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OVERSAMPLING AND DONOHO-LOGAN TYPE THEOREMS IN
MODEL SPACES

ANTON BARANOV, PHILIPPE JAMING, KARIM KELLAY, AND MICHAEL SPECKBACHER

Abstract. The aim of this paper is to extend two results from the Paley–Wiener setting
to more general model spaces. The first one is an analogue of the oversampling Shannon
sampling formula. The second one is a version of the Donoho–Logan Large Sieve Theorem
which is a quantitative estimate of the embedding of the Paley–Wiener space into an
L2(R, µ) space.

1. Introduction

The aim of this paper is to extend two classical results on the Paley–Wiener space to
more general model spaces. The first result is the sampling theorem, or more precisely the
oversampling formula that improves the convergence in Shannon sampling. The second
result is the Donoho–Logan Large Sieve Principle which can be seen as one of the first
results on sparsity in signal processing. In the context of complex analysis, this result is a
result on Carleson measures for the Paley–Wiener space.

Let us now be more precise. Recall that the Paley–Wiener space is the subspace of L2

signals that are band-limited to [−c, c]. It is a very common space used to model signal
encountered in natural sciences. If we normalize the Fourier transform through

f̂(ξ) =

∫
R
f(t)e−itξ dt,

the Paley–Wiener space PW p
c (R), c > 0, 1 ≤ p <∞, is defined as

PW p
c (R) =

{
f ∈ Lp(R) : supp f̂ ⊂ [−c, c]

}
,

where, for p > 2, f̂ is understood in the distributional sense. Two well known properties of
the Paley–Wiener spaces are that they consist of entire functions and that every function
f ∈ PW 2

c (R) can be reconstructed from samples {f(πk/b)}k∈Z via the Kotelnikov–Nyquist–
Shannon Formula

f(x) =
∑
k∈Z

f
(
k
π

b

) 1

2b
γ̂
(
x− kπ

b

)
, (1.1)
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where b ≥ c and γ is any even function supported in [−b, b] with γ(ξ) = 1 for ξ ∈ [−c, c].
Taking b ≥ c and γ = 1[−b,b] we get the classical Shannon Formula

f(x) =
∑
k∈Z

f
(
k
π

b

)
sinc

(
b
(
x− kπ

b

))
, (1.2)

where sinc t = sin t/t. However, when b > c one can do better by taking γ smooth in which
case γ̂ decreases faster than the sinc function. Most authors take γ to be C∞ so that, for
every N , |γ̂

(
x− k π

b

)
| = O(k−N) when k → ±∞ and this estimate is even uniform when

x stays in a compact set. As a consequence (1.1) converges much better than (1.2), a fact
that is well known in signal processing. The drawback of this is that, to the best of our
knowledge, there is no example of a function γ as above for which γ̂ is explicitly known.

One way to overcome this is to give up on arbitrarily fast decay and to fix N . One then
fixes a parameter a > 0, and takes ψ(1) = ψ = 1

2a
1[−a,a] and ψ(k+1) = ψ(k) ∗ ψ. Then ψ(N)

is supported in [−Na,Na] and
∫
R ψ

(N) = 1. It follows that γ = ψ(N) ∗ 1[−c−Na,c+Na] is

even, supported in [−b, b] with b = c + 2Na and that γ(ξ) =
∫
R ψ

(N) = 1 for ξ ∈ [−c, c].
Computing γ̂, we get

f(x) = 2(c+Na)
∑
k∈Z

f
(
k
π

b

) [
sinc

(
a
(
x− kπ

b

))]N
sinc

(
(c+Na)

(
x− kπ

b

))
. (1.3)

The second result we are dealing with in this paper is the Donoho–Logan Large Sieve
theorem. The analytic large sieve principle is a classical inequality for trigonometric poly-
nomials which finds many applications in analytic number theory (see, e.g., [19] and refer-
ences therein). It was extended from trigonometric polynomials to their near cousins the
band-limited functions by Donoho and Logan [12] in the early 90s (after earlier work by
Boas [8]), applying it to reconstruction of missing data in signal processing.

For I an interval, we denote by |I| the length of I. When µ is a positive σ-finite measure
and δ > 0, we write

Dµ(δ) = sup

{
µ(I)

|I|
: I closed interval, |I| = δ

}
= sup

x∈R

µ([x, x+ δ])

δ
. (1.4)

Donoho and Logan proved the following:

Theorem 1.1 (Donoho–Logan). Let c, δ > 0 and µ be a positive σ-finite measure. Then
for every f ∈ PW 2

c (R),∫
R
|f(x)|2 dµ(x) ≤

(
1 +

cδ

π

)
Dµ(δ)

∫
R
|f(x)|2 dx. (1.5)

Moreover, for every f ∈ PW 1
c (R),∫

R
|f(x)| dµ(x) ≤ Dµ(δ)

sinc

(
cδ

2

) ∫
R
|f(x)| dx. (1.6)
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This theorem is one of the founding results of the use of sparsity constraints in signal
recovery problems and has led to considerable research in the decades following it. How-
ever, until recently, it seems that this result did not get the attention it deserves in other
mathematical communities. For instance, in complex analysis, the Donoho–Logan Large
Sieve theorem provides a quantitative estimate of the fact that a positive measure is a
Carleson measure of the Paley–Wiener space, that is, a bound on the norm of the injection
PW 2

c (R) ↪→ L2(µ). Note that a first estimate of this type was given by Lin [18]. Recently,
Husain and Littmann extended the result for p = 1 to higher dimensions [15].

