ∂2
x + (4x− 1) ∂x + 2r(1− r), with r ∈ Q,

which is a tiny modification of the operator in Example 1.12: only the constant term has

changed. Then, the reduction modulo p of ∂p
x mod Lr is equal to

r(r + 1) · · · (r + p−1
2 )

∧

· · · (r + p− 1)

(x(x− 1))
p−1

2

∂x +
p+1
2 · r(r + 1) · · · (r + p−1

2 )

∧

· · · (r + p− 1)

(x− 1)
p+1

2 x
p−1

2

.

For any p not dividing (the numerator of) 2r − 1, the previous remainder is zero modulo p.

Therefore, for all but finitely many primes p, the remainder is zero. Can we conclude that

the operator Lr admits only algebraic solutions? Conjecture 1.11 predicts that the answer is

positive and, as we will see in Section 2.1.3, this is indeed the case.

2 Several natural differential equations have algebraic solutions

As we have just seen in Section 1, although in general the solutions y(x) of (1) are transcen-

dental functions (e.g., y(x) = exp(x) and y(x) = log(1 − x)), it may happen sometimes that

they are algebraic. Most of the examples given in Section 1 were “academic examples”, in the

sense they they were simple and constructed to illustrate the exposition. In this section, we

give several examples (of different nature) showing that it is not quite unusual that natural

linear differential equations arising “in practice” do possess algebraic solutions. Sometimes

this is so for well-understood reasons, sometimes the explanations are still mysterious, either

ad-hoc or completely missing.
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2.1 Examples from Special functions: Hypergeometic functions

2.1.1 Elliptic integrals: Euler’s differential equation

Perhaps one of the oldest special functions distinct from the classical algebraic, exponential,

logarithmic, or trigonometric functions, is the one arising from the question: what is the

perimeter p(x) of an ellipse with semi-major axis 1, as a function of its eccentricity x? (Recall

that the eccentricity is the quotient between the focal distance and the semi-major axis.)

This question is more challenging than the analogue one with “perimeter” replaced by

“area”, since the area is expressible algebraically as π
√
1− x2. Already in 1733, Euler [36, §7]

could solve this question. Here is one of the possible solutions, not his own, based on what

is nowadays called the “method of creative telescoping” [1]. First, we express the arc length

using a real integral and the parametrization of the ellipse:

p(x) = 4

∫ 1

0

√
1− x2u2

1− u2
du = 2π − π

2
x2 − 3π

32
x4 − 5π

128
x6 − 175π

8192
x8 − · · · . (3)

Up to the factor of 4, the function p(x) is called the complete elliptic integral of the second

kind. The second equality above is obtained by expanding the integrand in power series with

respect to x, and integrating between 0 and 1. Now, the “magic” of creative telescoping is

that it constructs the equality below, which expresses a linear combination of the integrand

and of its first and second derivative w.r.t. x as a pure derivative w.r.t. u of another algebraic

function (a rational multiple of the integrand):

(
(x− x3)∂2

x + (1− x2)∂x + x
)
(√

1− x2u2

1− u2

)
= ∂u

(
xu
√
1− u2√

1− x2u2

)
. (4)

Now, integrating both sides of Eq. (4) w.r.t. u, it follows that p(x) is a D-finite function w.r.t.

x, and that it satisfies the linear differential equation

(x− x3)p′′(x) + (1− x2)p′(x) + xp(x) = 0. (5)

Writing p(x) =
∑

k≥0 akx
k, we deduce from Eq. (5) the recursion (k − 1)(k + 1)ak = (k +

2)2ak+2 for all k ≥ 0. From a0 = 2π and a1 = 0 it follows that

a2k =
2π
(
2k
k

)2

(1− 2k)16k
and a2k+1 = 0 for all k ≥ 0.

Stirling’s formula then implies that a2k ∼ −1/k2, which excludes algebraicity of p(x). In-

deed, the presence of the factor k−2 is incompatible with algebraicity by the Newton-Puiseux

theorem, see e.g. [39, Theorem D].

2.1.2 Elliptic integrals: Legendre’s differential equation

A special function similar to p(x) is obtained by a different construction. Consider the family

of elliptic curves (with x ∈ C) given by the so-called Legendre equation

Ex : y2 = u(u− 1)(u− x).
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On Ex, there exists a unique (up to a constant multiple) holomorphic 1-form, given by

ωx =
du

y
=

du√
u(u− 1)(u − x)

.

This form is necessarily closed since it is a holomorphic 1-form on a variety of complex dimen-

sion 1. The method of creative telescoping finds an exact form that is a linear combination of

ωx and of its first and second derivatives with respect to x, namely

(
(4x2 − 4x)∂2

x + (8x− 4)∂x + 1
)
ωx = −d

(
2
√

u(u− 1)

(u− x)3/2

)
. (6)

From Eq. (6) it follows that the integral y(x) =
∫
γ ωx over any closed curve γ on Ex satisfies

the so-called Legendre differential equation

(4x2 − 4x)y′′(x) + (8x− 4)y′(x) + y(x) = 0. (7)

This is the most basic case of the Picard–Fuchs differential equation of a period function. For

instance, by taking C to be the curve on Ex given by the double cover y = ±
√
u(u− 1)(u− x)

of [1,∞), the corresponding period is the so-called complete elliptic integral of the first kind,

∫

C

ωx = 2

∫ ∞

1

du√
u(u− 1)(u− x)

=
∑

k≥0

bkx
k,

where b0 = 2
∫ ∞
1

du
u
√
u−1

= 2π and (2k + 1)2 bk = 4 (k + 1)2 bk+1 for all k ≥ 0, this recurrence

relation being a consequence of the fact that y(x) =
∫
C ωx satisfies Eq. (7). Thus,

∫

C

ωx = 2π
∑

k≥0

(
2k

k

)2 ( x

16

)k
. (8)

Once again, Stirling’s formula gives bk ∼ 1/k, which excludes algebraicity of y(x) =
∫
C ωx .

2.1.3 Gauss’ hypergeometric functions

The D-finite functions considered in Sections 2.1.1 and 2.1.2 are special cases of the so-called

Gauss hypergeometric function with parameters a, b, c ∈ Q, c /∈ Z≤0, defined by

2F1([a, b], [c];x) =
∑

k≥0

(a)k(b)k
(c)kk!

xk, (9)

where (a)k = a(a + 1) · · · (a + k − 1) denotes the rising factorial. Indeed, p(x) in Eq. (3) is

equal to 2π ·2F1([−1/2, 1/2], [1];x2), while
∫
C ωx in Eq. (8) is equal to 2π ·2F1([1/2, 1/2], [1];x).

We have seen that in both cases these functions are transcendental.

In general, y(x) = 2F1([a, b], [c];x) satisfies the second-order differential equation

x(x− 1)y′′(x) + ((a+ b+ 1)x− c)y′(x) + aby(x) = 0 (10)
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and the name hypergeometric comes from the fact that the coefficient sequence (uk)k of

2F1([a, b], [c];x) satisfies a linear recurrence of order 1, namely

(a+ k)(b+ k)uk = (k + 1)(k + c)uk+1 (k ≥ 0).

For other choices of parameters we recover the functions

(1− x)α = 2F1([−α, 1], [1];x), for all α ∈ Q,
∑

k≥0

Ckx
k = 2F1([1, 1/2], [2]; 4x),

log(1 − x) = −x · 2F1([1, 1], [2];x),

arcsin(x) = x · 2F1([1/2, 1/2], [3/2]; x
2),

the first two of which are algebraic, the last two of which are transcendental. In some cases,

the Gauss’ hypergeometric functions even becomes a polynomial: this is so for

Pn(x) = 2n · 2F1([−n, n+ 1], [1]; (x + 1)/2),

the Legendre polynomial given by Pn(x) :=
1
n! · ∂n

∂xn (x
2 − 1)n, as well as for

Tn(x) = (−1)n · 2F1([−n, n], [1/2]; (x + 1)/2),

the Chebyshev polynomial of the first kind given by Tn(cos x) = cos(nx).
Deciding the algebraicity of 2F1 hypergeometric functions is an old problem, solved by

Schwarz [62] using geometric tools (Riemann mappings, Schwarzian derivatives and sphere

tilings by spherical triangles) and by Landau [53, 54] and Errera [35] using arithmetic tools

(Eisenstein’s theorem on algebraic power series, and Dirichlet’s theorem on prime numbers in

arithmetic progressions). Both approaches are algorithmic: Schwarz’s criterion reduces the

problem to a table look-up after some preprocessing on the parameters a, b, c; the Landau-

Errera criterion amounts to checking a finite number of inequalities.

More precisely, let us assume that none of a, b, c− a and c− b is an integer (equivalently,

the operator H(a, b; c) := x(1−x)∂2
x+(c− (a+ b+1)x)∂x−ab is irreducible) and let D be the

common denominator of a, b and c. Then, the Landau-Errera criterion says that the following

assertions are equivalent:

1. the hypergeometric function 2F1([a, b], [c];x) is algebraic;

2. the operator H(a, b; c) admits only algebraic solutions;

3. for every ℓ < D coprime with D, either {ℓa} < {ℓc} < {ℓb} or {ℓb} < {ℓc} < {ℓa}.
(Here {x} denotes the fractional part x− ⌊x⌋ of x.)

The last condition is equivalent to the fact that, for every ℓ < D coprime with D, the two

sets {e2πiℓa, e2πiℓb} and {e2πiℓc, 1} are interlaced on the unit circle. This “interlacing condition”

was first proved by Landau [53, 54] to be necessary for the algebraicity of 2F1([a, b], [c];x) and

then proved to also be sufficient by Errera [35]; see also Stridsberg’s intermediate contribu-

tion [67], who relates the conditions in Eisenstein’s criterion to the ones in the Landau-Errera

condition. In §3.2.2 we will see that Theorem 3.22 provides an extension of the Landau-Errera

“interlacing criterion” to the generalized hypergeometric function s+1Fs defined by

s+1Fs([a1, . . . , as+1], [b1, . . . , bs];x) =
∑

k≥0

(a1)k · · · (as+1)k
(b1)k · · · (bs)kk!

xk. (11)
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2.2 Examples from Algebra: Diagonals

As proved in Section 1, algebraic functions are D-finite. A larger, yet very important, class of

D-finite functions is formed by the so-called diagonals of rational functions. By definition, the

diagonal of a multivariate power series

F =
∑

(i1,...,in)∈Nn

ai1,...,inx
i1
1 · · · xinn ∈ Q[[x1, . . . , xn]]

is the univariate power series

Diag(F ) =
∑

i∈N
ai,...,it

i ∈ Q[[t]].

Example 2.1 (Dyck bridges). Let Bn be the number of {↑,→}-walks in Z2 from (0, 0) to (n, n)
(i.e., there are exactly Bn ways of going from the origin to (n, n) using only North and East

steps, see §2.3 for a more general context) and let B(t) be its generating function
∑

n≥0 Bnt
n.

Then,

B(t) = Diag

(
1

1− x− y

)
=
∑

n≥0

(
2n

n

)
tn.

This is perhaps the simplest example of a diagonal. By the binomial theorem, it comes that

B(t) = 1/
√
1− 4t, hence this diagonal is even an algebraic function. This is not an accident.

Indeed, a century ago Pólya [60] proved that diagonals of bivariate rational functions are

algebraic. (Later, Furstenberg [42] showed that the converse also holds true.) Pólya’s result

can be proved as follows. First, using the simple observation1 Diag(F )(t) = [x0]F (x, t/x),
the diagonal of the rational function F (x, y) ∈ Q(x, y) is encoded as a complex integral using

Cauchy’s integral theorem (for some ǫ > 0)

Diag (F ) (t) = [x−1]
1

x
F

(
x,

t

x

)
=

1

2πi

∮

|x|=ǫ
F

(
x,

t

x

)
dx

x
,

which in a second step can be evaluated using the residues theorem as a sum of residues

(precisely: the residues of F (x, t/x)/x at its “small poles”, having limit 0 at t = 0). Each of

these residues are algebraic functions, and so is their sum Diag(F ).

Example 2.2 (Dyck bridges, continued). The proof sketched above directly concludes that

Diag

(
1

1− x− y

)
=

1

2πi

∮

|x|=ǫ

dx

x− x2 − t
=

1

1− 2x

∣∣∣∣
x= 1−

√

1−4t
2

=
1√

1− 4t
.

Example 2.3. Interestingly, Pólya’s result becomes false for more than two variables. A simple

example is provided by the rational function 1/(1− x− y − z) =
∑

i,j,k
(i+j+k)!
i!j!k! xiyjzk, whose

diagonal is

Diag

(
1

1− x− y − z

)
=
∑

n≥0

(3n)!

n!3
tn.

1Here, and in all the text, [xn] denotes coefficient extraction of xn.
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The transcendence of this function can be proved in various ways, for instance by using asymp-

totics: Stirling’s formula implies that
(3n)!
n!3 ∼

√
3

2π
27n

n when n goes to infinity, and the presence

of the factor n−1 is incompatible with algebraicity. Another proof is based on rewriting

Diag

(
1

1− x− y − z

)
= 2F1

([
1

3
,
2

3

]
, [1] ; 27t

)
, (12)

and by using the Schwarz or the Landau-Errera criteria mentioned above.

