Linked-DocRED – Enhancing DocRED with Entity-Linking to Evaluate End-To-End Document-Level Information Extraction - Archive ouverte HAL
Communication Dans Un Congrès Année : 2023

Linked-DocRED – Enhancing DocRED with Entity-Linking to Evaluate End-To-End Document-Level Information Extraction

Résumé

Information Extraction (IE) pipelines aim to extract meaningful entities and relations from documents and structure them into a knowledge graph that can then be used in downstream applications. Training and evaluating such pipelines requires a dataset annotated with entities, coreferences, relations, and entity-linking. However, existing datasets either lack entity-linking labels, are too small, not diverse enough, or automatically annotated (that is, without a strong guarantee of the correction of annotations). Therefore, we propose Linked-DocRED, to the best of our knowledge, the first manually-annotated, large-scale, document-level IE dataset. We enhance the existing and widely-used DocRED dataset with entity-linking labels that are generated thanks to a semi-automatic process that guarantees high-quality annotations. In particular, we use hyperlinks in Wikipedia articles to provide disambiguation candidates. We also propose a complete framework of metrics to benchmark end-to-end IE pipelines, and we define an entity-centric metric to evaluate entity-linking. The evaluation of a baseline shows promising results while highlighting the challenges of an end-to-end IE pipeline. Linked-DocRED, the source code for the entity-linking, the baseline, and the metrics are distributed under an open-source license and can be downloaded from a public repository.
Fichier principal
Vignette du fichier
main.pdf (913.25 Ko) Télécharger le fichier
docred-instance.pdf (414.13 Ko) Télécharger le fichier
process.pdf (136.28 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Origine Fichiers produits par l'(les) auteur(s)
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-04064170 , version 1 (11-04-2023)

Identifiants

Citer

Pierre-Yves Genest, Pierre-Edouard Portier, Elöd Egyed-Zsigmond, Martino Lovisetto. Linked-DocRED – Enhancing DocRED with Entity-Linking to Evaluate End-To-End Document-Level Information Extraction. SIGIR '23: The 46th International ACM SIGIR Conference on Research and Development in Information Retrieval, Jul 2023, Taipei, Taiwan. pp.3064-3074, ⟨10.1145/3539618.3591912⟩. ⟨hal-04064170⟩
259 Consultations
371 Téléchargements

Altmetric

Partager

More