This inadvertence may be due to the fact that the strategy of proof has some rigidities
that are difficult to overcome. Indeed, the proof relies heavily on the interplay between
convolution and the Fourier transform, and on a construction by Selberg (based on a
previous construction by Beurling) of an entire function majorizing the sign function, see
[19, 24]. Despite its rigidity, this strategy of proof has recently been extended to more
general setting, see, e.g., [1, 2, 17]. Our first aim in this paper is to provide two new proof
strategies, one based on the oversampling formula, the second on Bernstein’s inequality.
In particular, those proofs rely on real variable techniques only. The price to be paid is
that the numerical constants we obtain are slightly worse. The proofs however offer more
flexibility so that they apply in larger settings.

To illustrate this, we will extend the oversampling formula and the large sieve inequality
to the setting of model spaces on the upper half-plane, an important family of spaces
of holomorphic functions which contains the Paley–Wiener space PW 2

c (R). Let us now
describe this family. First, let H2 be the Hardy space on the upper half-plane C+ := {z ∈
C : Im z > 0}.

H2 :=
{
f ∈ Hol(C+) : sup

y>0

∫
R
|f(x+ iy)|2dx <∞

}
.

Note that we may identify H2 = {f ∈ L2(R) : supp f̂ ⊂ [0,+∞)}. Let Θ be an inner
function in C+, that is, a bounded analytic function on C+ with unimodular boundary
values almost everywhere on R. The corresponding model space is defined by

K2
Θ := H2 ∩ (ΘH2)⊥.

As a fundamental example, if Θc(z) = exp(icz) for some c > 0, then

K2
Θ2c

= {f ∈ L2(R) : supp f̂ ⊂ [0, 2c]} = {Θcf : f ∈ PW 2
c (R)}

or, equivalently,
PW 2

c (R) = {e−iczf : f ∈ K2
Θ2c
}.

Moreover, one can define Kp
Θ model spaces in Hp, 1 ≤ p ≤ +∞, so as to also cover the PW p

c

spaces, see Section 5. In the context of model spaces, an analogue of Shannon’s sampling
formula was established by de Branges [9] in the case of meromorphic inner functions and
later by Clark [10] in the general case, see (3.5). However, the oversampling formula for
model spaces seems to be unknown. Previously, oversampling results were obtained in
[22, 23] for specific model spaces (or closely related de Branges spaces) associated with
certain differential operators.
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We start by establishing an oversampling formula for the class of model spaces with
meromorphic inner functions. This condition is equivalent to Θ′ ∈ L∞(R). Once this is
done, we propose a first proof of Donoho and Logan’s theorem for model spaces associated
with inner functions with bounded derivative, an interesting class of model spaces that
share many properties with the Paley–Wiener spaces (see, e.g., [13, 21]).

Theorem 1.2. Let Θ be an inner function such that Θ′ ∈ L∞(R), and µ be a σ-finite Borel
measure on R. For δ > 0, Dµ(δ) defined in (1.4) and 1 ≤ p < +∞ there exists Cp > 0
such that for every f ∈ Kp

Θ∫
R
|f(x)|p dµ(x) ≤ Cp (1 + ‖Θ′‖∞δ)pDµ(δ)

∫
R
|f(x)|p dx. (1.7)

The proof relying on oversampling gives this result for p = 2 and a rather bad constant
C but gives the right behavior with respect to δ and ‖Θ′‖∞. We thus give a second proof,
based on Bernstein’s inequality which allows to obtain the constant Cp = 1, falling only
short of Donoho and Logan’s result in the case of the Paley–Wiener space. The particular
constants are discussed in more detail in Remark 5.4. We think that both proofs are
interesting due to the fact that they only rely on real analytic arguments and are rather
flexible. Finally, we end this article with a version of Theorem 1.2 that applies to a different
class of inner functions (not necessarily meromorphic), the so-called one-component inner
functions, but requires a modification in the definition of Dµ(δ), see Theorem 6.1. This
provides a quantitative converse version of the Logvinenko–Sereda Theorem for model
spaces established in [16].

The rest of this paper is organized as follows: Section 2 is devoted to a technical lemma.
In Section 3, we introduce the necessary background on model spaces and prove the over-
sampling formula. In Section 4 we give an extension of the large sieve inequality to model
spaces using the oversampling techniques. The approach based on Bernstein type inequali-
ties is considered in Section 5, while in Section 6 a certain analog of the large sieve is given
for a class of model spaces generated by the so-called one-component inner functions.

2. Preliminary lemma

Let Ξ be a continuous function such that

|Ξ(x)| ≤ min(1, |x|−1). (2.1)

As an example, one can take Ξ(x) = sincx :=
sinx

x
.