The diagonal in Eq. (12) is hypergeometric, hence D-finite. In general, there is no reason

that the diagonal of a multivariate rational function be hypergeometric. However, that all

such diagonals are D-finite functions is a general fact. In fact, much more holds: a theorem

by Lipshitz [55] states that if F (x1, . . . , xn) is a multivariate D-finite function2, then Diag(F )
is D-finite.

The particular case where F is rational is already interesting and nontrivial to prove.

In this case, the argument is the following. First, as in the bivariate case, if F = P/Q ∈
Q(x1, . . . , xn) ∩Q[[x1, . . . , xn]], then the residue theorem allows to write (for some ǫ > 0)

Diag(F )(t) =
1

(2πi)n−1

∮

|x1|=···=|xn−1|=ǫ

F

(
x1, . . . , xn−1,

t

x1 · · · xn−1

)
dx1 · · · dxn−1

x1 · · · xn−1
,

so that Diag(F )(t) is the period function of a (family of) rational functions. Its D-finiteness

is then a consequence of the finite-dimensionality over C(t) of the de Rham cohomology

for the complement of the variety in An
C(t) defined by the equations Q(x1, . . . , xn) = 0 and

x1 · · · xn = t. (This finiteness proof usually relies on a geometric argument in the smooth

case, and on Hironaka’s resolution of singularities in the general case.) In more down-to-

earth terms this proof guarantees, in a non-effective way, that repeated differentiation under

the integral sign eventually produces a finite sequence of rational integrands that admit a

linear combination with coefficients in Q(t) that becomes an exact differential.

If f(t) is the diagonal of a rational function, then not only f(t) is D-finite, but in addition

f(t) is globally bounded, that is, f(t) has a nonzero radius of convergence in C and β ·f(α ·t) ∈
Z[[t]] for some α, β ∈ Z. (Note that this second property is equivalent to the existence of an

N ∈ N \ {0} such that f(Nt) − f(0) ∈ Z[[t]], as in Proposition 1.4.) The following beautiful

conjecture predicts that the converse is also true; it was formulated by Christol in the late

1980s, see e.g. [27] and [28, Conjecture 4]:

Conjecture 2.4 (Christol’s conjecture). For f(t) ∈ Q[[t]], the following properties are equiva-

lent:

(1) f(t) = Diag(F ) for some F ∈ Q(x1, . . . , xn) ∩Q[[x1, . . . , xn]];

(2) f ∈ Q[[t]] is D-finite and globally bounded.

Christol’s conjecture is far from being proved; the following explicit problem, also due to

Christol [28, p. 51], is a very particular case of Conjecture 2.4 and it is still open as of today.

2This means that F satisfies a system of n linear partial differential equations, the i-th one being an ordinary

linear differential equation with respect to ∂
∂xi

and with polynomial coefficients in x1, . . . , xn.
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Question 2.5. Is

f(t) = 3F2

([
1

9
,
4

9
,
5

9

]
,

[
1,

1

3

]
; 36 t

)

= 1 + 60 t+ 20475 t2 + 9373650 t3 + 4881796920 t4 + · · ·

the diagonal of a rational power series?

Therefore, even understanding diagonals which are hypergeometric functions is a very

difficult problem; for some recent progress see [22].

Another natural and difficult question is whether a given diagonal of a rational function

is algebraic or transcendental. This question is directly connected to the main aim of this

article. One may wonder whether it is possible to detect transcendence of a given diagonal

f(t) = Diag(F ) by reducing it modulo a prime p, and proving the transcendence of f(t) mod p
over Fp(t). Unfortunately, this strategy is systematically doomed to failure: indeed, even if

the diagonal f(t) is transcendental, its reduction modulo p is necessarily algebraic! This was

proved by Furstenberg in [42, Theorem 1]. For instance, the transcendental diagonal in (12)

is equal to

(1 + t)−1/4 mod 5,

(1 + 6t+ 6t2)−1/6 mod 7,

(1 + 6t+ 2t2 + 8t3)−1/10 mod 11.

On the other hand, the Christol-André conjecture (Conjecture 1.10) implies that if f(t)
is the diagonal of a rational function, then f(t) is algebraic if and only if its minimal-order

differential equation does not have any logarithms in its local solutions around t = 0. The

direct implication is clear: if the minimal-order differential equation has local logs, this im-

plies that there are transcendental solutions, and hence that f(t) is transcendental as well

(by minimality of the order, if f(t) were algebraic, the differential equation would only have

algebraic solutions). For instance, the diagonal in (12) admits t (27t− 1) ∂2
t + (54t− 1) ∂t + 6

as minimal-order differential equation, with local basis

1 + 6t+ 90t2 + · · · and log(t) + (6 log(t) + 15) t+ · · ·

Hence it is transcendental.

As a final remark, note that Theorem 1.1 in [71] implies that for any prime p 6= 3, the

reduction modulo p of the 3F2 (transcendental) function from Question 2.5 is algebraic (of

degree at most p54). Hence, even if this 3F2 function is not known to be a diagonal of a

rational function, its reductions modulo p are known to behave as reductions modulo p of

diagonals of rational functions.

2.3 Examples from Combinatorics: Walks in the Quarter Plane

In combinatorics, studying the nature of generating functions is of primary importance; for

instance, algebraicity may reveal essential (but potentially hidden) recursive structures of the

combinatorial classes under consideration. In particular, many examples have been studied

over the past decades in lattice path combinatorics, a subfield of enumerative combinatorics. A
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plethora of interesting mathematical phenomena occur even when restricting to the so-called

walks with small steps in the quarter plane N2. These are walks in the lattice Z2, confined to the

cone R2
+ that start at the origin (0, 0) and use steps in a model (or stepset) S which is a fixed

subset of the set of nearest-neighbor steps {ւ, ←, տ, ↑, ր, →,ց, ↓}. The systematic study

of small step walks in N2 has been initiated by Bousquet-Mélou and Mishna in their germinal

article [24]. An earlier reference on the topic, in a probabilistic context, is the book [38]. The

study of generating functions of walks with small steps in the quarter plane now spans several

decades and dozens of articles. For instance, in [32] the differential-algebraic nature of these

generating functions is completely elucidated using tools from differential Galois theory. A

survey with many references can be found in the recent article [11].

Given a model S ⊆ {ւ, ←, տ, ↑, ր, →, ց, ↓}, we denote by qi,j,n the number of S -

walks of length n ending at (i, j). The full counting sequence (qi,j,n)(i,j,n)∈N3 admits several

interesting specializations, for instance en := q0,0,n, the number of S -walks of length n re-

turning to (0, 0) (“excursions”) and qn :=
∑

i,j≥0 qi,j,n, the number of S -walks with prescribed

length n.

To these sequences one attaches various functions, namely the full generating function

QS (x, y, t) =
∞∑

n=0

( ∞∑

i,j=0

qi,j,nx
iyj
)
tn ∈ Q[x, y][[t]],

and its corresponding univariate specializations QS (0, 0, t) =
∑

n≥0 ent
n (“excursions gen-

erating function”), QS (1, 1, t) =
∑

n≥0 qnt
n (“length generating function”), QS (1, 0, t) and

QS (0, 1, t) (“boundary returns”) and [x0]QS (x, 1/x, t) (“diagonal returns”).

The general question in this setting is: given a model S , what can be said about the

generating function QS (x, y, t), and its specializations? In particular, is QS (x, y, t) algebraic?

Is it at least D-finite? Does QS (x, y, t) (or at least some of its specializations) admit closed-

form expressions?

The model S = {↑,→} in Example 2.1 (Dyck walks) is one of the simplest possible

models. In that case, the generating function Q(x, y, t) is algebraic. This is actually a par-

ticular case of a classical result stating that whenever S is included in { ↑, ր, →, ց, ↓}
or in {←, տ, ↑, ր, →}, that is, if the walks are essentially 1-dimensional, then Q(x, y, t) is

algebraic.

For this reason, most studies in the area focus on the truly 2-dimensional cases, that is on

models S that contain both a step oriented towards the horizontal and the vertical axes (see

Figure 1 in [11]). A full classification is now available, according to the algebro-differential

properties of QS (x, y, t), but here we restrict to two examples.

2.3.1 Trident walks

Up to some canonical reductions, there are exactly 23 models of walks with small steps in the

quarter plane whose full generating function Q(x, y, t) is D-finite (with respect to x, y and t).

They are displayed in Figure 4 in [11].

One of these models is that of the so-called “trident walks”, with S = {տ, ↑, ր, ↓}.
This is entry 7 in [11, Fig. 4] and in [16, Table 6]. There is 1 trident walk of length 0
(the empty walk), 2 trident walks of length 1 ({↑}, {ր}) and 7 trident walks of length 2
({↑ − ↑}, {↑ − ↓}, {↑ − ր}, {ր − տ}, {ր − ↑}, {ր − ր}, {ր − ↓}). It was proved in [16]
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that the length generating function of trident walks

Q(t) =
∑

n≥0

qnt
n = 1 + 2 t+ 7 t2 + 23 t3 + 84 t4 + 301 t5 + 1127 t6 + · · ·

is D-finite and satisfies L5(Q(t)) = 0, where L5 is the following differential equation of order

5 with polynomial coefficients of degree at most 15:

t2 (t− 1) (4t− 1)
(
12t2 − 1

) (
5184t7 − 4128t6 + 4416t5 + 400t4 + 252t3 − 90t2 − 42t+ 3

) (
4t2 + 1

)
∂5

t
+

t
(
21399552t13− 38486016t12 + 43416576t11− 25803264t10 + 7762176t9− 3848960t8+

337088t7 + 143168t6 − 7128t5 + 45328t4 − 11304t3 − 1854t2 + 540t− 27
)
∂4

t
+

(
143327232t13− 222621696t12 + 257753088t11− 122575104t10 + 36213888t9− 19897728t8+

1942656t7 + 70768t6 − 100456t5 + 254712t4 − 35124t3 − 7404t2 + 1116t− 48
)
∂3

t
+

(
346374144t12− 454643712t11 + 545398272t10− 166067712t9 + 59053824t8− 32668800t7+

2167392t6 + 54912t5 − 687744t4 + 500616t3 − 31176t2 − 5004t+ 288
)
∂2

t
+

(
262766592t11− 284000256t10 + 358041600t9− 21846528t8 + 33115392t7− 13748736t6−

1184640t5 + 651744t4 − 894672t3 + 278496t2− 7272t+ 2880
)
∂t+

35831808t10− 31186944t9 + 42163200t8 + 11639808t7 + 4981248t6−
981504t5 − 809280t4 + 72576t3 − 177408t2 + 8064t− 3168.

The length generating function Q(t) is completely and uniquely defined by L5 and by the

first coefficients [tk]Q(t) for k = 0, . . . , 14. The question is: how to determine the algebraic or

transcendental nature of Q(t)?
Note that the asymptotic estimate qn ∼ γβnnr in [11, Fig. 4], with γ = 4/(3

√
π), β = 4,

r = −1/2, is compatible with algebraicity, since r ∈ Q \ Z<0, β ∈ Q and γΓ(r + 1) = 4/3 ∈ Q.

Hence we cannot conclude the transcendence using asymptotic arguments as in Example 2.3.

An interesting feature is that L5 admits a factorization L2 ·L1,a ·L1,b ·L1,c, where the three

operators L1,⋆ have order 1, and L2 has order 2. This type of factorization 2/1/ · · · /1 actually

holds in all the cases 1–19 in [11, Fig. 4]. On the other hand, the algorithmic method (a

variant of the creative telescoping mentioned in Section 2.1.1) that produces the differential

equation L5 does not guarantee that it is the least-order one satisfied by Q(t). In [16], the

above factorization was algorithmically computed and exploited (together with some other

computer algebra algorithms) in order to produce the following expression for Q(t) (and

similar expressions for all cases 1–19 in [11, Fig. 4]):

Q(t) =
1

t(t− 1)

∫ t

0

u

(1− 4u)3/2

{
4 +

∫ u

0

(1− 4v)1/2(12 + v)

v2

[
1 +

1

2v(1 + 2v)(1 + 4v2)1/2
×

(
(1− v) 2F1

([
1

2
,
3

2

]
, [1];

16t2

4t2 + 1

)
− (1 + v)(1 − 4v + 8v2) 2F1

([
1

2
,
1

2

]
, [1];

16t2

4t2 + 1

))]
dv

}
du.

Note that although the 2F1 functions occurring in this expression are transcendental, it is in

principle still possible that the linear combination produce an algebraic function in the end.

In [16, §4.2] it was shown that Q(t) is transcendental by exploiting the explicit factorization
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of L5, and by applying to L2 a specific algorithm that decides algebraicity of solutions for

operators of order 2, namely Kovacic’s algorithm [51]. The same approach uniformly works

on the models 1–19 and allows to prove transcendence of the corresponding Q(t) except in

case 17 for the model S = {↑,←,ց} and in case 18 for the model S = {↑,←,ց, ↓,→,տ}
(in these two cases the algorithm proves algebraicity of all solutions of the corresponding L2).

