Oversampling and Donoho-Logan type theorems in model spaces
Résumé
The aim of this paper is to extend two results from the Paley--Wiener setting to more general
model spaces. The first one is an analogue of the oversampling Shannon sampling formula. The second one is a version of the Donoho--Logan Large Sieve Theorem which is a quantitative estimate of the embedding of the Paley--Wiener space into an $L^2(\R,\mu)$ space.
Origine | Fichiers produits par l'(les) auteur(s) |
---|