Lemma 2.1. Let Ξ be a function satisfying the bound (2.1). Let a, b ∈ R, α, δ > 0 and µ
be a σ-finite Borel measure on R. Then we have

(1)

∫
R

Ξ(x− a)2Ξ(x− b)2 dx ≤ 8π

4 + (a− b)2
,

(2)

∫
R

Ξ(x−a)2Ξ(x−b)2 dµ(x) ≤ 8π
C2
δ

δ

supx∈R µ([x, x+ δ])

4 + (b− a)2
, with Cδ = max(4, 1+9δ2).
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Proof. The first estimate follows immediately from the simple estimate

|Ξ(x)|2 ≤ min(1, |x|−2) ≤ 2

1 + x2
,

and the computation of the integral∫
R

dt

(1 + (t− a)2)(1 + (t− b)2)
=

2π

4 + (a− b)2
,

via the residue formula.
Next, for ` ∈ Z, let I` = [`δ, (`+ 1)δ[, we have∫

R
Ξ(x− a)2Ξ(x− b)2 dµ(x) =

∑
`∈Z

∫
I`

Ξ(x− a)2Ξ(x− b)2 dµ(x)

≤ sup
`∈Z

µ(I`) ·
∑
`∈Z

4

(1 + d(a, I`)2)(1 + d(b, I`)2)

=
4

δ
sup
`∈Z

µ(I`) ·
∑
`∈Z

∫
I`

dx(
1 + d(a, I`)2

)(
1 + d(b, I`)2

) .
Now, let x ∈ I`. If a ≤ (`− 2)δ then x− a ≥ 2δ so that

d(a, I`) = `δ − a = (`+ 1)δ − a− δ ≥ x− a− δ ≥ x− a
2

thus
1

1 + d(a, I`)2
≤ 4

1 + (x− a)2
.

The same holds if a ≥ (`+ 3)δ. Finally, if (`− 2)δ ≤ a ≤ (`+ 3)δ, x− a ≤ 3δ thus

1

1 + d(a, I`)2
≤ 1 ≤ 1 + 9δ2

1 + (x− a)2
.

It follows that∫
R

Ξ(x− a)2Ξ(x− b)2 dµ(x) ≤ 4

δ
C2
δ sup
`∈Z

µ(I`) ·
∫
R

dx

(1 + (x− a)2)(1 + (x− b)2)

≤ 8π
C2
δ

δ

supx∈R µ
(
[x, x+ δ]

)
4 + (b− a)2

,

with Cδ = max(4, 1 + 9δ2). �

Applying Lemma 2.1(2) to the dilated measure µα(A) = µ(A/α), α > 0 we get∫
R

Ξ(αx− a)2Ξ(αx− b)2 dµ(x) ≤ 8π
C2
δ

δ

supx∈R µ([x, x+ δ/α])

4 + (b− a)2
, (2.2)

with Cδ = max(4, 1 + 9δ2).
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A slightly more evolved version of the lemma is easily available: for m ≥ 2 and δ > 0
there is a constant Cm,δ such that∫

R
Ξ(x− a)2mΞ(x− b)2m dµ(x) ≤ Cm,δ(

1 + (b− a)2
)m sup

x∈R

µ([x, x+ δ])

δ
. (2.3)

This follows from the easily established inequality∫
R
|Ξ(x− a)|2m|Ξ(x− b)|2m dx ≤

√
π22m+1 Γ(m− 1/2)

Γ(m)

1(
1 + (b− a)2

)m .
3. Oversampling and the Large Sieve in model spaces

3.1. Background on model spaces. The Hardy space on the upper-half plane C+ :=
{z ∈ C : Im z > 0}, H2 = H2(C+) contains all holomorphic functions on C+ for which

sup
y>0

∫
R
|f(x+ iy)|2 dx <∞.

Every function f ∈ H2 has an almost everywhere defined “vertical” boundary function
f(x) := limy→0 f(x+ iy), and f ∈ L2(R) which may be used to define an inner product on
H2

〈f, g〉 :=

∫
R
f(x)g(x) dx.

We say that an analytic function Θ on C+ is inner if |Θ| ≤ 1 on C+ and if the almost
everywhere defined boundary function Θ(x), x ∈ R, has modulus one. If Θ is an inner
function, then the corresponding model space is defined by

K2
Θ := H2 	ΘH2 = (ΘH2)⊥. (3.1)

Recall that the reproducing kernel for functions K2
Θ is defined by

kΘ
z (w) =

i

2π

1−Θ(z)Θ(w)

w − z
, z, w ∈ C+. (3.2)

For every f ∈ K2
Θ,

f(z) = 〈f, kΘ
z 〉,

and

kΘ
z (z) = ‖kΘ

z ‖2 =
1− |Θ(z)|2

4πIm z
.

Each inner function can be factored as

Θ(z) = eiτΘc(z)Bλ(z)Sµ(z), z ∈ C+,

where τ is a real constant, Θc(z) = eicz, c ≥ 0,

BΛ(z) =
∏
λ∈Λ

eiαλ
z − λ
z − λ

,
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is the Blaschke product with zeros λ ∈ Λ ⊂ C+, repeated according to multiplicity, satisfy-
ing the Blaschke condition ∑

λ∈Λ

Imλ

1 + |λ|2
<∞, (3.3)

and αλ ∈ R,

Sµ(z) = exp

(
i

∫
R

(
1

x− z
− t

x2 + 1

)
dµ(x)

)
,

where µ is a singular measure with respect to the Lebesgue measure such that∫
R

dµ(x)

1 + x2
<∞.

