Super-resolution reconstruction from truncated Fourier transform - Archive ouverte HAL
Chapitre D'ouvrage Année : 2024

Super-resolution reconstruction from truncated Fourier transform

Résumé

We present recent theoretical and numerical results on recovering a compactly supported function v on R^d, d ≥ 1, from its Fourier transform Fv given within the ball B_r. We proceed from known results on the prolate spheroidal wave functions and on the Radon transform. The most interesting point of our numerical examples consists in super-resolution, that is, in recovering details beyond the diffraction limit, that is, details of size less than pi/r, where r is the radius of the ball mentioned above. This short review is based on the works Isaev, Novikov (2022 J. Math. Pures Appl. 163 318–333) and Isaev, Novikov, Sabinin (2022 Inverse Problems 38 105002).
Fichier principal
Vignette du fichier
Super-resolution.pdf (306.29 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-04059509 , version 1 (05-04-2023)

Identifiants

Citer

Mikhail Isaev, Roman Novikov, Grigory Sabinin. Super-resolution reconstruction from truncated Fourier transform. Extended Abstracts MWCAPDE 2023 Methusalem Workshop on Classical Analysis and Partial Differential Equations, 2024, ⟨10.1007/978-3-031-41665-1_7⟩. ⟨hal-04059509⟩
141 Consultations
141 Téléchargements

Altmetric

Partager

More