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SUPER-RESOLUTION RECONSTRUCTION FROM TRUNCATED

FOURIER TRANSFORM

M. ISAEV, R.G. NOVIKOV, G.V. SABININ

Abstract. We present recent theoretical and numerical results on recovering

a compactly supported function v on Rd, d ≥ 1, from its Fourier transform
Fv given within the ball Br. We proceed from known results on the prolate

spheroidal wave functions and on the Radon transform. The most interesting

point of our numerical examples consists in super-resolution, that is, in recov-
ering details beyond the diffraction limit, that is, details of size less than π/r,

where r is the radius of the ball mentioned above. This short review is based

on the works Isaev, Novikov (2022 J. Math. Pures Appl. 163 318–333) and
Isaev, Novikov, Sabinin (2022 Inverse Problems 38 105002).

1. Introduction

It is well known that there is a diffraction limit for recovering the structure of
an object from results of its probing by waves of length λ. This limit is that the
details of the object smaller than λ/2 are blurred or not recovered by standard
numerical methods. Our recent results of [1, 2] give a mathematical approach
to overcoming this limit, thereby achieving super-resolution, without significant a
priori assumptions on the unknown structure. In particular, the details in numerical
examples of [2] are distinguished even of the size λ/12 (that is, 6 times smaller than
the diffraction limit) and even with 20% random noise in the data.

In [1, 2] the original problem is modeled as a problem of recovering a func-
tion with compact support on Rd from its Fourier transform restricted to the ball
Br of fixed radius r = 2π/λ (that is, from the truncated Fourier transform); see
Problem 1 below. This model arises, for example, as a reconstruction problem in
monochromatic acoustic tomography in the Born approximation.

Thus, we consider the Fourier transform F defined by the formula

F [v](p) = v̂(p) :=
1

(2π)d

∫
Rd

eipqv(q)dq, p ∈ Rd, (1)

where v is a complex-valued test function on Rd, d ≥ 1.
Let Bρ :=

{
q ∈ Rd : |q| < ρ

}
, ρ > 0.

We now state formally the aforementioned problem.
Problem 1. Find v ∈ L2(Rd), where supp v ⊂ Bσ, from v̂ = Fv given on the

ball Br (possibly with some noise), for fixed r, σ > 0.
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Problem 1 arises in different areas and has been extensively studied in the liter-
ature. However, solving Problem 1 is complicated considerably by the fact it is ex-
ponentially unstable, for fixed r, σ > 0. Nevertheless, there exist several techniques
to approach this problem theoretically and numerically; see, [1, 2] and references
therein.

The conventional approach for solving Problem 1 is based on the following ap-
proximation

v ≈ vnaive := F−1 [w] (q) =

∫
Br

e−ipqw(p)dp q ∈ Bσ, (2)

where F−1 is the standard inverse Fourier transform and w is such that w|Br

coincides with the data of Problem 1 and w|Rd\Br
≡ 0.

Formula (2) leads to a stable and accurate reconstruction for sufficiently large r,
which is carefully studied in the literature and widely used for industrial applica-
tions. Nevertheless, it has the well-known diffraction limit: small details (especially
less than π/r) are blurred.

A new approach for super-resolution in comparison with the resolution of (2)
was recently developed in [1, 2]; see Sections 3 and 4 below. Some preliminaries are
presented in Section 2.

2. Preliminaries

For convenience, we consider the scaling of v with respect to the size of its
support:

vσ(q) := v(σq), q ∈ Rd. (3)

Note that supp vσ ⊂ B1. Let

c := rσ (4).

The data in Problem 1 (for the case without noise) can be presented as follows
(for more details, see [1]):

v̂(rx) =
σ

2π
Fc [vσ] (x) for d = 1, (5)

v̂(rxθ) =
( σ

2π

)d

Fc [Rθ[vσ]] (x) for d ≥ 2, (6)

where x ∈ [−1, 1], θ ∈ Sd−1, c = rσ, vσ(q) = v(σq), and the operators Fc and Rθ

are defined by

Fc[f ](x) :=

∫ 1

−1

eicxyf(y)dy, x ∈ [−1, 1], (7)

Rθ[u](y) :=

∫
q∈Rd,qθ=y

u(q)dq, y ∈ R, (8)

where f is a test function on [−1, 1] and u is a test function of Rd.
Recall that Rθ[u] ≡ R[u](·, θ), where Rθ is defined by (8) and R is the classical

Radon transform of [4]. In fact, presentation (6) follows from the projection theorem
of the Radon transform theory.
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The operator Fc defined by (7) is a variant of band-limited Fourier transform.
This operator is one of the key objects of the theory of prolate spheroidal wave func-
tions. In particular, the operator Fc has the following singular value decomposition
in L2([−1, 1]):

Fc[f ](x) =
∑
j∈N

µj,cψj,c(x)

∫ 1

−1

ψj,c(y)f(y)dy, (9)

where (ψj,c)j∈N are the prolate spheroidal wave functions (these functions reduce
to the Legendre polynomials as c → 0 and reduce to the Hermite functions as
c→ ∞). In addition, it is known that the eigenvalues {µj,c}j∈N satisfy the following
properties:

0 < |µj+1,c| < |µj,c| for all j ∈ N = {0, 1, 2 . . .}; (10)⌊
2c

π

⌋
− 1 ≤

∣∣∣{j ∈ N, |µj,c| ≥
√
π/c}

∣∣∣ ≤ ⌈
2c

π

⌉
+ 1, (11)

where ⌊·⌋ and ⌈·⌉ denote the floor and the ceiling functions, respectively, and | · |
in (11) is the number of elements in a set;