Very interestingly, the full generating function Q(x, y, t) is proved to be transcendental in all

cases 1–19, and cases 17 and 18 are the only ones with algebraic specialization Q(1, 1, t).
An alternative proof of the transcendence of the length generating function Q(t) for tri-

dent walks is based on the fact that L5 is indeed the minimal-order differential equation for

Q(t); this implies that if Q(t) were algebraic, then L5 would only have algebraic solutions,

a situation discarded by exhibiting logarithms in the local solutions of L5 at t = 0. This

approach to the proof of transcendence of solutions of linear differential equations is used

in [20]; its heart is the “minimization” algorithm from [19].

2.3.2 Gessel walks

The most difficult model of small-step walks in the quarter plane is Gessel’s model, for which

S = {ր,ւ,←,→}. For notational simplicity we will write G(x, y, t) for the full generating

function in this case, and G(t) for the length generating function for Gessel walks G(1, 1, t).
Around 2000, Ira Gessel formulated two conjectures equivalent to the following state-

ments:

Conjecture 2.6. The generating function G(0, 0, t) = 1+2t2+11t4+85t6+782t7+ · · · of Gessel

excursions is equal to 3F2

(
[5/6, 1/2, 1], [5/3, 2]; 16t2

)
.

Conjecture 2.7. The generating function G(x, y, t) is not D-finite.

Gessel’s first conjecture was first solved in 2009 by Kauers, Koutschan and Zeilberger

in [47] using a computerized guess-and-prove approach. Unfortunately, solving Conjecture 2.6

had no implication concerning Conjecture 2.7, and in particular on the D-finiteness of the

length generating function G(t). It came as a total surprise when Bostan and Kauers [17]

proved that Gessel’s second conjecture was false.

Theorem 2.8 ([17]). The generating function G(x, y, t) for Gessel walks is algebraic.

Moreover, the coefficients (gn) of G(t) = 1 + 2t + 7t2 + 21t3 + 78t4 + 260t5 + · · · satisfy

(3n + 1) g2n = (12n + 2) g2n−1 and (n+ 1) g2n+1 = (4n + 2) g2n for all n ≥ 0.

In addition, G(t) = (H(t)− 1)/(2t) where H(t) = 1 + 2t+ 4t2 + 14t3 + 42t4 + · · · is a root

of 27 (4t− 1)2 H8 − 18 (4t− 1)2 H4 − 8
(
16t2 + 24t+ 1

)
H2 − (4t− 1)2 = 0, and

G(t) =
1

2t
·
(

2F1

([
− 1

12
,
1

4

]
,

[
2

3

]
;−64t (4t+ 1)2

(4t− 1)4

)
− 1

)
.

The original discovery and proof of Theorem 2.8 was computer-driven, and used a guess-

and-prove approach, based on Hermite-Padé approximants. As a byproduct of this proof, the

size of the minimal polynomial of G(x, y, t) has been estimated to have more than 1011 terms

when written in expanded form, for a total size of ≈ 30Gb (!). The guess-and-prove method

is a 3-step process: (i) compute G(x, y, t) to precision t1200 (≈ 1.5 billion coefficients!); (ii)
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conjecture polynomial equations for G(x, 0, t) and G(0, y, t); (iii) conclude the proof by com-

puting multivariate resultants of (very big) polynomials (30 pages each).

As a matter of fact, the discovery of algebraicity was initially performed in a different way:

the expansion of the generating function G(x, y, t) modulo t1000 was sufficient to guess (by

using differential Hermite-Padé approximants) two differential operators

• Lx,0 ∈ Q(x, t)〈∂t〉, of order 11 in ∂t, bidegree (96, 78) in (t, x), and integer coefficients

of at most 61 digits

• L0,y ∈ Q(y, t)〈∂t〉, of order 11 in ∂t, bidegree (68, 28) in (t, y), and integer coefficients

of at most 51 digits

such that Lx,0(G(x, 0, t)) = 0 mod t1000 and L0,y(G(0, y, t)) = 0 mod t1000.

After this guessing step of plausible differential equations for Q(x, 0, t) and for Q(0, y, t),
an important step in the discovery process was to apply Conjecture 1.11 with several primes p.

More precisely, for randomly chosen prime numbers p, and a, b ∈ Fp, both La,0 and L0,b right-

divide the pure power ∂p
t in Fp(x)〈∂t〉; in other terms, they have zero p-curvature for all the

tested primes p (see Definition 3.17). This was the key observation in the discovery [17] that

the trivariate generating function for Gessel walks is algebraic.

Several human proofs of Conjecture 2.6 and Theorem 2.8 have been discovered since

the publication of [17]: the first one used complex analysis [18], the second one is purely

algebraic [23], the third one is both combinatorial and analytic [25], while the more recent

one is probably the most elementary [6].

2.4 Examples from Number Theory

In his ICM 2018 paper [73, p. 768], Zagier introduced a recurrent sequence of rational num-

bers (cn)n≥0 defined by initial terms c0 = 1, c1 = −161/(210 · 35) and c2 = 26605753/(223 · 312 ·
52), and by the following linear recursion with polynomial coefficients:

cn−3 + 20
(
4500n2 − 18900n + 19739

)
cn−2 + 80352000n(5n − 1)(5n − 2)(5n − 4)cn

+25
(
2592000n4 − 16588800n3 + 39118320n2 − 39189168n + 14092603

)
cn−1 = 0.

This mysteriously looking sequences arises from a topological differential equation in the

work of Bertola, Dubrovin and Yang [7], each coefficient cn being defined by an integral over

a moduli space. It is not difficult to prove that cn behaves asymptotically like 1/n!2. Inspired

by an analogy with the behavior of the so-called quantum periods in mirror symmetry, Zagier

asked whether if it is possible that the cn’s become integers after multiplication by n!2, or

more generally by the product of two Pochhammer symbols. Zagier mentions the following

highly nontrivial two results:

• [Yang & Zagier]: an := (210 · 35 · 54)n · (3/5)n · (4/5)n · cn ∈ Z for all integers ≥ 0;

• [Dubrovin & Yang]: bn := (212 · 35 · 54)n · (2/5)n · (9/10)n · cn ∈ Z for all integers ≥ 0.

Both sequences are integer sequences of exponential growth, and hence can be expected

to have a generating series that is a period. For the sequence (bn), Zagier mentions that the

generating function is even algebraic, but that the sequence (an) seems to be more challeng-

ing. Yurkevich [72, Theorem 2] proved that the generating function of the sequence (an) is
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# u v order alg. degree # u v order alg. degree

1 1/5 4/5 2 120 6 19/60 49/60 4 155520

2 3/5 4/5 2 120 7 19/60 59/60 4 46080

3 2/5 9/10 4 120 8 29/60 49/60 4 46080

4 7/30 9/10 4 155520 9 29/60 59/60 4 155520

5 9/10 17/30 4 155520

Figure 1: Pairs (u, v) for which the sequence (u)n · (v)n · cn is (conjecturally) almost integral.

In all cases, the generating functions are (conjecturally) algebraic. Algebraicity degrees are

“guessed” by numerical monodromy computations.

also algebraic. (See [34, Thm. 2] for a very closely related result.) Inspired by these results,

it is natural to look at the following question.

Question 2.9. Find (u, v) ∈ Q such that c̃n := wn · (u)n · (v)n · cn ∈ Z for all n ≥ 0, for some

w ∈ Z.

A natural related question is the following.

Question 2.10. Is it true that for these (u, v) ∈ Q, the generating function
∑

n≥0 c̃nx
n is

algebraic?

In a work (in progress) by Bostan, Weil and Yurkevich, the following result is conjectured:

Conjecture 2.11. The only pairs (u, v) ∈ Q2 ∩ (0, 1)2 such that there exists w ∈ Z such that

c̃n := wn · (u)n · (v)n · cn ∈ Z for all n ≥ 0 are the ones listed in Fig. 1. Moreover, for each of

these pairs, the corresponding generating function
∑

n≥0 c̃nx
n is algebraic, of algebraicity degree

as in Fig. 1.

For instance, in case 4 of Figure 1, Conjecture 2.11 states that the generating function of

the sequence c̃n := (214 · 37 · 54)n · (7/30)n · (9/10)n · cn,

∑

n≥0

c̃nx
n = 1− 3042900x + 58917109730850x2 − 1389307608898903890000x3 + · · ·

is an algebraic solution of degree 155520 of the following order-4 (irreducible) operator

L4 = 125x3 (88335360x + 1)
(
7739670528000x2 + 31104000x + 1

)
∂4
x+

25x2
(
35095911228443197440000x3 + 95685546737664000x2 + 2823828480x + 23

)
∂3
x+

60x
(
36896918938488668160000x3 + 56436938459136000x2 + 1177963920x + 7

)
∂2
x+(

1254982687120120872960000x3 + 654118326337536000x2 + 16648081920x + 12
)
∂x+

42055270898174263296000x2 − 134823448166400x + 36514800.

In particular, this operator admits (conjecturally) only algebraic solutions. To our knowledge,

this is an open problem. A heuristic check is based on Conjecture 1.11: it is not difficult to

check (using a computer-algebra system) that the remainder of the left Euclidean division of

∂p
x by L4 is zero for all primes 5 < p < 100 except for p ∈ {7, 31}. Conjecture 1.11 then

suggests that indeed L4 possesses algebraic solutions only.
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3 Grothendieck’s conjecture and the p-curvature

The examples presented in §2 motivate the following question: given the linear differential

equation (1) with coefficients in Q(x), can we give necessary and/or sufficient conditions for

admitting algebraic solutions (either one, or all of them)?

As already mentioned earlier, Grothendieck’s conjecture (Conjecture 1.11) provides such

a criterion: in its enhanced version (Conjecture 3.16) it relates the existence of a “full basis of

algebraic solutions” of the differential equation (1) to the existence of a “full basis of rational

solutions” of its reductions modulo almost all prime numbers p.

The aim of this section is, first of all, to introduce the notion of p-curvature and to state

a precise version of Grothendieck’s conjecture. We first examine in details the case of first

order equations in §3.1 and come to the general case in §3.2. The next subsections are more

focussed on the p-curvature itself: in §3.3, we will describe efficient methods for computing

it in practice, while in §3.4, we will examine how it controls the growth of denominators and,

in particular, the integrality of the solutions of the starting differential equation.

3.1 The case of equations of order 1

Consider a linear differential operator of order 1

L = ∂x + a(x) (13)

with a(x) ∈ Q(x). It makes sense to consider the reduction a(x)mod p ∈ Fp(x) of (the

coefficients of) a(x) modulo p for almost all prime numbers p. Thus, one can consider the

reduction

Lp = ∂x + a(x)mod p (14)

of L modulo p for almost all primes p. This is a linear differential operator of order 1 with

coefficients in Fp(x). Our aim is to relate the existence of a nonzero algebraic solution of (13)

to the existence of nonzero rational solutions of the reduced equations (14).

In what follows, we say that a function f is a solution of L (resp. of Lp) when it is a

solution of the corresponding differential equation, i.e. when L (f) = 0 (resp. Lp(f) = 0).

3.1.1 Rational and algebraic solutions in characteristic 0: a criterion

What makes the case of first order equations tractable is the fact that there is an explicit

criterion for the existence of a nonzero algebraic (or rational) solution.

Proposition 3.1. The monic first order differential operator (13) has a nonzero rational (resp.

algebraic) solution if and only if its constant coefficient a(x) has at most a simple pole with

integral (resp. rational) residue at each point of Q and vanishes at∞.

Proof. We first consider the “rational case”. Let us first assume that a(x) has at most a simple

pole with integral residue at each point of Q and vanishes at∞. We thus have

a(x) =
m∑

i=1

ni

x− ai
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for some ai ∈ Q and some ni ∈ Z. A straightforward calculation shows that

f(x) =

m∏

i=1

(x− ai)
ni

is a nonzero rational solution of (13).

Conversely, assume that (13) has a nonzero rational solution f(x). This f(x) can be

factored as a product of linear factors f(x) = c
∏m

i=1(x−ai)
ni with c ∈ Q

×
, ai ∈ Q and ni ∈ Z.

A straightforward calculation yields

a(x) =
f ′(x)
f(x)

=

m∑

i=1

ni

x− ai
.

This shows that a(x) has at most a simple pole with integral residue at each point of Q and

vanishes at∞, as expected.

We now consider the “algebraic case”. Let us first assume that a(x) has at most a simple

pole with rational residue at each point of Q and vanishes at∞. We thus have

a(x) =

m∑

i=1

ei
x− ai

for some ai ∈ Q and some ei ∈ Q. Then, again, a straightforward calculation shows that

f(x) =
m∏

i=1

(x− ai)
ei

is a nonzero algebraic solution of (13).

Conversely, assume that (13) has a nonzero algebraic solution f(x). Let M(Y ) = Y N +∑N−1
i=0 mi(x)Y

i ∈ Q(x)[Y ] be the minimal polynomial of f(x) over Q(x). By differentiating

the equality M(f) = 0 with respect to x and by using f ′(x) = a(x)f(x), we get

0 = M(f)′ = NfN−1f ′ +
N−1∑

i=0

m′
i(x)f

i +

N−1∑

i=0

mi(x)if
i−1f ′

= NfN−1a(x)f +

N−1∑

i=0

m′
i(x)f

i +

N−1∑

i=0

mi(x)if
i−1a(x)f

= Na(x)fN +

N−1∑

i=0

(m′
i(x) +mi(x)ia(x))f

i.