The spectrum of Θ is the closed set

ρ(Θ) :=
{
ζ ∈ C+ ∪∞ : lim inf

z→ζ
z∈C+

|Θ(z)| = 0
}
. (3.4)

Note that Θ, along with every function in K2
Θ, has an analytic extension across any interval

of R \ ρ(Θ).
By the Ahern–Clark theorem [3], kΘ

x ∈ K2
Θ, x ∈ R, if and only if the modulus of the

angular derivative of Θ is finite. This means that

|Θ′(x)| = a+ 2
∑
λ∈Λ

Imλ

|x− λ|2
+

∫
R

dµ(t)

(t− x)2
<∞.

For any α ∈ C , |α| = 1 the function (α+ Θ)/(α−Θ) has a positive real part in the upper
half plane, and hence, by the Herglotz–Riesz representation theorem, there exist cα > 0
and a non-negative measure σαΘ, called the Clark measure, such that

Re
α + Θ(z)

α−Θ(z)
= cαIm z +

Im z

π

∫
R

dσαΘ(x)

|x− z|2
, z ∈ C+.

The Clark measure σαΘ is carried by the set {x ∈ R : limy→0+ Θ(x+ iy) = α}.
Clark [10] showed that if cα = 0 and σαΘ is purely atomic, that is

σαΘ =
∑

anδxn ,

where δx denotes the Dirac measure at the point x, then the system {kΘ
xn} is an orthogonal

basis in K2
Θ. In particular, one has

f(z) =
∑
n∈Z

f(xn)
kΘ
xn(z)

‖kΘ
xn‖2

, f ∈ K2
Θ, (3.5)

and

‖f‖2 =
∑
n∈Z

|f(xn)|2

‖kΘ
xn‖2

. (3.6)

We end this section with a discussion of a special class of inner functions which will be
considered throughout the paper (with exception of Section 6). A meromorphic inner
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function on C+ is an inner function on C+ with a meromorphic continuation to C. Any
meromorphic inner function Θ can be represented as

Θ = ΘcBΛ,

where c ≥ 0 and BΛ is the Blaschke product associated with the zeroes Λ = {λn} of Θ which
satisfy |λn| → ∞ as well as the Blaschke condition (3.3). All elements of the corresponding
model space K2

Θ are also meromorphic in C, and there is a canonical isomorphism of such
model spaces with de Branges’ Hilbert spaces of entire functions [9].

By the Riesz–Smirnov factorization there exists an increasing, real analytic function
ϕ : R→ R such that

Θ(x) = exp(iϕ(x)).

In that case |Θ′| = ϕ′ and

‖kΘ
x ‖2 =

ϕ′(x)

2π
. (3.7)

Then, by the Cauchy–Schwarz inequality one has

|kΘ
x (t)| = |〈kΘ

x , k
Θ
t 〉| ≤

√
ϕ′(x)ϕ′(t)

2π
, x, t ∈ R. (3.8)

In the case of meromorphic inner functions the Clark measure construction becomes
much more transparent. In this setting such measures were introduced by de Branges (see,
e.g., [9]) long before the work of Clark. For model spaces associated with meromorphic
inner functions orthogonal bases of reproducing kernels can be constructed as follows. For
γ ∈ [0, 2π) define the set of points {xn}n∈Z by

ϕ(xn) = γ + 2πn, n ∈ Z. (3.9)

(Note that the points xn may not exist for all n ∈ Z.) Then the family of normalized
reproducing kernels {kΘ

xn/‖k
Θ
xn‖}n∈Z, with the points {xn}n∈Z ∈ R given by (3.9), forms

an orthonormal basis for K2
Θ for each γ ∈ [0, 2π), except, maybe, one (in the case that

Θ− eiγ ∈ L2(R)).
In what follows we will consider the class of inner functions such that Θ′ ∈ H∞(C+).

This condition implies that Θ is meromorphic and is equivalent to Θ′ = ϕ′ ∈ L∞(R). It was
noticed already in [13] that the model spaces K2

Θ with Θ′ ∈ L∞(R) have many properties
analogous to the properties of the Paley–Wiener spaces PW 2

c (R).

3.2. Enlarging model spaces and oversampling. We need the following classical result
[21]. However, for the sake of completeness, we give the complete proof here.

Lemma 3.1. Let Θ be an inner function, let Θ1 = eiτ1Θc1BΛ1, and Θ2 = eiτ2Θc2BΛ2 where
Λ1,Λ2 ⊂ C+, i = 1, 2, are two Blaschke sequences. Then

(1) K2
Θ1
⊆ K2

Θ2
if and only if c1 ≤ c2 and Λ1 ⊆ Λ2.

(2) K2
Θ ⊆ K2

ΘcBΛΘ, where c ≥ 0 and Λ ⊂ C+ a Blaschke sequence.
(3) If 0 ≤ c1 ≤ c2, Λ1 ⊆ Λ2, and f ∈ K2

Θ, then Θc1BΛ1f ∈ K2
Θc2BΛ2

Θ.
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Proof. Let Θ1,Θ2 be inner functions. It is known that K2
Θ1
⊆ K2

Θ2
if and only if Θ2/Θ1 is

an inner function. Hence, Θ2/Θ1 is inner if and only if

Θ2(z)

Θ1(z)
= ei(τ2−τ1)ei(c2−c1)zBΛ2(z)

BΛ1(z)
= Θ(z),

for some Θ inner. If c2 ≥ c1 and Λ1 ⊂ Λ2, then BΛ2/BΛ1 = BΛ2\Λ1 is a Blaschke product
and Θ is therefore inner.