µj,c decay superexponentially as j → ∞. (12)

The functions (ψj,c)j∈N are certain of wave functions introduced by Niven in [3]
for solving the Helmholtz equation in prolate spheroidal coordinates. Originally,
(ψj,c)j∈N are defined as the eigenfunctions of the spectral problem

d

dx

[
(1− x2)

dψ

dx

]
+ c2x2ψ = χψ, ψ ∈ C2([−1, 1]). (13)

The fact that (ψj,c)j∈N are the eigenfunctions of the finite Fourier transform Fc

defined by (7) was pointed out by Slepian and Pollak in [5] as a special case of more
general integral relations satisfied by Niven’s wave functions. As mentioned in [5]

”These functions ... possess properties that make them ideally
suited for the study of certain questions regarding the relationship
between functions and their Fourier transforms.”

Surprisingly, to our knowledge, these functions were not used in the context of
Problem 1 before the recent work [1], at least, for d > 1.

3. Reconstruction formulas from [1]

The formulas of [1] for solving Problem 1 are as follows, where we use the nota-
tions of Section 2.

For d = 1, the reconstruction is given by

vσ =
2π

σ
F−1

c [v̂r], (14)

where v̂r(x) = v̂(rx), x ∈ [−1, 1], and

F−1
c [g](y) =

∑
j∈N

1

µj,c
ψj,c(y)

∫ 1

−1

ψj,c(x)g(x)dx, (15)

where g is a test function from the range of Fc acting on L2([−1, 1]).
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For d ≥ 2, the reconstruction is given by

vσ =

(
2π

σ

)d

R−1[fr,σ], (16)

where

fr,σ(y, θ) =

{
F−1

c [v̂r,θ](y), if y ∈ [−1, 1],

0, otherwise;

v̂r,θ(x) = v̂(rxθ), x ∈ [−1, 1], θ ∈ Sd−1.

In addition, in view of property (12), for the case of noisy data in Problem 1,
the operator F−1

c is approximated by the finite rank operator F−1
n,c defined by

F−1
n,c [g](y) :=

n∑
j=0

1

µj,c
ψj,c(y)

∫ 1

−1

ψj,c(x)g(x)dx. (17)

It is important to remark that:

• the operator F−1
n,c is correctly defined on L2([−1, 1]) for any n ∈ N;

• the function F−1
n,c [g] is the quasi-solution in the sense of Ivanov of the equa-

tion Fc[f ] = g ∈ L2([−1, 1]) on the span of the first n+1 functions (ψj,c)j≤n;

• the rank n is a regularisation parameter and its choice is crucial for both
theoretical results and numerical applications.

For formulations of mathematical theorems related with formulas (14)-(17),
see [1]. These theoretical results include Hölder-logarithmic stability estimates for
the reconstruction based on these formulas.

4. Numerical results of [2]

The numerical implementation of [2] of the approach of [1] includes, in particular,
different principles for choosing the aforementioned regularisation parameter n such
as residual minimisation and the Morozov discrepancy principle. One of the most
interesting points of the results of [2] lies in examples of super-resolution, that
is, recovering details of size less than π/r, where r is the band-limiting radius of
Problem 1. In [2] we also obtain a better reconstruction in the sense of L2-norm
than the conventional reconstruction based on formula (2).

We illustrate numerical results of [2] by Figures 1 and 2. In these numerical
examples we use the values σ = 1 and c = r = 10; see [2] for a detailed description
of the reconstructions.

Figure 1 shows one of the numerical examples of [2] for d = 1. In this example,
the preimage v equals the sum of characteristic functions of two disjoint intervals
at distance π/(2r), which is twice smaller than the diffraction limit. Figure 1 shows
our super-resolution reconstruction based on formulas (14), (17) in comparison with
preimage v and naive Fourier inversion vnaive based on formula (2), where the data
are noiseless.
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Figure 1. Example of our super-resolution reconstruction in com-
parison with preimage v and naive Fourier inversion, for d = 1.

Figure 2 shows one of the numerical examples of [2] for d = 2. In this example,
the preimage v equals the sum of characteristic functions of three disjoint square
parts. The distances between the parts of v are significantly less than π/r ≈ 0.314:
two bottom squares are at the distance 0.1, while the top square and any of the
bottom squares are at the distance 0.05, which is 6 times smaller than the diffraction
limit. Figure 2 shows our super-resolution reconstruction based on formulas (16)-
(17) in comparison with preimage v and naive Fourier inversion vnaive based on
formula (2), where the data are noiseless.

Figure 2. Example of our super-resolution reconstruction in com-
parison with preimage v and naive Fourier inversion, for d = 2.
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Our work [2] also contains many other numerical results and examples. In partic-
ular, in spite of the exponential instability of Problem 1, we achieve super-resolution
even for noisy data by an appropriate choice of the regularisation parameter n. In
fact, our reconstruction with n = n0 =

⌊
2c
π

⌋
behaves similarly to the conventional

reconstruction based on formula (2). Taking n properly larger than n0 leads to bet-
ter results. Moreover, for d ≥ 2, our approach works well even for a considerable
level of random noise: for example, the reconstruction given in Figure 2 remains
reliable even if we add 20% random noise to the data.
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