Hence, the polynomial P (Y ) = Na(x)Y N +
∑N−1

i=0 (m′
i(x) +mi(x)ia(x))Y

i satisfies P (f) = 0.

By minimality of M(Y ), we get P (Y ) = Na(x)M(Y ). Equating the constant terms in this

equality, we get that m0(x) is a nonzero solution in Q(x) of y′(x) = Na(x)y(x). Using the

“rational case” treated above, we get that Na(x) has at most a simple pole with integral

residue at each point of Q and vanishes at ∞. Hence, a(x) has at most a simple pole with

rational residue at each point of Q and vanishes at∞, as expected.

Note that the proof above is very similar (in fact, generalizes) the one used in Example 1.2

to prove that the exponential function is transcendental.
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3.1.2 Algebraic solutions: from characteristic 0 to characteristic p

We shall now consider the following question: assuming that (13) has a nonzero algebraic

solution, what can be said about the reduced equation (14)? It is natural to expect that the

latter has a nonzero algebraic solution as well for almost all primes p. Actually, something

even better happens.

Example 3.2. Consider the differential equation

y′ =
1

2(x− 1)
y. (15)

It has a nonzero algebraic solution, namely f(x) = (1 − x)1/2. For any prime p 6= 2, one can

consider the reduction of (15) modulo p. Any such reduced equation has a nonzero algebraic

solution, namely fp(x) = (1 − x)1/2. Let us clarify our notations: fp(x) is a root of the

polynomial Y 2 − (1− x) ∈ Fp(x)[Y ], whereas f(x) is a root of the polynomial Y 2 − (1− x) ∈
Q(x)[Y ]. However, the reduction of (15) modulo p can also be written as y′ = np

x−1y where

np ∈ Z is such that np ≡ 1
2 mod p and, hence f̃p(x) = (1 − x)np is a nonzero solution of

the reduction modulo p of (15). The interesting point is that f̃p(x) is not only algebraic but

rational, contrary to fp(x)!

The conclusion of this example is a general fact as shown by Theorem 3.5 below. Let us

first give an analogue in positive characteristic of the “rational case” of Proposition 3.1.

Proposition 3.3. Consider b(x) ∈ Fp(x). The differential equation

y′ + b(x)y = 0

has a nonzero rational solution if and only if b(x) has at most a simple pole with residue in Fp

at each point of Fp and vanishes at∞.

Proof. The proof is entirely similar to the proof of the rational case of Proposition 3.1, it is

sufficient to replace everywhere Q by Fp and Z by Fp.

Example 3.4. Consider the differential equation

y′ =
1

x2 + 1
y (16)

whose general solution in characteristic zero is c ·exp(arctan(x)) where c is a constant. We are

interested in determining whether or not this equation has a rational solution in characteris-

tic p > 0. Modulo p = 2, the rational function b(x) = 1/(x2 + 1) writes 1/(x+ 1)2; thus it has

a pole of order 2 and hence the differential equation (16) has no nonzero rational solutions

by Proposition 3.3. For p 6= 2, the partial fraction decomposition of b(x) reads

b(x) =
i

2
·
(

1

x+ i
− 1

x− i

)

where i denotes a square root of −1 in Fp. We now need to distinguish between two cases

depending on the congruence class of p modulo 4. Indeed, when p ≡ 1 (mod 4), we have
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i ∈ Fp and so the residues belong to Fp as well. In this case, the equation (16) has then a

nonzero rational solution, namely

y(x) =

(
x+ i

x− i

)i/2

,

where the exponent i/2 is a lift in Z of i/2 ∈ Fp. On the contrary, when p ≡ 3 (mod 4), we

know that −1 is not a square in Fp, showing that the residues are not is Fp either. Therefore,

in this case, the equation (16) has no nonzero rational solution.

Theorem 3.5. If (13) has a nonzero algebraic solution, then, for almost all primes p, (14) has

a nonzero rational solution.

Proof. Proposition 3.1 (and its proof) ensures that

a(x) =
m∑

i=1

ei
x− ai

(17)

for some ai ∈ Q and some ei ∈ Q.

Let us first assume that the ai’s belong to Q. For any prime p, we let Z(p) be the ring of

rational numbers with denominator relatively prime to p. We denote by πp : Z(p) → Fp the

“reduction modulo p” map. For almost all primes p, the ai’s and the ei’s belong to Z(p). For

any such p, we have:

a(x)mod p =

m∑

i=1

πp(ei)

x− πp(ai)

and the result follows from Proposition 3.3.

The proof in the general case is similar but requires basic notions from algebraic number

theory. Let K be a number field containing the ai and the ei. Let OK be the ring of integers

of K. For any prime P of K (which is by definition a prime ideal of OK), we let OP be

the valuation ring of K at P. We denote by κP the corresponding residue field and by πP :
OP → κP the quotient map. The residue field κP is a finite field of characteristic p such that

P∩Z = (p). We say that P is above p. For almost all primes p, for all primes P of K above p,

the ai’s and the ei’s belong to OP. For such p and P, we have:

a(x)mod p = a(x)modP =

m∑

i=1

πP(ei)

x− πP(ai)
.

Since ei is rational, πP(ei) belongs to the prime subfield Fp of κP. The result follows from

Proposition 3.3.

3.1.3 From characteristic p to characteristic 0

It is now tempting to ask: if (14) has a nonzero rational solution for almost all primes p,

does (13) have a nonzero algebraic solution? The (positive) answer is given by the following

result.

Theorem 3.6 (Honda [43]). The converse of Theorem 3.5 holds true, i.e., if, for almost all

primes p, (14) has a nonzero rational solution, then (13) has a nonzero algebraic solution.
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Proof. Consider the partial fraction decomposition of a(x):

a(x) = P (x) +

m∑

i=1

ri∑

j=1

αi,j

(x− ai)j

with P (x) ∈ Q[x], ai ∈ Q, αi,j ∈ Q and rj ∈ Z≥1. According to Proposition 3.1, we have to

prove that P (x) and the αi,j ’s for j ≥ 2 are 0 and that the αi,1’s belong to Q.

Let K be a number field containing the ai, the αi,j ’s and the coefficients of P (x). We will

use the notation and terminology (prime P of K, valuation ring OP, quotient map πP, etc.)

introduced in Theorem 3.5. For almost all primes p, for all primes P of K above p, the ai’s,
the αi,j ’s and the coefficients of P (x) belong to OP. For such p and P, we have:

a(x)mod p = a(x)modP = P πP(x) +
m∑

i=1

ri∑

j=1

πP(αi,j)

(x− πP(ai))j
,

where P πP(x) denotes the polynomial obtained from P (x) by applying πP coefficientwise.

Proposition 3.3 ensures that, for almost all primes p, a(x)mod p has at most simple poles,

so, for almost all primes p, for all primes P of K above p, for all j ∈ {2, . . . , ri}, we have

πP(αi,j) = 0, i.e., αi,j ∈ P. This implies that, for all j ∈ {2, . . . , ri}, we have αi,j = 0.

Similarly, Proposition 3.3 also ensures that, for almost all primes p, a(x)mod p vanishes at

∞, so, for almost all primes p, for all primes P of K above p, P πP(x) = 0. This implies that

P (x) = 0. Last, Proposition 3.3 ensures that, for almost all primes p, for all primes P above p,

we have πP(αi,1) ∈ Fp. Using Kronecker’s Theorem recalled below, we get that αi,1 belongs

to Q and Proposition 3.1 yields the desired result: (13) has a nonzero algebraic solution.

The Kronecker Theorem mentioned above (which is usually seen as a consequence of

Chebotarev’s density Theorem) reads as follows

Theorem 3.7 (Kronecker). An irreducible element P (x) of Q[x] such that, for almost all primes p,

P (x)mod p has a zero in Fp is linear.

3.1.4 Rational solutions in characteristic p and p-curvature

Consider a differential equation

y′ + b(x)y = 0 (18)

with b(x) ∈ Fp(x). We will give an alternative criterion (an alternative to Proposition 3.3) for

determining whether (18) has a nonzero rational solution based on the notion of p-curvature

that we shall now introduce.

Consider the Fp(x
p)-linear map

∆ : Fp(x) → Fp(x)

f 7→ f ′ + b(x)f.

The additivity is clear, the homogeneity follows from the fact the elements of Fp(x
p) are

constants of (the differential field) Fp(x) in the sense that their derivative is 0 (more precisely,

Fp(x
p) = {f(x) ∈ Fp(x) | f ′(x) = 0}) implying that (αf)′ = αf ′ for all α ∈ Fp(x

p) and

f ∈ Fp(x).
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Definition 3.8. The map

∆p : Fp(x)→ Fp(x)

is called the p-curvature of (18).

A remarkable and fundamental fact is that the p-curvature is not only Fp(x
p)-linear but it

is also Fp(x)-linear. Indeed, a simple induction along with the Leibniz rule show that, for all

k ≥ 0, for all α, f ∈ Fp(x), we have

∆k(αf) =
k∑

i=0

(
k

i

)
α(i)∆k−i(f).

Taking k = p and using the fact that
(p
i

)
≡ 0 mod p for all 1 < i < p, we get

∆p(αf) = α(p) + α∆p(f),

and therefore the Fp(x)-homogeneity follows from the fact that α(p) = 0.

Proposition 3.9. The differential equation (18) has a nonzero rational solution if and only if

∆p = 0.

Proof. If (18) has a nonzero rational solution f , then ∆(f) = 0 and, hence, ∆p(f) = 0. As ∆p

is Fp(x)-linear, we get ∆p = 0. Conversely, if ∆p = 0, then ∆ has a nonzero kernel (otherwise,

∆ and, hence, ∆p would be Fp(x
p)-linear isomorphisms of Fp(x)).

Remark 3.10. Actually, an easy calculation shows that, if (18) has p-curvature 0, then an

explicit nonzero rational solution is given by

p−1∑

k=0

(−1)k x
k

k!
∆k(1).

We conclude this section by giving inductive and closed formulae for the p-curvature. As

it is Fp(x)-linear, the p-curvature is entirely determined by its value at 1:

∀f ∈ Fp(x), ∆
p(f) = ∆p(1)f.

For this reason, we often say that the p-curvature of (18) is ∆p(1).
It turns out that the p-curvature ∆p(1) can be calculated inductively. Indeed, we first

notice that, for all k ≥ 0, we have in the ring of differential operators a relation of the form

(
∂x + b(x)

)k
= ∂k

x + ⋆∂k−1
x + · · ·+ ⋆∂x + bk(x), (19)

where ⋆ are some unspecified elements of Fp(x). Equating the terms of degree 0 (with respect

to ∂x) in the equality (∂x+b(x))k+1 = (∂x+b(x)) · (∂x+b(x))k, we get the following inductive

formula for computing the bk(x)’s:

∀k ≥ 0, bk+1(x) = b′k(x) + b(x)bk(x). (20)

This gives the expected inductive formula for the p-curvature of (18), since this is equal to

∆p(1) = bp(x).
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Remark 3.11. When k = p, it is actually possible to determine the coefficients ⋆ in Eq. (19).

Indeed, we observe that (∂x + b(x))p is a central element in Fp(x)〈∂x〉. This shows that the

right-hand side of Eq. (19) must be central as well, implying eventually that all terms in ∂i
x

with 0 ≤ i < p have to vanish, and that bp(x) belongs to Fp(x
p).

In conclusion, we have the relation

(
∂x + b(x)

)p
= ∂p

x + bp(x).

From this, we deduce that bp(x) is also the opposite of the remainder in the Euclidean division

of ∂p
x by L = ∂x + b(x). In particular, the p-curvature vanishes if and only if L divides ∂p

x in

Fp(x)〈∂x〉.

Last, one can deduce from (20) the following remarkable closed formula (that does not

extend to higher order equations).

Theorem 3.12. We have bp(x) = b(p−1)(x) + b(x)p.

Proof (after Jacobson [44]). For a positive integer k, let Ik be the set of all tuples α = (α1, . . . , αk)
of nonnegative integers such that

∑k
i=1 iαi = k. A calculation shows that bk(x) is explicitly

given by

bk(x) =
∑

α∈Ik
λα · b(x)α1 · b(1)(x)α2 · · · b(k−1)(x)αk ,

where λα is a coefficient in Z determined by the following rule

λα =
k∑

i=1

(αi−1 + 1) · λτi(α) (for α ∈ Ik),

where τi denotes the function from Ik to Ik−1 defined by

τi(α) = (α1, . . . , αi−2, αi−1−1, αi+1, αi+1, . . . , αk−1)

and where we agree that λβ = 0 if β has one negative coordinate. From this relation, one can

check by induction on k that λα (with α = (α1, . . . , αk) ∈ Ik) is given by the closed formula:

λα =
k!

(α1)! · · · (αk)! · (2!)α2 · (3!)α3 · · · (k!)αk
.