Now assume that Θ2/Θ1 is inner and that there exists λ∗ ∈ Λ1 that is not contained in Λ2

(in the sense that for Λi = {λin}n∈N, i ∈ {1, 2}, there is no injection ϕ : N→ N that satisfies
λ1
n = λ2

ϕ(n) for every n ∈ N), then #{n ∈ N : λ∗ = λ2
n} < #{n ∈ N : λ∗ = λ1

n}, which

creates a pole at λ∗ for Θ2/Θ1, as the singular inner part is always nonzero, a contradiction
to Θ2/Θ1 being inner. Then, as ei(c2−c1)z is bounded on C+ if and only if c2 ≥ c1, the first
assertion follows. It only remains to show the last statement. By definition f ∈ K2

Θ if and
only if f⊥Θg for every g ∈ H2. Hence, as Θc1BΛ1 is an inner function we have

〈Θc1BΛ1f, Sc1BΛ1Θg〉 =

∫
R

Θc1(x)BΛ1(x)f(x)Θc1(x)BΛ1(x)Θ(x)g(x) dx

=

∫
R
f(x)Θ(x)g(x) dx = 0,

which shows Θc1BΛ1f ∈ K2
Θc1BΛ1

Θ. The result then follows from the first part of the

corollary as Θc2BΛ2Θ = (Θc2−c1BΛ2\Λ1)(Θc1BΛ1Θ). �

We are now ready to prove an oversampling theorem for model spaces.

Theorem 3.2. Let c > 0, and Θ be an inner function such that some Clark measure for
ΘcΘ is purely atomic and let {kΘcΘ

xn }n∈Z be the corresponding basis of K2
ΘcΘ

. Then for every
integer m ≥ 1 and for every f ∈ K2

Θ, the following sampling formula holds:

f(x) =
∑
n∈Z

f(xn)e−
ic(x−xn)

2 sinc

(
c(x− xn)

2m

)m kΘcΘ
xn (x)

‖kΘcΘ
xn ‖2

, x ∈ R. (3.10)

In particular, one can reconstruct f ∈ K2
Θ from its samples using an expansion with respect

to functions of arbitrary polynomial decay.
Further,

‖f‖2 =
∑
n∈Z

|f(xn)|2

‖kΘcΘ
xn ‖2

, f ∈ K2
Θ. (3.11)

Proof. If 0 ≤ ck ≤ c/m, k = 1, . . . ,m, then 0 ≤
∑

k ck ≤ c, and Θ∑
k ck
f ∈ K2

ΘcΘ
by

Lemma 3.1. Hence, using the sampling formula (3.5) for K2
ΘcΘ

, one has

ei
∑
k ckzf(z) =

∑
n∈Z

f(xn)ei
∑
k ckxn

kΘcΘ
xn (z)

‖kΘcΘ
xn ‖2

, z ∈ C+,
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and (3.11) follows directly from (3.6). Further

f(z) =
(m
c

)m ∫ c/m

0

. . .

∫ c/m

0

f(z) dc1 · · · dcm

=
(m
c

)m ∫ c/m

0

. . .

∫ c/m

0

∑
n∈Z

f(xn)e−i
∑
k ck(z−xn) k

ΘcΘ
xn (z)

‖kΘcΘ
xn ‖2

dc1 · · · dcm

=
∑
n∈Z

f(xn)

(
m

ic(z − xn)

)m (
1− e−

ic(z−xn)
m

)m kΘcΘ
xn (z)

‖kΘcΘ
xn ‖2

.

Moreover, we find that for almost every x ∈ R,

f(x) =
∑
n∈Z

f(xn)e−
ic(x−xn)

2

(
m

ic(x− xn)

(
e
ic(x−xn)

2m − e−
ic(x−xn)

2m

))m kΘcΘ
xn (x)

‖kΘcΘ
xn ‖2

=
∑
n∈Z

f(xn)e−
ic(x−xn)

2 sinc

(
c(x− xn)

2m

)m kΘcΘ
xn (x)

‖kΘcΘ
xn ‖2

.

The oversampling formula is thus established. �

4. Proof of Theorem 1.2 based on oversampling

We now have everything in place to prove Theorem 1.2.
Let Θ′ ∈ L∞(R). Then (3.7) and (3.8) imply

|kΘ
x (t)|
‖kΘ

x ‖
≤
√
‖Θ′‖∞

2π
, x, t ∈ R. (4.1)

Let kΘcΘ
z ∈ K2

ΘcΘ
be the reproducing kernel functions in K2

ΘcΘ
. Denote by {xn}n∈Z ⊂ R

the sequence associated in (3.9) with ΘcΘ, that is,

cxn + ϕ(xn) = γ + 2πn, γ ∈ [0, 2π), n ∈ Z.