In particular, when k = p, we find that the λα’s vanish modulo p for all α ∈ Ip (thanks to

the numerator p!) except when α = (p, 0, . . . , 0) or α = (0, . . . , 0, 1) (because, in those cases,

the numerator cancels with a factor p! in the denominator). Besides, in both cases, one finds

λα = 1. This concludes the proof.

Remark 3.13. Remarkably, the explicit formula of Theorem 3.12 provides a second proof of

Proposition 3.3. Indeed, consider a rational function b(x) ∈ Fp(x) and write its partial fraction

decomposition

b(x) = P (x) +
m∑

i=1

ri∑

j=1

βi,j
(x− bi)j
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where P (x) is a polynomial, the bi’s are pairwise distinct elements of Fp and βi,j ∈ Fp with

βi,ri 6= 0. Each bi is a pole of b(x) of multiplicity ri and residue βi,1. Moreover, b(x) has an

extra pole at infinity when the degree of P (x) is positive. A direct computation now gives:

bp(x) = P (p−1)(x) + P (x)p −
m∑

i=1

∑

1≤j≤ri
j≡1 mod p

βi,j
(x− bi)j+p−1

+

m∑

i=1

ri∑

j=1

βp
i,j

(x− bi)pj

and we see that the latter is zero if and only if P (x) vanishes and, for all i ∈ {1, . . . ,m}, we

have ri = 1 and βp
i,1 = βi,1, i.e. βi,1 ∈ Fp. After Proposition 3.9, we then recover by different

means the result of Proposition 3.3.

Example 3.14. Applying the above recipe with the differential operator

Lp = ∂x −
1

x2 + 1

of Example 3.4, we find that its p-curvature is explicitly given by

bp(x) = −
cp

(x2 + 1)p

where cp = 1 if p = 2, cp = 0 for p ≡ 1 (mod 4) and cp = 2 for p ≡ 3 (mod 4). In particular,

we retrieve by different means the dichotomy that we had already observed in Example 3.4.

The situation can be more complex if we slightly change the coefficient b(x). For instance,

consider the first-order differential operator:

Lp = ∂x −
1

x3 − x− 1
.

Its p-curvature is zero if and only if the polynomial x3−x−1 splits in Fp[x] and p 6= 23. By [64,

§5.3], this happens only for the primes p ∈ {59, 101, 167, 173, 211, 223, 271, 307, 317, . . .} that

have the property that p 6= 23 and they can be written as p = m2 +mn+ 6n2 with m,n ∈ Z,

or equivalently, if and only if the coefficient of xp−1 in
∏∞

n=1(1 − xn)(1 − x23n) is equal to

2. We leave the proofs of these statements as nice exercises for the reader. (See also [69,

Prop. 3.3].)

Putting together Theorem 3.5, Theorem 3.6, Proposition 3.9 and Remark 3.11, we obtain

the following result.

Theorem 3.15. Let L = ∂x + a(x) as in Eq. (13) and, for almost all prime numbers p, denote

by Lp its reduction modulo p as in Eq. (14). The following properties are equivalent:

(1) L has a nonzero algebraic solution;

(2) for almost all primes p, Lp has a nonzero rational solution;

(3) for almost all primes p, the p-curvature of Lp vanishes;

(4) for almost all primes p, the operator Lp divides ∂p
x in Fp(x)〈∂x〉.

Grothendieck’s p-curvature conjecture is a far reaching conjectural generalization of these

equivalences for higher order equations.
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3.2 Grothendieck’s conjecture

Let us now consider a linear differential operator of arbitrary order:

L = ∂n
x + an−1(x)·∂n−1

x + · · ·+ a1(x)·∂x + a0(x) (21)

with ai(x) ∈ Q(x). As in the order-1 case, one can consider the reduction Lp of L modulo p
for almost all primes p. This is a differential operator of order n with coefficients in Fp(x).
Grothendieck’s conjecture relates the algebraicity of the solutions of L to the rationality of

the solutions of Lp for almost all prime p.

First of all, we notice that the straightforward generalization of Theorem 3.15 cannot be

true for higher order differential operators; indeed, we have seen in §2 many examples of

differential equations that do not admit algebraic solutions and whose reductions modulo p
have nonzero rational solutions for almost all p; this is the case, for instance, of most of hyper-

geometric functions and diagonals. The main new insight behind Grothendieck’s conjecture

is the brilliant idea to replace the existence of a unique nonzero solution by the existence of a

full basis of solutions.

We remind that the set of solutions of L in Q(x) is a Q-vector space of dimension at

most n. When this dimension is maximal, that is, equal to n, we say that L has a full basis

of algebraic solutions. Similarly, it is tempting to look at the set of solutions of Lp in Fp(x)
as an Fp-vector space. However, the example given by the differential equation y(p) = 0
shows that this vector space may be infinite dimensional (any element of Fp(x) is a solution

of y(p) = 0). The point is that Q is the relevant base field in characteristic 0 because it is the

field of differential constants of Q(x); in characteristic p, the field of differential constants of

Fp(x) is not Fp but Fp(x
p) (thus, a differential constant may depend on x in characteristic

p!). Now, one can prove that the set of solutions of Lp in Fp(x) is an Fp(x
p)-vector space of

dimension at most n. When this dimension is maximal, that is, equal to n, we say that Lp has

a full basis of rational solutions.

We are now ready to state Grothendieck’s conjecture.

Conjecture 3.16 (Grothendieck’s conjecture). For a differential operator L ∈ Q(x)〈∂x〉 as in

Eq. (21), the following properties are equivalent:

(1) L has a full basis of algebraic solutions;

(2) for almost all primes p, Lp has a full basis of rational solutions.

3.2.1 Rational solutions in characteristic p and p-curvature

Consider the equation

L = ∂n
x + bn−1(x)·∂n−1

x + · · ·+ b1(x)·∂x + b0(x) (22)

with bi(x) ∈ Fp(x). There is no straightforward generalization of Proposition 3.3 for determin-

ing whether (22) has a full basis of rational solutions but the criterion given by Proposition

3.9 via the p-curvature does extend to higher order equations. Let us briefly explain this.
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Let Y ′ +B(x)Y = 0 be the differential system associated to (22), where

B =




0 −1 0 · · · 0 0
0 0 −1 · · · 0 0
...

...
...

...
...

...

0 0 0 · · · −1 0
0 0 0 · · · 0 −1
b0 b1 b2 · · · bn−2 bn−1




∈Mn(Fp(x)). (23)

Mimicking what has been done in Section 3.1.4 in the order-1 case, we consider the Fp(x
p)-

linear map

∆ : Fp(x)
n → Fp(x)

n

F 7→ F ′ +B(x)F.

Definition 3.17. The map

∆p : Fp(x)
n → Fp(x)

n

is called the p-curvature of (22).

As in the first-order case, one can easily prove that the p-curvature is not only Fp(x
p)-linear,

but also Fp(x)-linear. Moreover, the inductive formula (20) for computing the p-curvature of

equations of order 1 can be extended as follows: the matrix Bp(x) of the p-curvature with

respect to the canonical basis is given by the recurrence

Bk+1(x) = B′
k(x) +B(x)Bk(x) (24)

starting with B0(x) = B(x).
The following fundamental result is a generalization of Proposition 3.9 to higher order

differential equations.

Theorem 3.18 (Cartier’s lemma). Let L ∈ Fp(x)〈∂x〉 be a differential operator as in Eq. (22).

The following properties are equivalent:

(1) L has a full basis of rational solutions;

(2) the p-curvature of L (that is ∆p) vanishes;

(3) L divides ∂p
x in Fp(x)〈∂x〉.

Proof. Let us first note that the following properties, relative to the Fp(x
p)-vector space S :=

ker(∆), are equivalent:

• the differential equation (22) has a full basis of rational solutions;

• the Fp(x
p)-vector space S has dimension n;

• the Fp(x)-vector space Fp(x)
n is spanned by S.
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The equivalence between the first two properties is immediate. The equivalence between the

last two properties follows from the wronskian lemma.

If L has a full basis of rational solutions, then the Fp(x)-vector space Fp(x)
n is spanned

by S. Since ∆p is Fp(x)-linear and vanishes on S, we have ∆p = 0. Conversely, assume that

∆p = 0. We will prove that the Fp(x)-vector space Fp(x)
n is spanned by S. Consider the map

P : Fp(x)
n → Fp(x)

n

F 7→
p−1∑

k=0

(−1)k x
k

k!
∆k(F ).

A simple calculation shows that

∆(P (F )) = −(−x)p−1∆p(F ) = 0

and, hence, P has values in S. But, another simple calculation shows that, for all F ∈ Fp(x)
n,

we have

F =

p−1∑

k=0

xk

k!
P (∆k(F )).

This shows that the Fp(x)-vector space Fp(x)
n is spanned by S. We have then proved the

equivalence between the two first assertions.

Now, we notice that, given rational functions f0(x), . . . , fr−1(x), g0(x), . . . , gr−1(x), the

equality

∆
(
f0(x), . . . , fr−1(x)

)
=
(
g0(x), . . . , gr−1(x)

)

is equivalent to the following congruence in Fp(x)〈∂x〉:
(
f0(x) + · · ·+ fr−1(x)∂

r
x

)
· ∂x ≡ g0(x) + · · ·+ gr−1(x)∂

r
x (mod L ).

It follows from this observation that, writing Ei = (0, . . . , 0, 1, 0, . . . , 0) with the coordinate 1
in i-th position, the coordinates of ∆p(Ei) are exactly the coefficients of the remainder in the

division of ∂p+i
x by L . Hence ∆p(Ei) vanishes if and only if L divides ∂p+i

x . The equivalence

between the second and the third condition of the theorem follows immediately.

Remark 3.19. The three assertions of Theorem 3.18 are also equivalent to

(4) L admits n power series solutions in Fp[[x]], linearly independent over Fp((x
p));

(5) L admits n polynomial solutions in Fp[x], linearly independent over Fp((x
p)).

The implication (5) =⇒ (4) is proved in [43, Lemma 1], while (5) =⇒ (1) is trivial. Moreover,

under the equivalent assertions (1)–(5), Proposition 1 in [21] shows that there exists a full

basis of polynomial solutions in Fp[x], each of them having degree less than pd, where d is the

maximal degree of the numerators/denominators of the coefficients bi(x) of L in (22).

Remark 3.20. Assume that L has p-curvature zero. An easy calculation shows that

U0(x) =

p−1∑

k=0

(−1)k x
k

k!
Bk(x) ∈Mn(Fp(x))
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is a solution of Y ′ + B(x)Y = 0. If, moreover, B(x) has no pole at 0, then U0(x) has no pole

at 0 as well and we have U0(0) = In, so U0(x) is a fundamental matrix of rational solutions of

Y ′ + B(x)Y = 0. If B(x) has a pole at 0, then U0(x) is not necessarily invertible. Note that,

more generally, if a ∈ Fp is not a pole of B(x), then

Ua(x) =

p−1∑

k=0

(−1)k (x− a)k

k!
Bk(x− a)

is a fundamental matrix of rational solutions of Y ′ +B(x)Y = 0.

Putting together all what precedes, we obtain a simple algorithm to determine whether

(22) has a full basis of rational solutions: compute inductively Bp(x) and, then, check whether

Bp(x) vanishes. Note however that no extension of the simple formula of Theorem 3.12 is

known for higher order differential equations. Roughly speaking, this is due to the fact that,

contrarily to Fp(x), the ring of n×n matrices over Fp(x) is noncommutative as soon as n ≥ 2.

Computing the p-curvature is then much more complicated in this case but rather efficient

algorithms for this task are nevertheless available; we will present them in Subsection 3.3.

Using Theorem 3.18 (Cartier’s lemma), we get the following reformulation of Grothendieck’s

conjecture.

Conjecture 3.21 (Grothendieck’s conjecture in terms of p-curvature). For a differential opera-

tor L as in Eq. (21), the following properties are equivalent:

(1) L has a full basis of algebraic solutions;

(2) for almost all primes p, the p-curvature of Lp vanishes;

(3) for almost all primes p, Lp divides ∂p
x in the ring of differential operators Fp(x)〈∂x〉.

3.2.2 Progresses toward Grothendieck’s conjecture

A known case: the generalized hypergeometric equations

It is in general very difficult to determine whether a given differential equation has a full

basis of algebraic solutions. In their celebrated work [8], Beukers and Heckman managed

to do this for an important class of differential equations, omnipresent in the mathemat-

ical and physical literature, namely the so-called generalized hypergeometric equations. In

fact, Beukers and Heckman extended the Landau-Errera criterion mentioned in §2.1.3. Let

a = {a1, . . . , as+1} and b = {b1, . . . , bs, bs+1 = 1} be two sets of rational parameters, as-

sumed disjoint modulo Z. This assumption is equivalent to the irreducibility in Q(x)〈∂〉 of the

“generalized hypergeometric operator” defined by

H (a,b) := (x∂x + b1 − 1) · · · (x∂x + bs − 1)x∂x − x(x∂x + a1) · · · (x∂x + as+1).

It is easy to check that H (a,b) admits in its solution space the generalized hypergeomet-

ric function s+1Fs([a1, . . . , as+1], [b1, . . . , bs];x) defined in (11). The Beukers-Heckman result

then reads as follows.

Theorem 3.22 (“interlacing criterion”, Beukers-Heckman, [8]). Given two sets of rational

numbers a = {a1, . . . , as+1} and b = {b1, . . . , bs, bs+1 = 1}, assumed to be disjoint modulo Z, let

D be the common denominator of their elements. Then, the following assertions are equivalent:
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1. the hypergeometric function s+1Fs([a1, . . . , as+1], [b1, . . . , bs];x) is algebraic;

2. the operator H (a,b) admits a full basis of algebraic solutions;

3. for all 1 ≤ ℓ < D with gcd(ℓ,D) = 1 the sets {e2πiℓaj , j ≤ s + 1} and {e2πiℓbj , j ≤ s + 1}
interlace on the unit circle.

Example 3.23. The Beukers-Heckman criterion immediately implies that the operator H (a,b)
admits a full basis of algebraic solutions for the choice

a =

{
1

30
,
7

30
,
11

30
,
13

30
,
17

30
,
19

30
,
23

30
,
29

30

}
, b =

{
1

5
,
1

3
,
2

5
,
1

2
,
3

5
,
2

3
,
4

5
, 1

}
.

This proves in particular a beautiful observation due to Fernando Rodriguez-Villegas, namely

that the generating function
∑

n≥0 unx
n of the sequence

un :=
(30n)!n!

(15n)!(10n)!(6n)!

(used by Chebyshev in his work on estimates for the prime counting function) is algebraic.

Note that without the irreducibility assumption on H (a,b), the situation is much more

subtle. For instance, 2F1([1/2, 1/3], [3/2];x) is transcendental, while 2F1([3/2, 1/3], [1/2]; x)
is algebraic. In a work (in progress) by Fürnsinn and Yurkevich, a generalization of Theo-

rem 3.22 is given, which allows to decide algebraicity/transcendence of arbitrary generalized

hypergeometric functions (with potentially irrational parameters).

In addition to Theorem 3.22, Beukers and Heckman also drew up in [8] the list of gen-

eralized hypergeometric equations having a full basis of algebraic solutions, thus extending

Schwarz’s classification of algebraic 2F1’s [62].

On the other hand, a calculation due to Katz in [46, §5.5] (also in [45, §6] for the specific

case of 2F1’s) shows that this list coincides with the list of generalized hypergeometric equa-

tions whose reductions modulo p have a full basis of rational solutions for almost all primes

p, in accordance with Grothendieck’s conjecture.

State of the art on Grothendieck’s conjecture

Besides for order-1 equations and for generalized hypergeometric equations, Grothendieck’s

conjecture has been proved in several particular cases.

On the one hand, for Picard-Fuchs differential equations (satisfied by periods of a family

of smooth algebraic varieties), and more generally for certain direct factors, Grothendieck’s

conjecture was established by Katz [45]. As an application, Katz gave in [46, Theorem 5.5.3]

a new proof of the aforementioned results of Beukers and Heckman [8] about the generalized

hypergeometric equations. Katz [45, §1], and later André [4, §III], related the p-curvatures

to the reduction modulo p of the so-called Kodaira-Spencer map. (See also Foucault [40] and

Foucault and Toffin [41] for explicit computations for families of curves of genus 2 and 3.)

As explained in [4, p. 108], this approach has a potential of delivering effective versions of

Grothendieck’s conjecture, similar to effective versions of Chebotarev’s density theorem [52,

63]: the hope is to obtain, for instance for any Picard-Fuchs operator L , an integer N(L )
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such that the fact that L has a full basis of algebraic solutions can be read off the p-curvatures

of L for the primes p < N(L ).
On the other hand, an arithmetic approach to Grothendieck’s conjecture was introduced

by the Chudnovsky brothers [30] who proved Grothendieck’s conjecture for any rank one

linear homogeneous differential equation over an algebraic curve [30, Theorem 8.1] (the

case of first order equations over P1 had been proved by Honda in [43, §1]). They also

proved Grothendieck’s conjecture for the class of Lamé equations [30, Theorem 7.2], of the

form

p(x)y′′(x) +
1

2
p′(x)y′(x)−

(
n(n+ 1)x+B

)
·y(x) = 0

where n ∈ N, B ∈ Q and p(x) ∈ Q[x] has degree 3. The arithmetic approach was extended

by André to the case when the differential Galois group has a solvable neutral component [4]

(see also [2], [3, Chap. VIII], [10, Thm. 2.9] and [26, Thm. 3.5]).

Using the language of schemes and sheaves, Grothendieck’s conjecture can be formulated

more generally for differential equations over any algebraic smooth curve defined over a

number field. In [4, Remark 7.1.4], André noticed that, using Belyi maps, one can reduce the

general case to that of the curve X = P1\{0, 1,∞}. In our setting, this means that one can

safely assume that the differential operator L has only singularities at 0, 1 and∞. Under this

additional assumption, Tang [68] proves that if all3 the p-curvatures of L vanish, then L

has a full basis of rational solutions. Although this latter result differs from Grothendieck’s in

the hypotheses (which are stronger) and the conclusion (which is also stronger), it is closely

related.

We also point out the work of Bost in [10] giving an algebraicity criterion for leaves of

algebraic foliations defined over number fields. For additional details, we refer to [26]. We

mention the work of van der Put in [70] concerned with inhomogeneous equations of order 1.

Other special cases of the conjecture have been proven recently, see [37, 65, 58]. Last but not

least, an analogue of Grothendieck’s conjecture for q-difference equations was conjectured by

Bézivin [9, §5] and proved by Di Vizio in [31].

3.2.3 A formal parallel with Kronecker’s theorem

It is instructive to observe that Grothendieck’s conjecture appears to be, in some sense, a differ-

ential version of Kronecker’s theorem we have already encountered earlier (see Theorem 3.7).

Indeed, Kronecker’s theorem can be reformulated as follows.

Theorem 3.24. For a separable polynomial L ∈ Q[x], the following conditions are equivalent:

(1) all the roots of L are in Q;

(2) for almost all primes p, all the roots of L mod p are in Fp;

(3) for almost all primes p, we have Xp ≡ X (mod L, p).

It is striking that the three conditions of Theorem 3.24 are formal analogues of the condi-

tions of Conjecture 3.16, at least if we admit that algebraic solutions in the differential case

correspond to rational solutions in the algebraic case. Besides, the fact that the condition

Xp ≡ X (mod L, p) translates to ∂p
x ≡ 0 (mod L , p), i.e. that the right-hand side shifts from

3When L does not reduce properly at a prime p, the p-curvature of Lp is a priori not defined; however Tang

manages to give an alternative definition of the vanishing of the p-curvature, see [68, Definition 2.1.7].
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X to 0, is explained by the fact the classical Frobenius map behaves “multiplicatively” (it be-

longs naturally to some Galois group) while the p-curvature behaves “additively” (it belongs

naturally to some Lie algebra).

In the classical setting, Kronecker’s theorem is obtained as a corollary of Chebotarev’s

density theorem, which is itself proved by means of Artin’s L-functions. Unfortunately, similar

tools do not seem to be available so far in the differential context; developing them might then

sound as an exciting project.

As mentioned above, Honda proved that the Grothendieck conjecture for order-1 differ-

ential equations is equivalent to Kronecker’s theorem. In [30, §4], the Chudnovsky brothers

gave an elementary (although “extravagant”) proof of these equivalent statements; their ap-

proach is based on Hermite’s explicit Hermite-Padé approximants to binomial functions. More

precisely, they proved that if y′(x) = x
αy(x) has zero p-curvature for almost all primes p, then

for all primes ideals p of Q(α) all the binomial coefficients
(
α
n

)
are p-integral for all n. From

there, it is shown that Hermite-Padé approximants to 1, xα, . . . , x(m−1)α at x = 1 with weights

(N, . . . ,N) are trivial for large m and N . This in turn implies that 1, xα, . . . , x(m−1)α are lin-

early dependent over Q(x), that is xα is an algebraic function, which is equivalent to α ∈ Q.

3.3 Computation of the p-curvature

After what we have done previously, it is clear that the p-curvature is an invariant of primary

importance of linear differential equations in characteristic p. In this subsection, we outline

some algorithms for computing it (or other quantities associated to it) efficiently.

3.3.1 Operators of order 1

In the case of differential equations of order 1 of the form (18):

y′ + b(x)y = 0

we have seen in Theorem 3.12 that the p-curvature is explicitly given by the formula

bp(x) = b(p−1)(x) + b(x)p.

Furthermore, computing explicitly the latter is a quite easy task which directly reduces to writ-

ing the partial fraction decomposition of b(x). Indeed, we have seen that if b(x) decomposes

as

b(x) = P (x) +
m∑

i=1

ri∑

j=1

αi,j

(x− ai)j

then

bp(x) = P (p−1)(x) + P (x)p −
m∑

i=1

∑

1≤j≤ri
j≡1 mod p

αi,j

(x− ai)j+p−1
+

m∑

i=1

ri∑

j=1

αp
i,j

(x− ai)pj
.

Importantly for algorithmic purposes, we observe that the size of bp(x) is roughly the same as

the same of the input b(x), although the degree of (the numerator and the denominator of)

the former is p times larger the degree of the latter. This apparent contradiction is explained

by the fact that bp(x) is actually a function of xp; it is then a sparse rational function, in the

sense that a large proportion of its coefficients vanishes.
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Remark 3.25. Another option for computing explicitly the p-curvature of differential oper-

ators of order 1 is presented in [21, Thm. 2]; it avoids the computation of partial fraction

decomposition and to factor the denominator of b(x). Let us briefly sketch it with the differ-

ential operator

∂x −
1

x2 + 1

of Example 3.4. We write b(x) = −1/(x2 + 1) and assume p > 2 for simplicity. In order to

compute bp(x), we expand b(x) in power series:

b(x) = −
∞∑

n=0

(−1)nx2n.

The (p−1)-st derivative of x2n is 0 when 2n 6≡ −1 (mod p), and it is −x2n−p+2 otherwise

thanks to Wilson’s theorem. Writing 2n = p − 1 + pk and noticing that k has to be even,

k = 2ℓ, we end up with

b(p−1)(x) = −
∞∑

ℓ=0

(−1)ℓ− p−1

2 x2ℓp

On the other hand, it is clear that b(x)p = −∑∞
n=0(−1)nx2np. Adding both sums, we find

bp(x) = −
∞∑

n=0

(−1)n ·
(
1− (−1) p−1

2

)
· x2np.

When p ≡ 1 (mod 4), the exponent p−1
2 is even and the term in the parenthesis vanishes.

Therefore bp(x) = 0 in this case. On the contrary, when p ≡ 3 (mod 4), we have

bp(x) = −2 ·
∞∑

n=0

(−1)n · x2np = − 2

1 + x2p
= − 2

(1 + x2)p
.

and we recover the result of Example 3.14.

The same idea applies actually to any differential operator L = ∂x − b(x). Indeed,

as already noticed its p-curvature is a rational function in xp. Besides, it is of the form

f(x)/denom(b(x)), where the numerator f(x) is a polynomial of degree at most d = deg(b(x)).
Hence, it is enough to determine the power series expansion of (b(x)(p−1))1/p at precision xd,

starting from the power series expansion of b(x) at the same precision d. If b(x) =
∑

n≥0 unx
n,

then by Wilson’s theorem we have (b(x)(p−1))1/p = −∑n≥1 unp−1x
n−1, and hence it is enough

to be able to compute the terms up−1, . . . , udp−1. Since b(x) is a rational function, the sequence

(un)n≥0 satisfies a linear recursion of order at most d, with coefficients in Fp (given by the coef-

ficients of denom(b)). As the N -th term of such a linear recurrence with constant coefficients

can be computed using O(d log(d) log(N)) operations in Fp using the technique of binary pow-

ering combined with fast polynomial multiplication in Fp[x], we conclude that the p-curvature

bp(x) can be computed by an algorithm that uses O(d2 log(d) log(p)) operations in Fp.

Note that the reasoning above shows that the p-curvature bp(x) of L = ∂x − b(x) is zero

if and only if the following infinite systems of congruences holds

un ≡ u(n+1)p−1 (mod p) for all n ≥ 0.
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3.3.2 Reading the p-curvature on the solutions

For differential equations of higher orders, the sparcity of the p-curvature no longer holds in

general. However, we have the following result.

Proposition 3.26. Let

L = ∂n
x + bn−1(x)·∂n−1

x + · · ·+ b1(x)·∂x + b0(x)

with bi(x) ∈ Fp(x) and let B(x) be the associated companion matrix (see Equation (23)). Let

f(x) ∈ Fp(x) be a common denominator of the bi(x)’s and

d = max
(
deg f(x), deg(f(x)b0(x)), . . . , deg(f(x)bn−1(x))

)
.

Let Bp(x) be the matrix of the p-curvature of L defined by the recurrence (24). Then, the

following holds.

(i) The matrix Bp(x) has the form 1
f(x)pCp(x) where the entries of Cp(x) are all polynomials

of degree at most dp.

(ii) The matrix Bp(x) is similar to a matrix with coefficients in Fp(x
p).