For c > 0 to be chosen later, set α =
c

4
and Ξ(x) = sinc(x). First, from Theorem 3.2

(applied to m = 2) Fubini’s theorem, and the bound (4.1) we get∫
R
|f(x)|2 dµ(x) =

∫
R

∣∣∣∣∣∑
n∈Z

f(xn)e−
ic(x−xn)

2 sinc

(
c(x− xn)

4

)2 kΘcΘ
xn (x)

‖kΘcΘ
xn ‖2

∣∣∣∣∣
2

dµ(x)

≤
∫
R

∑
n,k∈Z

|f(xn)f(xk)|
‖kΘcΘ

xn ‖‖kΘcΘ
xk
‖
∣∣Ξ(α(x− xn)

)
Ξ
(
α(x− xk)

)∣∣2 |kΘcΘ
xn (x)kΘcΘ

xk
(x)|

‖kΘΘ
xn ‖‖kΘcΘ

xk
‖

dµ(x)

≤ c+ ‖Θ′‖∞
2π

∑
n,k∈Z

|f(xn)f(xk)|
‖kΘcΘ

xn ‖‖kΘcΘ
xk
‖

∫
R

Ξ
(
α(x− xn)

)2
Ξ
(
α(x− xk)

)2
dµ(x).
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Applying the estimate (2.2) with ηα (instead of δ), η to be chosen, we get∫
R
|f(x)|2dµ(x) ≤ 4

C2
ηα

ηα
(c+ ‖Θ′‖∞)

∑
n,k∈Z

|f(xn)f(xk)|
‖kΘcΘ

xn ‖‖kΘcΘ
xk
‖

supx∈R µ([x, x+ η])

4 + α2(xn − xk)2
(4.2)

with Cηα = max(4, 1 + 9η2α2). We will choose η ≤ δ with ηα ≤ 1/
√

3, i.e., η ≤ 4√
3c

, so

that Cηα = 4. Now, by (4.1),

2π|n− k| = |cxn + ϕ(xn)− cxk − ϕ(xk)|
≤ (c+ ‖ϕ′‖∞)|xn − xk| = (c+ ‖Θ′‖∞)|xn − xk|.

Set u = (uk)k with uk =
|f(xk)|
‖kΘcΘ

xk
‖

so that ‖u‖2
`2(Z) = ‖f‖2 with (3.11). Moreover, we set

λ =
π2α2

(c+ ‖Θ′‖∞)2
=

(
πc

4(c+ ‖Θ′‖∞)

)2

,

v = (vk)k with vk = 1
1+λk2 and notice that

‖v‖`1(Z) = 1 + 2
∑
k≥1

1

1 + λk2
≤ 1 + 2

∫ ∞
0

dx

1 + λx2
= 1 +

π√
λ

= 1 +
4(c+ ‖Θ′‖∞)

c
.

Then ∑
n,k∈Z

|f(xn)f(xk)|
‖kΘcΘ

xn ‖‖kΘcΘ
xk
‖

1

4 + α2(xn − xk)2
≤ 1

4

∑
n∈Z

un
∑
k∈Z

uk
1 + λ(n− k)2

=
1

4
〈u, u ∗ v〉 ≤ 1

4
‖u‖2

`2(Z)‖v‖`1(Z).

All in one, we get∫
R
|f(x)|2dµ(x) ≤ 16

ηα
M(η)

(
c+ ‖Θ′‖∞

)(
1 + 4

c+ ‖Θ′‖∞
c

)
‖f‖2,

where M(η) := supx∈R µ([x, x+ η]). It remains to chose c, η. To do so, we distinguish two
cases.

Case 1. If ‖Θ′‖∞ ≥
4√
3δ

, we take c = ‖Θ′‖∞ and η =
4√
3c
≤ δ thus ηα =

1√
3

. Then∫
R
|f(x)|2dµ(x) ≤ 288

√
3M(η)‖Θ′‖∞‖f‖2 ≤ 500

(1

δ
+ ‖Θ′‖∞

)
M(δ) ‖f‖2.

Case 2. If ‖Θ′‖∞ ≤
4√
3δ

, we take c =
4√
3δ

and η =
4√
3c

= δ so that∫
R
|f(x)|2dµ(x) ≤ 576

(1

δ
+ ‖Θ′‖∞

)
M(δ) ‖f‖2,

as desired. �
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Remark 4.1. In the proof, we have used the oversampling formula with m = 2. One may of
course increase m and this would lead to slightly better numerical constants, at the price
of much higher technicality. This requires in particular to replace Lemma 2.1 with (2.3).
As the ultimate constants would anyway be worse than those we find in the next section,
we did not follow this path further.

5. An Lp-version of Theorem 1.2 and Bernstein-type inequalities

The previous proof gives a rather large constant C in the inequality (1.7). We present
another proof that gives a better estimate; in particular, we have the constant 1 in front
of 1

δ
, as in the classical Donoho–Logan theorem. Also, this proof applies to Lp analogs of

the model spaces, the subspaces Kp
Θ of the Hardy space Hp, where 1 ≤ p <∞.

Recall that for 1 ≤ p ≤ ∞ the subspace Kp
Θ is defined as

Kp
Θ = Hp ∩ΘHp,

where Hp is understood as a closed subspace of Lp(R). This definition agrees with the
one given for K2

Θ earlier. The properties of the spaces Kp
Θ are very much similar to the

properties of K2
Θ. In particular, if Θ is a meromorphic inner function, then all elements

of Kp
Θ are meromorphic functions in C, while for Θ(z) = e2icz we have Kp

Θ = eiczPW p
c (R),

where PW p
c (R) is the space of all entire functions of exponential type at most c whose

restriction to R belongs to Lp(R).

Theorem 5.1. Let 1 ≤ p < ∞, Θ′ ∈ L∞(R), µ be a Borel measure on R, and let δ > 0
and Dµ(δ) defined in (1.4). Then for any f ∈ Kp

Θ we have

‖f‖pLp(µ) ≤
(
1 + δ‖Θ′‖∞

)p
Dµ(δ)‖f‖pp. (5.1)

The proof is based on a Bernstein-type inequality for model spaces Kp
Θ with Θ′ ∈ L∞(R)

which is due to Dyakonov [13, 14].

Theorem 5.2 (Dyakonov). If Θ′ ∈ L∞(R), 1 ≤ p ≤ ∞, and f ∈ Kp
Θ, then

‖f ′‖p ≤ ‖Θ′‖∞‖f‖p.
Dyakonov proved this inequality up to some constant C(p) on the right-hand side. Here

we present a very simple proof with the constant 1 which follows the method from [6] and
is based on the formula

f ′(x) = 2πi

∫
R
f(t)

(
kΘ
t (x)

)2
dt, f ∈ Kp

Θ, x ∈ R. (5.2)

Proof of Dyakonov’s theorem. For 1 < p < ∞, it follows from (5.2), (3.7) and the Hölder
inequality that

|f ′(x)|p ≤ 2π

∫
R
|f(t)|p|kΘ

x (t)|2 dt

(
2π

∫
|kΘ
x (t)|2 dt

)p/q
= 2π|Θ′(x)|p/q

∫
R
|f(t)|p|kΘ

x (t)|2 dt ≤ 2π‖Θ′‖p/q∞
∫
R
|f(t)|p|kΘ

x (t)|2 dt.
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Since
∫
R |k

Θ
x (t)|2dx = |Θ′(t)|/(2π), we get the result integrating over x. The cases p = 1 or

p =∞ follow trivially from (5.2). �

We will also need the following elementary lemma.

Lemma 5.3. Let f, f ′ ∈ Lp(R), 1 ≤ p <∞. Then for any tk ∈ [kδ, (k+ 1)δ] =: Ik, k ∈ Z,
one has (∑

k∈Z

|f(tk)|p
)1/p

≤ δ−1/p‖f‖p + δ1−1/p‖f ′‖p. (5.3)

Proof. From the triangle inequality,(∑
k∈Z

|f(tk)|p
)1/p

=

(
1

δ

∑
k∈Z

∫
Ik

|f(tk)|p dt

)1/p

≤
(

1

δ

∑
k∈Z

∫
Ik

|f(t)|p dt

)1/p

+

(
1

δ

∑
k∈Z

∫
Ik

|f(t)− f(tk)|p dt

)1/p

.

Note that by Hölder’s inequality∫
Ik

|f(tk)− f(t)|p dt =

∫
Ik

∣∣∣∣ ∫ tk

t

f ′(s) ds

∣∣∣∣p dt ≤ δp/q
∫
Ik

∫ tk

t

|f ′(s)|p ds dt ≤ δp
∫
Ik

|f ′(s)|p ds.

Summing these estimates we obtain (5.3). �

Proof of Theorem 5.1. Put M(δ) = supx∈R µ
(
[x, x + δ)

)
= δDµ(δ). Let tk ∈ Ik be such

that |f(tk)| = supIk |f |. Then∫
R
|f(x)|p dµ(x) ≤

∑
k∈Z

µ
(
[kδ, (k + 1)δ)

)
· |f(tk)|p ≤M(δ)

(
δ−1/p‖f‖p + δ1−1/p‖f ′‖p

)p
.

It follows from Dyakonov’s theorem that∫
R
|f(x)|p dµ(x) ≤ M(δ)

δ
(1 + δ‖Θ′‖∞)p‖f‖pp

as claimed. �

Remark 5.4. The dependence on the parameter δ and on ‖Θ′‖∞ in (5.1) is sharp up to the
numerical constant. Indeed, for the classical Paley–Wiener space PW 2

c (R), our method
(applied to PW 2

c (R) in place of K2
Θ with Θ(z) = e2icz) gives only a factor (1 + 2δc), while

the Donoho–Logan bound is 1 +
cδ

π
.

If µ is given by dµ(x) = 1T (x)dx and one considers the Paley–Wiener spaces, it is
common to choose δ to be the reciprocal of the bandwidth 2c and write the estimates in
terms of the maximum Nyquist density

Dmax(T, c) := sup
x∈R

2c ·
∣∣T ∩ [x, x+ 1/(2c)]

∣∣.
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Donoho and Logan’s results then read s

‖f · 1T‖pp ≤ Cp ·Dmax(T, c) · ‖f‖pp,

for p = 1, 2, with constants C1 = sinc(1/4)−1 ≈ 1.0105 and C2 = (1 + 1/2π) ≈ 1.1592,
while our estimate (5.1) gives C1 = 2 and C2 = 4.

6. A Donoho–Logan theorem for one component inner functions

For general inner functions, even if we confine ourselves with meromorphic ones, one
cannot expect to obtain estimates of Donoho–Logan type considering intervals of a fixed
length. The reason is that the behaviour of inner functions on R can be very irregular. On
the other hand, for meromorphic inner functions with a sublinear growth of the argument
the assumption that the measure is uniformly bounded on intervals of a fixed length can
be too strong. It looks more natural then to consider the intervals where the change of
the argument of Θ is fixed, i.e., consider the intervals I = [a, b] such that ϕ(b)−ϕ(a) = δ,
where ϕ is an increasing continuous argument for Θ on R. There exists a class of inner
functions for which such a generalization is possible. These are the so-called one-component
inner functions, that is, those inner functions for which the sublevel set

Ω(Θ, ε) = {z ∈ C+ : |Θ(z)| < ε}
is connected for some ε ∈ (0, 1). One-component inner functions were introduced by
W. S. Cohn [11] in connection to Carleson-type embeddings of model spaces and were
subsequently studied by many authors (see, e.g., [4, 5, 6, 7, 20]).