The last assertion implies that the trace, the determinant of Bp(x) and, more generally,

all the coefficients of its characteristic polynomial lie in Fp(x
p); they are then sparse rational

functions. Combining with Proposition 3.26.(i), we deduce that their sizes is comparable to

the size of the bi(x)’s, although the size of the p-curvature itself is in general p times larger.

In order to design fast algorithms for computing the p-curvature, it is useful to go beyond

Cartier’s lemma (see Proposition 3.18) and relate the p-curvature to the shape of solutions.

Let

L = ∂n
x + bn−1(x)·∂n−1

x + · · ·+ b1(x)·∂x + b0(x)

be a differential operator as before. In §3.2.1, we have seen that, when the p-curvature of L

vanishes and the bi(x)’s have no pole at 0, a fundamental system of solutions of L is explicitly

given by
p−1∑

k=0

(−1)kBk(x)
xk

k!

where the Bk(x)’s are the matrices defined by the recurrence (24). In full generality, i.e.

without assuming the vanishing of Bp, the idea is to consider the formal expansion

∞∑

k=0

(−1)kBk(x)
xk

k!
.

Of course, this does not make sense in Fp(x) because of the division by k!, but we shall see

that it does make sense in a suitable ring. A natural idea to achieve this goal is to introduce

divided powers, i.e. to consider the so-called ring of Hurwitz series, denoted by Fp[[x]]
dp,

whose elements are formal series of the form

a0 + a1γ1(x) + a2γ2(x) + · · ·+ akγk(x) + · · · .
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In the above expression, the γk(x)’s are just formal names without further additional meaning.

Of course, they should be thought of as xk

k! but we cannot write this division because the

denominator may vanish. The multiplication on Fp[[x]]
dp is governed by the rule

γm(x) · γn(x) =
(
m+ n

m

)
· γn+m(x)

for any nonnegative integers m and n. Besides k[[x]]dp is equipped with a natural derivation

that takes
∑

k akγk(x) to
∑

k ak+1γk(x). We have to be careful however that Fp[[x]]
dp is not a

domain (e.g. γ1(x)
p = 0) and, because of that, we cannot consider its ring of fractions. But

still, if the matrix B(x) has polynomial coefficients, all the Bk(x)’s have the same property

and we can consider their images Bdp
k (x) is the ring Mn

(
Fp[[x]]

dp
)
. We then can form

Sdp(x) =
∞∑

k=0

(−1)kBdp
k (x) · γk(x) (25)

obtaining this way a fundamental matrix of solutions of L over Fp[[x]]
dp. This construction

works actually more generally as soon as the entries of B(x) have no pole at zero: in this case,

we can expand them as series in x in order to view them in Fp[[x]]
dp. The precise relation

between Sdp(x) and the p-curvature is given by the next lemma.

Lemma 3.27 (Bostan–Caruso–Schost [13]). We have the matrix relation:

dpSdp(x)

dxp
= −Bdp

p (x) · Sdp(x).

Proof. Set M = Fp[x] and let ∆ : Mn → Mn, Y 7→ dY
dx + B(x)Y. By definition of the p-

curvature, ∆p is the multiplication by Bp(x).
Now consider the endomorphism ∆dp of Mdp = Fp[[x]]

dp ⊗Fp[x] M defined by

∆dp =
d

dx
⊗ idM + 1⊗∆M .

One checks that it satisfies the Leibniz rule: for f ∈ Fp[[x]]
dp and m ∈M , we have

∆dp(f ⊗m) =
df

dx
⊗m+ f ⊗∆(m).

Hence, raising it to the p-th power, we obtain

(∆dp)p(Y dp) =
dpY dp

dxp
+Bdp

p (x) · Y dp

for all vector Y dp ∈Mdp. The equality of the lemma follows given that the columns of Sdp(x)
maps to 0 under ∆dp.
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3.3.3 Application to algorithmics

Given that the matrix Sdp(x) is invertible, it follows from Lemma 3.27 that one can deduce

the value of B
dp
p (x) from that of Sdp(x) which, in turn, can be computed using the techniques

of [15]. However, at this point, we have not solved entirely the question of the computation

of the p-curvature because the knowledge of B
dp
p (x) is not enough to recover Bp. Precisely,

letting Fp(x)0 denote the subring of Fp(x) consisting of functions with no pole at 0, the natural

map δ0 : Fp(x)0 → Fp[[x]]
dp is not injective; its kernel is the ideal generated by xp.

To tackle this issue, the idea is shift around any other base point a ∈ Fp. Doing so, we

get a new differential ring homomorphism δa : Fp(x)a → k[[x−a]]dp and, reusing the same

techniques, we end up with a fast algorithm that computes the p-curvature Bp modulo (x−a)p.

Since we have moreover at our disposal a priori bounds on the size of the p-curvature (see

Proposition 3.26), one can pick enough elements a in Fp (or in a finite extension of Fp, if

needed), compute the p-curvature modulo (x−a)p for all those points a and reconstruct the

complete matrix Bp(x) using the Chinese Remainder Theorem. Implementing this strategy,

we end up with the following theorem.

Theorem 3.28 (Bostan–Caruso–Schost [13]). There exists an algorithm that takes as input a

differential operator

L = ∂n
x + bn−1(x)·∂n−1

x + · · ·+ b1(x)·∂x + b0(x)

over Fp(x) and outputs its p-curvature for a cost of O∼(dnωp) operations in Fp with

d = max
(
deg f(x), deg(f(x)b0(x)), . . . , deg(f(x)bn−1(x))

)

where f(x) is a common denominator of the bi(x)’s.

Before commenting on the above result, we need to explain some notation. Firstly, the

notation O∼(−) means that we are hiding logarithmic factors. Secondly, the exponent ω refers

to what we usually call a feasible exponent for the matrix multiplication. It simply means that

we suppose that we are given an algorithm that computes the product of two square matrices

of size n with at most O(nω) operations in the base field. The naive method for multiplying

matrices (the one we have all learnt in our first course of linear algebra) indicates that we

can take ω = 3. However, it turns out that better algorithms exist. For example, Strassen’s

algorithm [66] results in ω = log2 7 ≈ 2.8. Nowadays, the best known value for ω is about

2.37188 and the corresponding algorithm is due to Duan, Wu and Zhou [33]. It is a widely

open conjecture if one can take ω = 2 + ε for all ε > 0.

The announced complexity O∼(dnωp) should be compared to the size of the output, i.e.

the number of scalars in Fp needed to write down completely the p-curvature. By Proposi-

tion 3.26, Bp if an n × n matrix whose entries are rational functions with numerators and

denominators of degree at most dp; in practice, this bound is in general sharp. Therefore, the

size of the output is about dn2p. As a consequence, the algorithm behind Theorem 3.28 would

be quasi-optimal (i.e. optimal up to constant and logarithmic factors) if ω were equal to 2.

Even if this limit cannot be attained, this comparison underlines the good performances of the

algorithm. In practice, using it makes it possible to compute p-curvatures of operators of order

and degree 20 in a few seconds when p < 100 and in about half an hour when p = 12007.
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3.3.4 Similarity class and characteristic polynomial

We have seen previously (after Proposition 3.26) that, although the size of the p-curvature

grows linearly with respect to p, its characteristic polynomial has roughly the same size as

the input operator L even when p gets large. For this reason, one might hope to be able to

compute the characteristic polynomial faster than the p-curvature itself.

The main observation for achieving this is a refinement of Lemma 3.27 which asserts that

Bdp
p (x) = Bp(x) mod xp is not only equal to

−(Sdp(x))−1 · d
pSdp(x)

dxp

but it is further similar to the value at x = 0 (i.e. the reduction modulo x) of the latter

product. On the other hand, evaluating this reduction can be done with standard algorithmic

techniques (based on a so-called “baby step / giant step” approach) in time proportional to√
p. Based on this, we obtain the next theorem.

Theorem 3.29 (Bostan–Caruso–Schost [14]). There exists an algorithm that takes as input a

differential operator

L = ∂n
x + bn−1(x)·∂n−1

x + · · ·+ b1(x)·∂x + b0(x)

over Fp(x) and outputs the invariant factors of its p-curvature for a cost of

O∼(dω+ 3

2nω+1√p
)

operations in Fp where d is defined as in Theorem 3.28.

We notice that the knowledge of the invariant factors is finer than that of the characteristic

polynomial since the latter is the product of the formers. Furthermore, knowing the invariant

factors, one can decide whether the p-curvature vanishes or not, whereas the characteristic

polynomial only gives information about its nilpotency.

On the complexity side, we notice that the cost of the algorithm of Theorem 3.29 is worse

with respect to the parameters d and n but better with respect to p. It is then interesting for

small operators but large characteristic.

Finally, we mention that, if we are only interested by the characteristic polynomial of the

p-curvature, faster algorithms (based on different techniques) exist.

Theorem 3.30 (Bostan–Caruso–Schost [12]). There exists an algorithm that takes as input a

differential operator

L = ∂n
x + bn−1(x)·∂n−1

x + · · ·+ b1(x)·∂x + b0(x)

over Fp(x) and outputs the characteristic polynomial of its p-curvature for a cost of

O∼((d+n)ω min(d, n)
√
p+ (d+n)ω+1 min(d, n)

)

operations in Fp where d is defined as in Theorem 3.28.
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In practice, this algorithm performs quite well and allows for computing the characteristic

polynomial in less than one hour for the parameters d = n = 20 and p = 120 011.

Recently, Pagès proved an “average version” of this theorem which, roughly speaking,

states that, starting with a differential operator over Q(x), one can compute all its p-curvatures

(up to some given bound) in average time proportional to log p.

Theorem 3.31 (Pagès [57]). There exists an algorithm that takes as input a differential operator

L = bn(x)∂
n
x + bn−1(x)·∂n−1

x + · · ·+ b1(x)·∂x + b0(x)

with bi(x) ∈ Z[x] and outputs the characteristic polynomial of all the p-curvatures of L mod p
for p ≤ N for a cost of

O∼(((d+n)ω(d+m) + (d+n)3
)
·Nd

)

operations on bits where d is the maximal degree of the bi(x)’s and m is the maximal bitsize of

an integer appearing as the coefficient of one of the bi(x)’s.

3.4 Algebraicity and integrality

The theoretical developments we carried out in §3.3.2 have also interesting consequences in

characteristic 0. Let

L = ∂n
x + bn−1(x)·∂n−1

x + · · ·+ b1(x)·∂x + b0(x)

be a differential operator over Q(x) and set:

S(x) =

∞∑

k=0

(−1)kBk(x) ·
xk

k!
(26)

where the Bk(x)’s are defined, as previously, by Equation (24). The matrix S(x) has entries in

Q[[x]] and we write S(x) =
∑∞

i=0 Six
i where the Si are matrices over Q. We emphasize that

Si is not equal to
(−1)i

i! Bi(x) because the latter has in general coefficients in Q(x).

3.4.1 Growth of denominators and p-curvatures

We would like to reduce everything modulo a prime number p in order to compare S(x) with

the matrix Sdp(x) we have studied earlier; however, this operation requires some care because

the Bk(x)’s may exhibit denominators. In order to do it properly, we introduce new rings. For

any subring R ⊂ Q, we set:

R(x) =

{
P

Q
with P,Q ∈ R[x] and Q monic

}
,

R(x)0 =

{
P

Q
with P,Q ∈ R[x], Q monic and Q(0) 6= 0

}
,

R[[x]]dp =

{ ∞∑

i=0

ai
xi

i!
with ai ∈ R for all i

}
.
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One has the following chain of inclusions R[x] ⊂ R(x)0 ⊂ R(x) together with an injective

morphism of rings R(x)0 →֒ R[[x]]. Besides, all these maps commute with the derivation
d
dx and, if p is a prime number which is noninvertible in R, they are compatible with the

reduction modulo p; in particular, we have the following commutative diagram:

R(x)0 //

mod p

��

R[[x]] //

mod p

��

R[[x]]dp

mod p
��

Fp(x)0 // Fp[[x]] // Fp[[x]]
dp

where all the arrows are homomorphisms of rings and commute with the derivation. We now

assume that the entries of B(x) have no pole at 0 and choose R in such a way that they all

belong to R(x)0 (one can always take R = Z[ 1D ] for D large enough). All the Bm(x)’s then

assume coefficients in R(x)0 as well and the matrix S(x) is defined over R[[x]]dp. Besides, the

image of S(x) modulo p is the matrix Sdp(x) modulo p associated to the differential system

Y ′ + (B(x)mod p) · Y = 0 in characteristic p. Lemma 3.27 then lefts us with the congruence:

Sp ≡
Bp(x)

p!
(mod x), i.e. Sp =

Bp(0)

p!
. (27)

Hence the p-curvatures (which, we recall, are the matrices Bp(x)mod p) are directly related

to the coefficients appearing in a fundamental system of solutions. In particular, the vanishing

of Bp(0) modulo p is equivalent to the fact that the denominator of Sp is coprime with p. Many

variations on this theme are possible; a beautiful example is given by the next theorem.