Several important properties of one-component inner functions were obtained by
A. B. Aleksandrov [4]. Recall that the spectrum ρ(Θ) of Θ (see (3.4)) is a closed set,
and if we write R \ ρ(Θ) = ∪nJn, where Jn are disjoint open intervals, then Θ admits
an analytic continuation through any Jn. Hence, Θ has an increasing C∞ branch of the
argument ϕ on each Jn. It is shown in [4] that ρ(Θ) has zero Lebesgue measure and, if

we additionally assume that ∞ ∈ ρ(Θ), the function
1

ϕ′
=

1

|Θ′|
(defined as 0 on ρ(Θ)) is

a Lipschitz function on R. Moreover, it is shown in [6] that in this case for any ε ∈ (0, 1)
there exist positive constants c1, c2 depending on ε only such that

c1|Θ′(x)|−1 ≤ dist (x,Ω(Θ, ε)) ≤ c2|Θ′(x)|−1, x ∈ R. (6.1)

Therefore, there exist A,B > 0 such that

A ≤ ϕ′(s)

ϕ′(t)
≤ B, |ϕ(s)− ϕ(t)| ≤ 1. (6.2)

These properties essentially characterize the class of one-component inner functions.
Also in [6] the following Bernstein type inequality was proved: if Θ is a one-component

inner function and 1 < p <∞, then

‖f ′/Θ′‖p ≤ C(Θ, p)‖f‖p, f ∈ Kp
Θ. (6.3)
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The next theorem applies to general one-component (not necessarily meromorphic) func-
tions.

Theorem 6.1. Let Θ be a one-component inner function such that∞ ∈ ρ(Θ), 1 < p <∞.
Let ϕ denote the branch of the argument of Θ which is an increasing C∞ function on each
subinterval of R \ ρ(Θ). For a Borel measure µ on R and δ > 0 put

DΘ
µ (δ) = sup

{µ(I)

|I|
: I = [a, b], ϕ(b)− ϕ(a) = δ

}
.

Then for any f ∈ Kp
Θ we have∫

R
|f |p dµ ≤ DΘ

µ (δ)(1 + Cδ)p‖f‖pp, (6.4)

where the constant C > 0 depends on Θ and p only.

Proof. The proof is analogous to the proof of Theorem 5.1. It follows from (6.1) that ϕ is
unbounded on any connected component of R \ ρ(Θ). Therefore, we can write R \ ρ(Θ) =
∪kIk, where Ik = [ak, bk] are intervals with disjoint interiors such that ϕ(bk) − ϕ(ak) = δ.
Let D = DΘ

µ (δ). Any function f ∈ Kp
Θ admits an analytic continuation through R \ ρ(Θ).

Choose tk ∈ Ik such that |f(tk)| = maxIk |f |. Then we have

‖f‖Lp(µ) ≤
(∑

k

|f(tk)|pµ(Ik)

)1/p

≤ D1/p

(∑
k

∫
Ik

|f(tk)|p dt

)1/p

≤M1/p

(∑
k

∫
Ik

|f(t)|p dt

)1/p

+D1/p

(∑
k

∫
Ik

|f(t)− f(tk)|p dt

)1/p

.

Furthermore, if p′ is the dual index to p,
1

p
+

1

p′
= 1, then

∑
k

∫
Ik

|f(t)− f(tk)|p dt =
∑
k

∫
Ik

∣∣∣∣ ∫ t

tk

f ′(s) ds

∣∣∣∣p dt

≤
∑
k

∫
Ik

∫ t

tk

|f ′(s)|p

|Θ′(s)|p
ds

(∫ t

tk

|Θ′(s)|p′ ds
)p/p′

dt.

For any k there exists sk ∈ Ik such that δ = ϕ(bk)− ϕ(ak) = ϕ′(sk) · |Ik|. In view of (6.2)
we have |Θ′(s)| · |Ik| ≤ C1δ, s ∈ Ik, whence(∫ t

tk

|Θ′(s)|q ds

)p/p′
≤ C2

(
δp
′

|Ik|p′−1

)p/p′
= C2

δp

|Ik|
.

for some constants C1, C2 > 0. Thus,∑
k

∫
Ik

∫ t

tk

|f ′(s)|p

|Θ′(s)|p
ds

(∫ t

tk

|Θ′(s)|p′ ds
)p/p′

dt ≤ C2
δp

|Ik|
∑
k

∫
Ik

∫
Ik

|f ′(s)|p

|Θ′(s)|p
ds dt

≤ C3δ
p‖f‖pp
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by (6.3). We have shown that

‖f‖Lp(µ) ≤ D1/p(1 + C4δ)‖f‖p,
which proves the theorem. �

Acknowledgements. M.S. would like to acknowledge the support of the Austrian Science
Fund FWF through the projects J-4254, and Y-1199.

The work of A.B. was supported by the Russian Science Foundation project 19-71-30002.
The research of K.K. is supported by the project ANR-18-CE40-0035.
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