Theorem 3.32 (see Proposition 5.3.3 in [4]). Let

L = ∂n
x + bn−1(x)·∂n−1

x + · · ·+ b1(x)·∂x + b0(x)

be a differential operator over Q(x) and D be a positive integer. We assume that L admits n
solutions Y1, . . . , Yr which have coordinates in Z[ 1D ][[x]] and are linearly independent over Q.

Then almost all the p-curvatures of L vanish.

Remark 3.33. Under Grothendieck conjecture, Theorem 3.32 can be elegantly rephrased as

follows: if a differential system admits a basis of solutions in Z[ 1D ][[x]] for some positive

integer D (i.e., a basis of globally bounded solutions), then it also admits a basis of algebraic

solutions. This is known as Bézivin’s conjecture; it was formulated by Bézivin in [9, p. 299] and

proved by him for q-differential equations [9, Thm. 7-1]. It is widely open whether Bézivin’s

conjecture is more difficult than Grothendieck’s conjecture; at any rate, it appears that for

the time being the only cases for which Bézivin’s conjecture is proven are those for which

Grothendieck’s conjecture is known to be true.

Example 3.34. We illustrate Theorem 3.32 with the differential equation

y′ =
1

x2 + 1
y

already considered in Example 3.4. Over the rationals, the solutions are all proportional to

the fundamental solution

y0(x) = exp(arctan(x)) =

∞∑

n=0

cnx
n
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where the cn’s are rational numbers. We would like to find bounds on denominators of the

cn’s. More precisely, we fix a prime number p 6= 2 (for simplicity) and ask whether the

denominators of the cn’s are all coprime with p. For this, we use Dwork’s criterion (see for

instance [61, p. 409]) which asserts that the previous property holds if and only if

arctan(xp)− p · arctan(x) ∈ pZ(p)[[x]]

where we recall that Z(p) is the subring of Q consisting of fractions a
b with b coprime with p.

We have:

arctan(xp)− p · arctan(x) =
∞∑

n=0

(−1)n
2n+ 1

x(2n+1)p − p ·
∞∑

n=0

(−1)n
2n+ 1

x(2n+1). (28)

Clearly, when 2n + 1 is coprime with p, the coefficient p · (−1)n

2n+1 is divisible by p. Therefore,

we can only retain in the second sum of Eq. (28) the terms for which 2n ≡ −1 (mod p), i.e.

2n = p− 1 + 2ℓp with ℓ ∈ N. We thus get:

arctan(xp)− p · arctan(x) ≡
∞∑

n=0

(−1)n
2n+ 1

x(2n+1)p −
∞∑

ℓ=0

(−1)ℓ− p−1

2

2ℓ+ 1
x(2ℓ+1)p

=

∞∑

n=0

(−1)n
2n+ 1

·
(
1− (−1) p−1

2

)
· x(2n+1)p (mod pZ(p)[[x]]),

hence arctan(xp) − p · arctan(x) is divisible by p when p ≡ 1mod 4 and is not otherwise. In

conclusion, the denominators of the cn’s are all coprime with p (that is, exp(arctan(x)) can be

reduced modulo p) if and only if p ≡ 1mod 4.

Remark 3.35. Note that the sequence (Tn)n≥0 defined by Tn = n! · cn, satisfies the linear

recurrence Tn+2 = Tn+1 − n(n + 1)Tn with T0 = T1 = 1, hence its terms are all integer

numbers. Kelinsky proved in [50, Thm. 3] that for any prime p 6= 2, the term Tp is congruent

to 0 modulo p if p ≡ 1mod 4 (and to 2 if p ≡ 3mod 4). The computation in Example 3.34

shows that a much stronger property holds: if p ≡ 1mod 4, then Tn is congruent to 0 modulo

p for all n ≥ p, in other terms the generating function
∑

n≥0 Tnx
n is a polynomial modulo p.

In the same orbit, we mention two other theorems which are not directly related to our

discussion but highlights other intricate relations between algebraicity and integrality.

Theorem 3.36 (Conjectured by Ogus [56], proved by André [3]). Let f(x) ∈ Z[[x]] such that

f ′(x) is algebraic over Q(x). Then f(x) is algebraic over Q(x).

Theorem 3.37 (Conjectured by Katz [45], proved by the Chudnovsky–Chudnovsky [30]). Let

f(x) ∈ Z[[x]] such that f ′(x)/f(x) is algebraic over Q(x). Then f(x) is algebraic over Q(x).

3.4.2 An analytic perspective on the p-curvature

All what precedes indicates that the vanishing properties of the p-curvatures tend to con-

trol the growth of the denominators of the coefficients of the fundamental system of solu-

tions S(x). Typically, after Eq. (27), we have seen that Bp(0) ≡ 0 (mod p) is equivalent to the

fact that p does not divide the smallest common denominator of the entries of Sp.
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It is convenient to reformulate this class of properties in terms of p-adic valuation and

p-adic numbers. We recall that the p-adic valuation of an integer n, denoted by vp(n), is the

greatest integer v such that pv divides n. We then define the p-adic valuation of a rational

number x = a
b by setting vp(x) = vp(a)− vp(b). Having a denominator coprime with p is then

equivalent to having nonnegative p-adic valuation. If M is a matrix over Q, we define vp(M)
as the minimum of the p-valuations of its entries.

Recall that, for all nonnegative integer i, we have:

vp(i!) =

∞∑

n=1

⌊
i

pn

⌋
≤ i

p− 1

(where ⌊ · ⌋ is the floor function). Hence, if S(x) is defined over Z[ 1D ][[x]] and p is a prime num-

ber which does not divide N , we deduce from the very first definition of S(x) (see Eq. (26))

that vp(Si) ≥ −vp(i!) ≥ −i
p−1 for all i. On the other hand, the property we have recalled above

indicates that Bp(0) ≡ 0 (mod p) if and only if vp(Sp) ≥ 0. It turns out actually that the

vanishing of the p-curvature implies a general lower bound on the p-adic valuation of the Si’s.

Proposition 3.38. Let

L = ∂n
x + bn−1(x)·∂n−1

x + · · ·+ b1(x)·∂x + b0(x)

be a differential operator over Q(x) and let S be the matrix defined by Eq. (26). If the reduction

of L modulo p is well-defined and if the p-curvature of L mod p vanishes, then for all i ≥ 0:

vp(Si) ≥ −vp
(
[i/p]!

)
≥ −i

p(p−1) . (29)

Proposition 3.38 can be further rephrased in more analytic terms using p-adic numbers.

We recall briefly that the field of p-adic numbers is the completion of Q for the p-adic norm ‖·‖p
defined by ‖x‖p = p−vp(x). Set ω = p−1/(p−1). Without any assumption on the p-curvature, we

have seen that vp(Si) ≥ −i
p−1 , that is ‖Si‖ ≤ ω−i. This upper bound indicates that the (p-adic)

radius of convergence of the series S(x) =
∑∞

i=0 Six
i is at least ω. On the contrary, when the

p-curvature vanishes, Proposition 3.38 tells us that ‖Si‖p ≤ ωi/p for all i. Hence, the radius

of convergence of S is now at least ω1/p > ω. The p-curvature then measures some analytic

properties of the solutions of our differential system in the p-adic world. A classical result

in the theory of p-adic differential equations [49, Theorem 10.4.2], refining the so-called

Frobenius antecedent theorem of Christol and Dwork [29, Thm. 5.4] (see also [48, Theorem

6.15]), asserts that when the radius of convergence of a fundamental system of solutions

is strictly greater than ω, the corresponding differential system Y ′(x) + B(x)Y (x) = 0 is

equivalent, up to a base change, to a system of the form Y ′(xp) + C(xp)Y (xp) = 0 where

the entries of C(x) are p-adic analytic functions converging on the closed unit disk. The

differential system:

(Σ1) : Y
′ + C(x)Y = 0

is called a Frobenius antecedent of (Σ). The aforementioned convergence conditions allows

for reducing (Σ1) modulo p, thus obtaining a new differential system on Fp(x). The latter has

a well-defined p-curvature and if this second p-curvature persists to vanish, one eventually

deduces that the radius of convergence of S is at least ω1/p2 . When this occurs, one can

continue this process and find a second Frobenius antecedent (Σ2) of (Σ). If its p-curvature

vanishes, the radius of convergence of S will be at least ω1/p3 and so on and so forth.
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3.4.3 Towards Berkovich geometry

The connexion we have outlined above between p-curvature and p-adic analysis is quite nice

but it is restricted to a fixed prime number p. In the perspective of the Grothendieck conjec-

ture, we would like however to let p vary and study interactions between different primes.

An object capable to reflect these interactions is the Berkovich line over Z, which was

anticipated by Berkovich himself in [5] and then developed by Poineau [59]. By definition, it

it the spaceM(Z[x]) consisting of all bounded multiplicative semi-norms ‖ · ‖ : Z[x] → R. By

definition, a semi-norm is a norm except that we authorize nonzero elements to have norm

zero. It is said multiplicative if ‖fg‖ = ‖f‖ · ‖g‖ for all f, g ∈ Z[x] and bounded when

‖a0 + a1x+ · · ·+ anx
n‖ ≤ max

(
|a0|, |a1|, . . . , |an|

)
,

where |ai| denotes the usual absolute value of ai. Of course, the Berkovich lineM(Z[x]) is not

only a set but is endowed with a rich additional geometrical structure: a topology, a structural

sheaf, etc. Besides, after Poineau’s work, we have at our disposal a whole panel of powerful

tools (inspired by modern algebraic geometry) to work with it.

Describing entirely the space M(Z[x]) is not obvious, but it is not difficult to exhibit ele-

ments in it. Take K = R or Qp (the field of p-adic numbers) for some prime number p and

write ‖ · ‖K for the standard absolute value of K. Pick in addition an element a ∈ K of norm

at most 1 and a nonnegative real number r. Polynomials in Z[x] then define (real or p-adic)

analytic functions on the closed ball B(a, r) of center a and radius r. For f ∈ Z[x], we can

then consider the sup norm on this domain:

‖f‖a,r = sup
x∈B(a,r)

‖f(x)‖K .

One checks that it is an element of M(Z[x]). Moreover, at least in the p-adic case, the com-

pletion of Z[x] with respect to this norm is the ring of p-adic analytic functions on B(a, r); we

shall denote it by Aa,r in what follows. Another nice observation is that the notion of “ball

of center a and radius r” has a well-defined meaning in the Berkovich geometry. Indeed, let

M(Aa,r) be the Berkovich space associated to the ring Aa,r, i.e. the set of bounded multiplica-

tive semi-norms on Aa,r. Restricting a semi-norm from Aa,r to Z[x] lefts us with an injective

map:

M(Aa,r) →֒ M(Z[x])

whose image, denoted by Ua,r, is an open subset (for the Berkovich topology) inM(Z[x]). In

addition, we observe that any analytic function f on B(a, r), that is any element f ∈ Aa,r,

induces a function on Ua,r: to each semi-norm ‖ · ‖ ∈ M(Aa,r), we associate ‖f‖. For this

reason, it is natural to think at Ua,r as the Berkovich incarnation of the ball of center a and

radius r.

Coming back to our topic, let us consider a differential system (Σ) : Y ′ +A(x)Y = 0 over

Z[x]. By what we have seen previously, for almost all prime numbers p and all a ∈ Zp, the sys-

tem (Σ) admits a full basis of solutions inAa,ω where we recall that we have set ω = p−1/(p−1).

In the Berkovich language, these functions give rise to new functions defined on Ua,ω. Putting

them together, we conclude that (Σ) always admits a basis of solutions on a certain open

subspace U0 ⊂ M(Z[x]). Now, the assumption that almost all the p-curvatures vanish shows

that those solutions extend automatically to a larger subspace U1 ⊂ M(Z[x]). On the other
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hand, in the Berkovich language, proving the Grothendieck conjecture amounts to showing

that there exist a full basis of solution on an étale covering of M(Z[x]). Of course, these

remarks do not give any proof of the Grothendieck conjecture because U1 itself is certainly

not an étale covering ofM(Z[x]). However, we think that this point of view has the potential

to lead to new interesting developments towards the Grothendieck conjecture in the future.
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[54] E. Landau. Über einen zahlentheoretischen Satz und seine Anwendung auf die hyperge-

ometrische Reihe. Sitzungsber. Heidelb. Akad. Wiss. Math.-Natur. Kl., 18:3–38, 1911.

[55] L. Lipshitz. The diagonal of a D-finite power series is D-finite. J. Algebra, 113(2):373–

378, 1988.

[56] A. Ogus. Hodge cycles and crystalline cohomology. In Hodge cycles, motives, and Shimura

varieties, LNM 900, pages 357–414. Springer-Verlag, 1982.

[57] R. Pagès. Computing characteristic polynomials of p-curvatures in average polynomial

time. In ISSAC’21—Proceedings of the 2021 ACM International Symposium on Symbolic

and Algebraic Computation. ACM, New York, 2021.

[58] A. Patel, A. N. Shankar, and J. P. Whang. The rank two p-curvature conjecture on generic

curves. Adv. Math., 386:Paper No. 107800, 33, 2021.

[59] J. Poineau. La droite de Berkovich sur Z. In Astérisque, volume 333. Soc. Math. France,
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